Highlights in Space 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Polar Cap Arcs: Akebono &Lpar;Exos D&Rpar; Observations
Radio Science,Volume 31, Number 3, Pages645-653, May-June 1996 Multiple polar cap arcs: Akebono (Exos D) observations T. Obara, T. Mukai, H. Hayakawa, K. Tsuruda, A. Matsuoka, and A. Nishida Institute of Spaceand AstronauticalScience, Kanagawa, Japan H. Fukunishi Department of Geophysicsand Astrophysics,Tohoku University,Sendai, Japan Center for Atmosphericand SpaceSciences, Utah State University,Logan Abstract. Akebono (Exos D) observationsdemonstrate that polar cap arcssometimes have a fine structure,that is, multiple (doubleor triple) arcswith spacingof a few tens of kilometers.The multiplepolar cap arcsare dominantlyobserved in the nightsidepolar cap region, suggestingthat low backgroundconductance favors the appearanceof the structuredarcs. A relationshipbetween the spacingand the averageenergy of the precipitatingelectrons is investigated.Results show that a higher energyleads to a wider spacing.Akebono observationsalso showthe existenceof a downwardcurrent region embeddedbetween upward current regions (arcs). Comparison of the observationswith resultsfrom a coupledmagnetosphere-ionosphere Sun-aligned arc model is made, which showsgood qualitativeagreement between the modelingand observationalresults on the spacing-energydependence and the effect of backgroundionospheric conductance. Introduction dawn-to-duskcomponent of the electric field is the major contributorto the negativedivE. These results The electronsreaching low altitudes in the polar suggestthat localized electron precipitation in the cap region were categorized as "polar -
CASTOR: a Wide-Field, UV Space Telescope
Astro2020 Activities and Projects White Paper CASTOR: A Wide-Field, UV Space Telescope Thematic Areas: Space Missions Ground-Based Activities and Projects Computation Astrophysics Theoretical Astrophysics Laboratory Astrophysics Principal Author: Peter L. Capak Name: Peter L. Capak Institution: Infrared Processing and Analysis Center, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA Email: [email protected] Phone: (626) 395-6422 Co-authors: Michael L. Balogh (University of Waterloo), Jessie L. Christiansen (NASA Exo- planet Science Institute, Caltech), Patrick Cotˆ e´ (National Research Council of Canada), Olivier Dore´ (Caltech, JPL), Maria Drout (University of Toronto), Christopher J. Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh), Andreas L. Faisst (IPAC, Caltech), Sarah C. Gallagher (University of Western Ontario), Carl J. Grillmair (IPAC, Caltech), Paul Harrison (Magellan Aerospace), John B. Hutchings (National Research Council of Canada), JJ Kavelaars (National Research Council of Canada), J.-F. Lavigne (ABB), Janice C. Lee (IPAC, Caltech), Shouleh Nikzad (Jet Propulsion Laboratory, California Institute of Technology), Jason D. Rhodes (Jet Propulsion Laboratory, California Institute of Technology), Jason F. Rowe (Bishop’s Univer- sity), Ruben´ Sanchez-Janssen (UK Astronomy Technology Centre, Royal Observatory Edinburgh), Alan D. Scott (Honeywell Aerospace), Charles Shapiro (Jet Propulsion Laboratory, California In- stitute of Technology), Melanie Simet (University of California Riverside), Harry I. Teplitz (IPAC, Caltech), Kim A. Venn (University of Victoria), Ludovic Van Waerbeke (University of British Columbia) 1 Abstract: CASTOR (The Cosmological Advanced Survey Telescope for Optical and UV Re- search) is a proposed Canadian-led mission that would provide high-resolution imaging and spec- troscopy in the UV/optical (0.15–0.55 µm) spectral region. -
Ares I Upper Stage Powering the Second Phase of a Rocket’S Journey to Space
National Aeronautics and Space Administration NASA’s Ares I Upper Stage Powering the Second Phase of a Rocket’s Journey to Space Going to the moon and beyond will be a stunning Shortly after J-2X engine cutoff, the Orion cap- achievement and an enduring legacy to future sule will separate from the upper stage. Orion’s generations. Supporting the agency’s mission engine then will ignite to insert the capsule into to explore, learn and progress is NASA’s Ares I low-Earth orbit. The Ares I upper stage – dor- crew launch vehicle, an in-line, two-stage rocket. mant after safe shut-down of the J-2X upper The flagship of the Constellation Program’s space stage engine – will re-enter Earth’s atmosphere facts transportation system, the Ares I will carry the and splash down in the Indian Ocean. The upper Orion spacecraft and its crew on missions to the stage and J-2X engine will not be reused. International Space Station and then later on to the moon and beyond. Upper Stage Components The entire Ares I vehicle will be 325 feet tall, with Taking the Ares I on the second phase of its jour- a liftoff mass of 2.0 million pounds and payload ney from Earth will be the spacecraft’s second, capacity of 56,200 pounds mass to low Earth or upper, stage, powered by the J-2X engine. orbit for International Space Station missions, Approximately 133 seconds after liftoff, the Ares and 55,600 pounds mass for lunar missions. I upper stage will separate from the vehicle’s first A self-supporting cylindrical structure, the Ares stage, and the J-2X will ignite. -
China's Touch on the Moon
commentary China’s touch on the Moon Long Xiao As well as being a milestone in technology, the Chang’e lunar exploration programme establishes China as a contributor to space science. With much still to learn about the Moon, fieldwork beyond Earth’s orbit must be an international effort. hen China’s Chang’e 3 spacecraft geological history of the landing site. touched down on the lunar High-resolution images have shown rocky Wsurface on 14 December 2013, terrain with outcrops of porphyritic basalt, it was the first soft landing on the Moon such as Loong Rock (Fig. 2). Analysis since the Soviet Union’s Luna 24 mission of data collected by the penetrating in 1976. Following on from the decades- Chang’e 3 radar should lead to identification of the old triumphs of the Luna missions and underlying layers of regolith, impact breccia NASA’s Apollo programme, the Chang’e and basalt. lunar exploration programme is leading the China’s robotic field geologist Yutu has charge of a new generation of exploration Basalt outcrop Yutu rover stalled in its traverse of the lunar surface, on the lunar surface. Much like the earlier but plans for the Chang’e 5 sample-return space programmes, the China National mission are moving forward. The primary Space Administration (CNSA) has been objective of the mission will be to return developing its capabilities and technologies 100 m 2 kg of samples from the surface and depths step by step in a series of Chang’e missions UNIVERSITY STATE © NASA/GSFC/ARIZONA of up to 2 m, probably also in the relatively of increasing ambition: orbiting and Figure 1 | The Chinese Chang’e 3 spacecraft and smooth northern Mare Imbrium. -
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
View Conducted by Its Standing Review Board (SRB)
Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020
Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020 Christopher Baker NASA Space Technology Mission Directorate Flight Opportunities and Small Spacecraft Technology Program Executive National Aeronautics and Space Administration 1 CHANGING THE PACE OF SPACE Through Small Spacecraft Technology and Flight Opportunities, Space Tech is pursuing the rapid identification, development, and testing of capabilities that exploit agile spacecraft platforms and responsive launch capabilities to increase the pace of space exploration, discovery, and the expansion of space commerce. National Aeronautics and Space Administration 2 THROUGH SUBORBITAL FLIGHT The Flight Opportunities program facilitates rapid demonstration of promising technologies for space exploration, discovery, and the expansion of space commerce through suborbital testing with industry flight providers LEARN MORE: WWW.NASA.GOV/TECHNOLOGY Photo Credit: Blue Origin National Aeronautics and Space Administration 3 FLIGHT OPPORTUNITIES BY THE NUMBERS Between 2011 and today… In 2019 alone… Supported 195 successful fights Supported 15 successful fights Enabled 676 tests of payloads Enabled 47 tests of payloads 254 technologies in the portfolio 86 technologies in the portfolio 13 active commercial providers 9 active commercial providers National Aeronautics and Space Administration Numbers current as of March 1, 2020 4 TECHNOLOGY TESTED IN SUBORBITAL Lunar Payloads ISS SPACE IS GOING TO EARTH ORBIT, THE MOON, MARS, AND BEYOND Mars 2020 Commercial Critical Space Lunar Payload Exploration Services Solutions National Aeronautics and Space Administration 5 SUBORBITAL INFUSION HIGHLIGHT Commercial Lunar Payload Services Four companies selected as Commercial Lunar Payload Services (CPLS) providers leveraged Flight Opportunities-supported suborbital flights to test technologies that are incorporated into their landers and/or are testing lunar landing technologies under Flight Opportunities for others. -
Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. -
Human Issues Related to Spacecraft Vibration During Ascent
Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Suite NA 425 One Baylor Plaza Baylor College of Medicine Houston TX 77030-3498 1731 Sunset Blvd Houston TX 77005 713 859 1381 281 989 8721 [email protected] [email protected] Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Pogo in Liquid Fueled Rocket Motors The pogo phenomenon, or fuel pump inlet pressure fluctuation/ cavitation due to tuning feed line resonant frequencies was a major concern in the early space program. Pump tests showed that as inlet pressures were reduced toward cavitation, the pump started acting as an amplifier, causing large oscillations in the thrust chamber pressure. As the rocket engine thrust develops, liquid propellant is cyclically forced into the turbopump. This fluctuating fluid pressure is converted into an unintended and variable increase in engine thrust, with the net effect being longitudinal axis vibration that could result in spacecraft structural failure. -
Ares I Can Model by Clicking on Ares Education Program Under Contacts on the Right of the Screen
VISIT US ON THE WEB National Aeronautics and Space Administration Be sure to ask for parental assistance before get- ting online at <www.nasa.gov/ares>. Click the Ares Education link, on the left of the screen for additional information: • Print a Full-Page Color Poster and Paper Funnel Template. • View Detailed Ramp Assembly Instructions. • Send us an e-mail with comments and pictures of your Ares I Can Model by clicking on Ares Education Program under Contacts on the right of the screen. ARES I CAN MODEL National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, AL 35812 www.nasa.gov/marshall A hands-on project to help learn about and interact with NASA’s Ares I Rocket. www.nasa.gov NP-2009-06-118-MSFC 8-426227 OVERVIEW NASA plans to take humans back to the Moon, and the Ares I Crew Launch Vehicle (CLV) will help them 1 2 3 4 5 6 7 get there. The Ares I rocket is made of several parts: The recipe shows how to make these can groups. 1. Orion Crew Exploration Vehicle (CEV) 2. Instrument Unit (IU)* RECIPE DISPLAY RAMP 3. Core Stage (CS)* 1. Tape a funnel to the top of an upside down can The Human Factors Engineering Team built a ramp 4. Upper Stage Engine (USE) located within the of peppers (The peppers symbolize the propulsion to proudly display the Ares I Can Model. It is a Interstage (IS)* engine “hot zone” of the Orion Crew Exploration V-shaped ramp made of medium-density fiberboard 5. -
1. INTRODUCTION 2. EASY INSTALLATION GUIDE 8. Explain How to Download S/W by USB and How to Upload and Download 9. HOW to DOWNLO
1. INTRODUCTION Overview…………………………………………………………………………..………………...……... 2 Main Features……………………………………………………………………………... ...………... ....4 2. EASY INSTALLATION GUIDE...…………...…………...…………...…………...……….. .. 3 3. SAFETY Instructions.………………………………………………………………………… …6 4. CHECK POINTS BEFORE USE……………………………………………………………… 7 Accessories Satellite Dish 5. CONTROLS/FUNCTIONS……………………………………………………………………….8 Front/Rear panel Remote controller Front Display 6. EQUIPMENT CONNECTION……………………………………………………………....… 11 CONNECTION WITH ANTENNA / TV SET / A/V SYSTEM 7. OPERATION…………………………………………………………………….………………….. 12 Getting Started System Settings Edit Channels EPG CAM(COMMON INTERFACE MODULE) Only CAS(CONDITIONAL ACCESS SYSTEM) USB Menu PVR Menu 8. Explain how to download S/W by USB and how to upload and download channels by USB……………………….……………………………………….…………………31 9. HOW TO DOWNLOAD SOFTWARE FROM PC TO RECEIVER…………….…32 10. Trouble Shooting……………………….……………………………………….………………34 11. Specifications…………………………………………………………………….……………….35 12. Glossary of Terms……………………………………………………………….……………...37 1 INTRODUCTION OVERVIEW This combo receiver is designed for using both free-to-air and encrypted channel reception. Enjoy the rich choice of more than 20,000 different channels, broadcasting a large range of culture, sports, cinema, news, events, etc. This receiver is a technical masterpiece, assembled with the highest qualified electronic parts. MAIN FEATURES • High Definition Tuners : DVB-S/DVB-S2 Satellite & DVB-T Terrestrial Compliant • DVB-S/DVB-S2 Satellite Compliant(MPEG-II/MPEG-IV/H.264)