Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology

Total Page:16

File Type:pdf, Size:1020Kb

Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology Yuichi Tsuda Project Manager, Hayabusa2 Japan Aerospace ExplorationAgency 58th COPUOS, April 23, 2021 Lunar and Planetary Science Missions of Japan 1980 1990 2000 2010 2020 Future Plan Moon 2007 Kaguya 1990 Hiten SLIM Lunar-A × Venus 2010 Akatsuki 2018 Mio 1998 Nozomi × Planets Mercury (Mars) 2010 IKAROS Venus MMX Phobos/Mars 1985 Suisei 2014 Hayabusa2 Small Bodies Asteroid Ryugu 2003 Hayabusa 1985 Sakigake Asteroid Itokawa Destiny+ Comet Halley Comet Pheton 2 Hayabusa2 Mission ✓ Sample return mission to a C-type asteroid “Ryugu” ✓ 5.2 billion km interplanetary journey. Launch Earth Gravity Assist Ryugu Arrival MINERVA-II-1 Deployment Dec.3, 2014 Sep.21, 2018 Dec.3, 2015 Jun.27, 2018 MASCOT Deployment Oct.3, 2018 Ryugu Departure Nov.13.2019 Kinetic Impact Earth Return Second Dec.6, 2020 Apr.5, 2019 Target Markers Orbiting Touchdown Sep.16, 2019 Jul,11, 2019 First Touchdown Feb.22, 2019 MINERVA-II-2 Orbiting MD [D VIp srvlxp #534<# Oct.2, 2019 Hayabusa2 Spacecraft Overview Deployable Xband Xband Camera (DCAM3) HGA LGA Xband Solar Array MGA Kaba nd Ion Engine HGA Panel RCS thrusters ×12 ONC‐T, ONC‐W1 Star Trackers Near Infrared DLR MASCOT Spectrometer (NIRS3) Lander Thermal Infrared +Z Imager (TIR) Reentry Capsule +X MINERVA‐II Small Carry‐on +Z LIDAR ONC‐W2 +Y Rovers Impactor (SCI) +X Sampler Horn Target +Y Markers ×5 Launch Mass: 609kg Ion Engine: Total ΔV=3.2km/s, Thrust=5-28mN (variable), Specific Impulse=2800- 3000sec. (4 thrusters, mounted on two-axis gimbal) Chemical RCS: Bi-prop. 20N thrusters ×12 (6 DOF maneuverability) Solar Array Paddle: 2.6kW @ 1 a.u. TT&C: X-band Uplink, X/Ka-band Downlink, 8-32Kbps, X/Ka RARR&DDOR capability 4 International Collaboration in Hayabusa2 200+ Japanese researchers, 100+ international researchers USA 1. NASA • Tracking and navigation support by JPL • Asteroid observation • Sample exchange with OSIRIS‐REx mission Europe Australia 1. DLR (Germany) 1. Australian Space Agency •Provision of MASCOT Lander (ASA) •Tracking support thr ESA • Landing authorization •Drop tower experiment 2. Department of Defense 2. CNES (France) ) •Provision of instruments (DOD aboard MASCOT • Provision of Landing site 5 Arrival at Ryugu on June 27, 2018 • Top shape with a very circular equatorial bulge • Spectrum type: Cb • Diamter: ~900 m • Mass: ~450 million ton • Obliquity: ~8° • Rotation period:P = 7.63 hours • Reflectance factor (v-band):0.02 • Terrain: Very bumpy (C)JAXA, U of Tokyo, et.al. Accomplishments of Hayabusa2 (1/2) CAM‐H image at the 1st touchdown 1. Mobile activity of exploration robots on small body 2. Multiple robots deployment on small body MASCOT taken by ONC‐W2 Touchdown Accuracy:59.8 cm MINERVA‐II‐1A TM image MASCOT images Landing accuracy of C01‐Cb the 2nd touchdown MINERVA‐II‐1A image (3.5 m Diameter Target Landing Area) 3. 60cm‐accuracy landing and sampling on extra‐terrestrial celestial body image credit: JAXA 7 Accomplishments of Hayabusa2 (2/2) 4. Artificial crater forming and detailed 5. Multiple landing on extra‐terrestrial celestial body observation of impact process 6. Access to subsurface material Impact ejecta Accumulation of Impact ejecta observed by around artificial crater DCAM3 Deployed SCI taken by ONC‐W1 30m Artificial Crater TD2 Target Site 20m Artificial Crater impact Center Touchdown point of TD2 Target Marker 14.5m Artificial crater and TD2 point in one view Artificial crater generated by SCI (above) and its digital elevation map (right) 7. Smallest‐object constellation around extra‐ image credit: JAXA terrestrial celestial body 8 Reentry Terminal Guidance Phase • 5 TCMs in the last 2 months before Earth return. • The SRC was separated 12 hrs before reentry. • The spacecraft diverted from the reentry trajectory 11 hrs before reentry. Ion engine TCM (Sep.15-16,37M km from Earth) 2.0m/s Small trajectory adjustment Capsule reentry(Dec.6) TCM‐0 (Oct.22, Using RCS, same for later TCMs) Escape Maneuver 0.15m/s Small trajectory adjustment (Nov.12) (Dec.5, R-11hr) TCM‐1 0.007m/s Targeting to Woomera 12m/s TCM‐2 (Nov.26) 1.2m/s Final adjustment TCM‐3 (Dec.1) 0.05m/s Capsule TCM‐4 separation (Dec.5, R-12hr) TCM‐5 9 Hayabusa2 has returned! Coober Pedy, Australia, Dec.6, 2020, 2:28:48‐2:29:11JST (Altitude 80~50km) 10 Sample Return Capsule recovery Dec.6 (JST) 02:28 SRC reentry 02:32 SRC beacon signal detected 02:54 SRC landed (loss of beacon signal) 04:47 SRC found 08:03 SRC arrived at Quick Look Facility 57hr! 11:13 Fore‐heat shield found (requirement 12:31 Aft‐heat shield found 100hr) Dec.7 22:30 SRC shipped to Japan Dec.8 11:27 SRC carried into curation facility 11 Ryugu samples found in the sample container! Sample yield : 5.4g (requirement: 0.1g) Hayabusa2 Extended Mission ✓ Multi‐swingby + solar electric propulsion ✓ Pursuing for Planetary Defense technologies and sciences ✓ High speed flyby of asteroid 2001 CC21 ✓ Rendezvous to fast rotator asteroid 1998 KY26 1998 KY26 Rendezvous Earth swingby Earth swingby (2031) 2001 CC21 Flyby (2028) (2026) (2027) Significance of Hayabusa2 Science Space Exploration Engineering Planetary Defense Planetary Resource Hayabusa2 is pushing forward the boundaries of small body surface activity ACCESS / ROVING / SAMPLING / IMPACTING Launch Mass: About 4,000 kg Mission Duration: About 5 Years Launcher: H3 Launch Vehicle Target Launch Year: JFY2024 The sample return mission from the Martian moon, Phobos 15 Thank you for your attention.
Recommended publications
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object
    Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object by Nathan C. Shupe B.A., Swarthmore College, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering Sciences 2010 This thesis entitled: Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object written by Nathan C. Shupe has been approved for the Department of Aerospace Engineering Sciences Daniel Scheeres Prof. George Born Assoc. Prof. Hanspeter Schaub Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Shupe, Nathan C. (M.S., Aerospace Engineering Sciences) Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object Thesis directed by Prof. Daniel Scheeres Based on the recommendations of the Augustine Commission, President Obama has pro- posed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and pre- dicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population.
    [Show full text]
  • View Conducted by Its Standing Review Board (SRB)
    Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of
    [Show full text]
  • Stardust Comet Flyby
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet
    [Show full text]
  • Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
    PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering
    Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering Thruster Plume Osamu Mori, Yoji Shirasawa, Hirotaka Sawada, Ryu Funase, Yuichi Tsuda, Takanao Saiki and Takayuki Yamamoto (JAXA), Morizumi Motooka and Ryo Jifuku (Univ. of Tokyo) Abstract In this paper, the attitude dynamics of IKAROS, which is spinning solar sail, is presented. First Mode Model of out-of-plane deformation (FMM) and Multi Particle Model (MPM) are introduced to analyze the out-of-plane oscillation mode of spinning solar sail. The out-of-plane oscillation of IKAROS is governed by three modes derived from FMM. FMM is very simple and valid for the design of attitude controller. Considering the thruster configuration of IKAROS, the force on main body and sail by thruster plume as well as reaction force by thruster are integrated into MPM. The attitude motion after sail deployment or reorientation using thrusters can be analyzed by MPM numerical simulations precisely. スラスタプルームを考慮したスピン型ソーラーセイル「IKAROS」の姿勢制御運動 森 治,白澤 洋次,澤田 弘崇,船瀬 龍,津田 雄一,佐伯 孝尚,山本 高行(JAXA), 元岡 範純,地福 亮(東大) 摘要 本論文ではスピン型ソーラーセイル IKAROS の姿勢運動について示す.スピン型ソーラーセイル を解析するために一次面外変形モデルおよび多粒子モデルを導入する.まず,一次面外変形モデ ルから導出される 3 つのモードが IKAROS の面外運動を支配していることを示す.このモデルは 非常に簡易であり,姿勢制御設計に有効であると言える.一方,多粒子モデルに対しては, IKAROS のスラスタ配置を考慮して,スラスタの反力だけでなくスラスタプルームが本体や膜面 に及ぼす力を組み込み,セイル展開後およびスラスタによるマヌーバ後の姿勢運動を数値シミュ レーションにより詳細に解析する. 1. Introduction for the numerical model. Considering the thruster configuration of IKAROS, the force on main body and A solar sail 1) is a space yacht that gathers energy for sail by thruster plume as well as reaction force by propulsion from sunlight pressure by means of a thruster are integrated into MPM. The Fast Fourier membrane. The Japan Aerospace Exploration Agency Transform (FFT) results from IKAROS flight data are (JAXA) successfully achieved the world’s first solar sail compared with those from simulation data.
    [Show full text]
  • Sample of Paper for 30Th ISTS & 6Th NAST
    Orbit Determination for Long-term Prediction of Solar Power Sail Demonstrator IKAROS By ShoTaniguchi1), Takafumi Ohnishi1), Osamu Mori 2), Hideki Kato2), Hiroshi Takeuchi2), Atsushi Tomiki2), Yuya Mimasu2), Naoko Ogawa2), Jun Matsumoto2), Taichi ITO2), Tsutomu Ichikawa2), MakotoYoshikawa2), Shota Kikuchi3) , and Yosuke Kawabata3) 1) Technical computing solutions unit, science solutions div, Fujitsu Limited, Tokyo, Japan 2) Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3) Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan (Received April 24st, 2017) The world’s first solar sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) was launched along with the Venus Climate Orbiter Akatsuki in May 2010. IKAROS was full successful of missions that have been planned for first half year. After the Venus flyby in Dec 2010, it was carried out an extended mission. IKAROS has succeeded many additional engineering and scientific missions. We are obtained many orbit determination skill1) in nominal and extended phase. However, the IKAROS was almost run out the fuel in Dec 2011, so attitude and spin rate was out of control .As a result, lost communication with the ground station due to the power shortage on December 24, 2011. After this operation IKAROS began to repeat the hibernation of the 10-month period by substantially fixed attitude in inertial coordinate while maintaining the spin rate between 5rpm and 6rpm without fuel. End of a hibernation, it is necessary to difficult orbit determination and 10 months or more of the long-term trajectory prediction for antenna tracking at USUDA deep space tracking station. In order to perform the orbit determination of long-term arc, an optical model2) of the solar sail back surface was constructed.
    [Show full text]
  • Sg423finalreport.Pdf
    Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites
    [Show full text]
  • Science Exploration and Instrumentation of the OKEANOS Mission to a Jupiter Trojan Asteroid Using the Solar Power Sail
    Planetary and Space Science xxx (2018) 1–8 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail Tatsuaki Okada a,b,*, Yoko Kebukawa c,d, Jun Aoki d, Jun Matsumoto a, Hajime Yano a, Takahiro Iwata a, Osamu Mori a, Jean-Pierre Bibring e, Stephan Ulamec f, Ralf Jaumann g, Solar Power Sail Science Teama a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan b The University of Tokyo, Hongo, Bunkyo, Tokyo, Japan c Faculty of Engineering, Yokohama National University, Japan d Graduate School of Science, Osaka University, Toyonaka, Japan e Institut dʼAstrophysique Spatiale, Orsay, France f German Aerospace Center, Cologne, Germany g German Aerospace Center, Berlin, Germany ARTICLE INFO ABSTRACT Keywords: An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under Solar system formation study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the Jupiter trojans asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling Solar power sail instruments of the mission are introduced, as the results of the joint study between the scientists and engineers Lander from Japan and Europe. Mass spectrometry OKEANOS 1. Introduction ocean water and life. Lucy (Levison et al., 2017), a Jupiter Trojan multi-flyby mission, has Jupiter Trojan asteroids are located in the long-term stable orbits been selected as a NASA Discovery class mission, which aims for un- around the Sun-Jupiter Lagrange points (L4 or L5) Most of them are derstanding the variation and diversity of Jupiter Trojans.
    [Show full text]
  • Analysis of MIRO/Rosetta Data
    Analysis of MIRO/Rosetta Data Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von David Marshall aus Norwich, Vereinigtes Königreich Göttingen, 2018 Betreuungsausschuss Dr. Paul Hartogh Max-Planck-Institut für Sonnensystemforschung, Göttingen Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität Göttingen Mitglieder der Prüfungskommision Referent: Dr. Paul Hartogh Max-Planck-Institut für Sonnensystemforschung, Göttingen Korreferent: Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität Göttingen Weitere Mitglieder der Prüfungskommission: Prof. Dr. Ulrich Christensen Max-Planck-Institut für Sonnensystemforschung, Göttingen Prof. Dr. Ariane Frey II. Physikalisches Institut, Georg-August-Universität Göttingen Prof. Dr. Thorsten Hohage Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttin- gen Prof. Dr. Andreas Pack Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen Tag der mündlichen Prüfung: 19.12.2018 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. ISBN 978-3-944072-65-4 uni-edition GmbH 2019 http://www.uni-edition.de c David Marshall This work is distributed under a Creative Commons Attribution 3.0 License Printed in Germany Contents Summary9 Zusammenfassung 11 1 Introduction 13 1.1 Comets................................... 13 1.2 Observational history: from the stone age to the space age........ 16 1.3 The Rosetta mission............................. 21 1.4 67P/Churyumov-Gerasimenko....................... 24 1.5 The Microwave Instrument for the Rosetta orbiter............. 28 1.6 MIRO aims, results and spectra....................... 32 1.7 Thesis aims................................
    [Show full text]
  • Tetsuya Nakano Safety and Mission Assurance Department Japan Aerospace Exploration Agency (JAXA)
    JAXA Approach for Mission Success ~close coordination with contractors~ Tetsuya Nakano Safety and Mission Assurance Department Japan Aerospace Exploration Agency (JAXA) 2010.10.21 NASA Supply Chain Conference@NASA GSFC 1 JAXA Approach for Mission Success ~close coordination with contractors~ Contents 1. Recent JAXA Space Flights 2. JAXA’s Role and Responsibility 3. Major S&MA Activities 4. Technical Improvement Activities in Development Projects 2 1. Recent JAXA Space Flights Currently-operating JAXA’s satellites on-orbit CY2000 CY2005 CY2010 2005 Daichi (ALOS: Land observation) 2002 2009 Kodama (DRTS: Data relay) Ibuki(GOSAT: Greenhouse gas observation) 2006 Kiku8 (ETS-8: Technical Testing) 2008 Kizuna(WINDS: Super high-speed internet) 2010 2005 Michibiki (QZSS-1: Suzaku (Astro-EII:X-ray Astronomy) Global Positioning) 2006 2010 Akari (Astro-F: Infrared Akatsuki (Planet-C: Imaging) Venus Climate) 2006 2010 Hinode (SOLAR-B: Ikaros (Solar Power Solar Physics) Sail) 2003 Hayabusa (asteroid explorer) 2007 3 Kaguya (Lunar observation) 1. Recent JAXA Space Flights Japanese Launch vehicles H-2A (Standard) H-2B Epsilon(under development) GTO 4.0ton 8ton LEO 10ton 16.5ton (ISS orbit) 1.2ton 4 4 1. Recent JAXA Space Flights International Space Station Program “HTV” ISS “KIBO” Transportation Vehicle Japanese Experience Module (JEM) ©NASA ©NASA ©NASA Yamazaki 2010.4 Furukawa Noguchi Wakata 2011.Spring - 2009.12 – 2010.6 2009.3 – 2009.7 5 2. JAXA’s Role and Responsibility Emphasizing upstream process and front-loading • Apply Systems Engineering (SE) that emphasizes upstream process management in the project lifecycle • Allocate adequate resource to upstream process (front-loading) Define appropriate level of JAXA responsibilities and roles in development projects • JAXA is responsible for requirements/specification definition, and flight operations.
    [Show full text]