Japan's Technical Prowess International Cooperation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JAXA Astronaut Akihiko Hoshide Returns to UWCSEA Graduation 2016 Updates and Profiles
Vol 14 October 2016 The Alumni Magazine of UWC South East Asia JAXA Astronaut Akihiko Hoshide returns to UWCSEA Graduation 2016 Updates and Profiles (c)JAXA/NASA Our alumni community Albania, Argentina, Armenia, Australia, Austria, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Benin, Bermuda, Botswana, Brazil, Brunei, Bulgaria, Cambodia, Cameroon, Canada, Cayman Islands, Chile, China, Colombia, Costa Rica, Croatia, Curaçao, Cyprus, Czech Republic, Denmark, Dutch Caribbean, Egypt, Ethiopia, Falkland Islands (Malvinas), Faroe Islands, Fiji, Finland, France, Germany, Ghana, Greece, Guam, Guatemala, Guyana, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jersey, Jordan, Kazakhstan, Kenya, Laos, Lebanon, Luxembourg, Macau, Madagascar, Malaysia, Maldives, Malta, Mauritius, Mexico, Monaco, Mongolia, Morocco, Myanmar, Namibia, Nepal, Netherlands, New Caledonia, New Zealand, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Singapore, Slovenia, South Africa, South Korea, South Sudan, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Timor Leste, Trinidad And Tobago, Turkey, Turks And Caicos Islands, Uganda, United Arab Emirates, United Kingdom, United States, Uruguay, Venezuela, Vietnam, Zimbabwe Alumni services Every student who leaves UWCSEA, by both UWCSEA and our alumni. Watch The UWC Hub regardless of how long they were the alumni website for updates and Launched in September 2016, the UWC enrolled, automatically becomes a details, and let us advertise your events! Hub is a web platform and mobile member of our alumni community. Alumni and Parents of Alumni eBriefs app that brings together the UWC Some of the services we offer include: These are emailed to alumni and community around the world. -
Multiple Polar Cap Arcs: Akebono &Lpar;Exos D&Rpar; Observations
Radio Science,Volume 31, Number 3, Pages645-653, May-June 1996 Multiple polar cap arcs: Akebono (Exos D) observations T. Obara, T. Mukai, H. Hayakawa, K. Tsuruda, A. Matsuoka, and A. Nishida Institute of Spaceand AstronauticalScience, Kanagawa, Japan H. Fukunishi Department of Geophysicsand Astrophysics,Tohoku University,Sendai, Japan Center for Atmosphericand SpaceSciences, Utah State University,Logan Abstract. Akebono (Exos D) observationsdemonstrate that polar cap arcssometimes have a fine structure,that is, multiple (doubleor triple) arcswith spacingof a few tens of kilometers.The multiplepolar cap arcsare dominantlyobserved in the nightsidepolar cap region, suggestingthat low backgroundconductance favors the appearanceof the structuredarcs. A relationshipbetween the spacingand the averageenergy of the precipitatingelectrons is investigated.Results show that a higher energyleads to a wider spacing.Akebono observationsalso showthe existenceof a downwardcurrent region embeddedbetween upward current regions (arcs). Comparison of the observationswith resultsfrom a coupledmagnetosphere-ionosphere Sun-aligned arc model is made, which showsgood qualitativeagreement between the modelingand observationalresults on the spacing-energydependence and the effect of backgroundionospheric conductance. Introduction dawn-to-duskcomponent of the electric field is the major contributorto the negativedivE. These results The electronsreaching low altitudes in the polar suggestthat localized electron precipitation in the cap region were categorized as "polar -
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Potential of Polarization/Raman Lidar to Separate Fine Dust, Coarse Dust
Atmos. Meas. Tech., 10, 3403–3427, 2017 https://doi.org/10.5194/amt-10-3403-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles Rodanthi-Elisavet Mamouri1,2 and Albert Ansmann3 1Cyprus University of Technology, Dep. of Civil Engineering and Geomatics, Limassol, Cyprus 2The Cyprus Institute, Energy, Environment, and Water Research Center, Nicosia, Cyprus 3Leibniz Institute for Tropospheric Research, Leipzig, Germany Correspondence to: Rodanthi-Elisavet Mamouri ([email protected]) Received: 26 April 2017 – Discussion started: 4 May 2017 Revised: 28 July 2017 – Accepted: 2 August 2017 – Published: 19 September 2017 Abstract. We applied the recently introduced polarization advantages in comparison to 355 and 1064 nm polarization lidar–photometer networking (POLIPHON) technique for lidar approaches and leads to the most robust and accurate the first time to triple-wavelength polarization lidar measure- POLIPHON products. ments at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long- Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON 1 Introduction method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the Polarization lidar is a very powerful remote sensing tool for new, extended approach to separate even the fine and coarse aerosol and cloud research. The technique has been used for dust backscatter fractions. We show that the traditional and a long time to monitor and investigate cirrus cloud systems the advanced method are compatible and lead to a consis- (e.g., Sassen, 1991, 2005; Reichardt et al., 2002, 2008) and tent set of dust and non-dust profiles at simplified, less com- polar stratospheric cloud evolution (see, e.g., Browell et al., plex aerosol layering and mixing conditions as is the case 1990; Achtert and Tesche, 2014). -
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
Chandrayaan-2 Completes a Year Around the Moon
One-year completion of Chandrayaan-2 Lunar orbit insertion (August 20, 2019) Chandrayaan-2 completes a year around the Moon The Moon provides the best linkage to understand Earth’s early history and offers an undisturbed record of the inner Solar system environment. It could also be a base for future human space exploration of the solar system and a unique laboratory, unlike any on Earth, for fundamental physics investigations. In spite of several missions to the Moon, there remains several unanswered questions. Continued high resolution studies of its surface, sub-surface/interior and its low-density exosphere, are essential to address diversities in lunar surface composition and to trace back the origin and evolution of the Moon. The clear evidence from India’s first mission to the Moon, Chandrayaan-1, on the extensive presence of surface water and the indication for sub- surface polar water-ice deposits, argues for more focused studies on the extent of water on the surface, below the surface and in the tenuous lunar exosphere, to address the true origin and availability of water on Moon. With the goal of expanding the lunar scientific knowledge through detailed studies of topography, mineralogy, surface chemical composition, thermo-physical characteristics and the lunar exosphere, Chandrayaan-2 was launched on 22nd July 2019 and inserted into the lunar orbit on 20th August 2019, exactly one year ago. Though the soft-landing attempt was not successful, the orbiter, which was equipped with eight scientific instruments, was successfully placed in the lunar orbit. The orbiter completed more than 4400 orbits around the Moon and all the instruments are currently performing well. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
View Conducted by Its Standing Review Board (SRB)
Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of -
Earthcare and Himawari-8 Aerosol Products
EarthCARE and Himawari-8 Aerosol Products Maki Kikuchi, H. Murakami, T. Nagao, M. Yoshida, T. Nio, Riko Oki (JAXA/EORC), M. Eisinger and T. Wehr (ESA/ESTEC), EarthCARE project members and Himawari-8 group members 14th July 2016 Contact: [email protected] EarthCARE Earth Observation Research Center 2 CPR Observation Instruments on EarthCARE MSI CPRCPR Cloud Profiling Radar BBR ATLIDATLID Atmospheric Lidar ATLID Copyright ESA MSIMSI Multi-Spectral Imager European Space Agency(ESA)/National Institute of Institutions Information and Communications Technology(NICT)/ BBRBBR Broadband Radiometer Japan Aerospace Exploration Agency(JAXA) Launch 2018 using Soyuz or Zenit (by ESA) Mission Duration 3-years Mass Approx. 2200kg Sun-synchronous sub-recurrent orbit Orbit Altitude: approx. 400km Mean Local Solar Time (Descending): 14:00 Synergetic Observation by 4 sensors Repeat Cycle 25 days Orbit Period 5552.7 seconds Semi Major Axis 6771.28 km Eccentricity 0.001283 3 Inclination 97.050° 285m Synergetic Observation by 4 Sensors on Global Scale •3‐dimensional structureGlobal simultaneous of aerosol observations and cloud of including vertical motion ‐ Cloud & aerosol profiles, 3D structure, with vertical motions •Radiation flux at top of‐ Radiation atmosphere flux at Top of Atmosphere (TOA) •Aerosol –cloud –radiation‐ Aerosol interactions‐Cloud‐Radiation interaction 4 ATLID ATLID Global Observation of Cloud and Atmospheric Lidar Aerosol Vertical Profile and Optical Properties 355nm High Spectral Resolution Lidar ATLID is a High Spectral Resolution Lidar (HSRL) developed by Instrument (HSRL) European Space Agency. - Rayleigh Channel Channel - Mie Channel(Cross-polarization) Different from the traditional Mie lidar, it has the capability to - Mie Channel (Co-polarization) separate Rayleigh scattering signal (originate from Sampling Horizontal : 285m / Vertical : 103m atmospheric molecules) and Mie scattering signal (originate Observation 3°Off Nadir(TBD) from aerosol and cloud) by high spectral resolution filter. -
Roundup Fall 2015
National Aeronautics and Space Administration Roundup LYNDON B. JOHNSON SPACE CENTER Fall | 2015 Global (and cosmic) expansion Expansión global (y cósmica) In this edition… Guest Column 3 ISS Science Corner 4 Veteran explorers slated for future commercial crew flights 5 All aboard the education I’M WRITING THIS COLUMN having only been on the job for about two station! weeks, so I’m still learning the duties of a deputy director. While I have 6 White House lands at the been to the ninth floor of Building 1 many times, it is interesting how I house of human spaceflight have begun to see the center differently as I take on this new role. to praise our Commitment to I was the Orion Program manager for nearly eight years. During that Action for Hispanic education time, I experienced many transitions in NASA leadership and policy. 8 ‘Leaf’ it to NASA to grow Some of these were difficult for the team to weather, but they met the lettuce on space station challenge. I believe these experiences taught me how to anticipate, adapt and lead a team through change. It is my hope that these 9 It’s complicated: New Pluto experiences will provide me the insight to help Ellen lead the center images from NASA’s New into NASA’s next chapters of human spaceflight. Horizons offer many surprises I know that the other programs and directorates at JSC are faced 10 Meet Delene Sedillo, with their own specific, dynamic environments. In the coming weeks, NASA/PHOTO Associate Director, Office of I’ll be taking some time to get an understanding of the strategies and Mark Geyer Procurement challenges involving all of the organizations here at JSC. -
Transmittal of Geotail Prelaunch Mission Operation Report
National Aeronautics and Space Administration Washington, D.C. 20546 ss Reply to Attn of: TO: DISTRIBUTION FROM: S/Associate Administrator for Space Science and Applications SUBJECT: Transmittal of Geotail Prelaunch Mission Operation Report I am pleased to forward with this memorandum the Prelaunch Mission Operation Report for Geotail, a joint project of the Institute of Space and Astronautical Science (ISAS) of Japan and NASA to investigate the geomagnetic tail region of the magnetosphere. The satellite was designed and developed by ISAS and will carry two ISAS, two NASA, and three joint ISAS/NASA instruments. The launch, on a Delta II expendable launch vehicle (ELV), will take place no earlier than July 14, 1992, from Cape Canaveral Air Force Station. This launch is the first under NASA’s Medium ELV launch service contract with the McDonnell Douglas Corporation. Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth’s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer. The current schedule includes, in addition to the July launch of Geotail, launches of Wind in August 1993 and Polar in May 1994. -
Mp-Ist-056-32
UNCLASSIFIED/UNLIMITED The International Reference Ionosphere – Climatological Standard for the Ionosphere Dieter Bilitza Raytheon IS, Space Physics Data Facility GSFC, Code 612.4 Greenbelt, MD 20771 U.S.A. [email protected] ABSTRACT The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities.