Beyond the Paths of Heaven the Emergence of Space Power Thought

Total Page:16

File Type:pdf, Size:1020Kb

Beyond the Paths of Heaven the Emergence of Space Power Thought Beyond the Paths of Heaven The Emergence of Space Power Thought A Comprehensive Anthology of Space-Related Master’s Research Produced by the School of Advanced Airpower Studies Edited by Bruce M. DeBlois, Colonel, USAF Professor of Air and Space Technology Air University Press Maxwell Air Force Base, Alabama September 1999 Library of Congress Cataloging-in-Publication Data Beyond the paths of heaven : the emergence of space power thought : a comprehensive anthology of space-related master’s research / edited by Bruce M. DeBlois. p. cm. Includes bibliographical references and index. 1. Astronautics, Military. 2. Astronautics, Military—United States. 3. Space Warfare. 4. Air University (U.S.). Air Command and Staff College. School of Advanced Airpower Studies- -Dissertations. I. Deblois, Bruce M., 1957- UG1520.B48 1999 99-35729 358’ .8—dc21 CIP ISBN 1-58566-067-1 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited. ii Contents Chapter Page DISCLAIMER . ii OVERVIEW . ix PART I Space Organization, Doctrine, and Architecture 1 An Aerospace Strategy for an Aerospace Nation . 3 Stephen E. Wright 2 After the Gulf War: Balancing Space Power’s Development . 63 Frank Gallegos 3 Blueprints for the Future: Comparing National Security Space Architectures . 103 Christian C. Daehnick PART II Sanctuary/Survivability Perspectives 4 Safe Heavens: Military Strategy and Space Sanctuary . 185 David W. Ziegler PART III Space Control Perspectives 5 Counterspace Operations for Information Dominance . 249 James G. Lee iii Chapter Page 6 When the Enemy Has Our Eyes . 303 Cynthia A. S. McKinley PART IV High-Ground Perspectives 7 National Security Implications of Inexpensive Space Access . 365 William W. Bruner III 8 Concepts of Operations for a Reusable Launch Space Vehicle . 437 Michael A. Rampino 9 The Inherent Limitations of Space Power: Fact or Fiction? . 507 Gregory Billman INDEX . 569 Illustrations Figure 1 World Market Share of Large Jet Airplane Deliveries . 9 2 Space System Cycles . 129 3 Offensive Counterspace Options . 285 4 Offensive Counterspace Options for Tier-One Nations . 286 5 Offensive Counterspace Options for Tier-Two Nations . 287 iv Figure Page 6 Offensive Counterspace Options for Tier-Three Nations . 288 7 The Dual Track Technology Progression (Film-Based and Digital Processing) . 310 8 Warfare—the Human Expression of the Battle for Ascendancy . 322 9 The Forms of Modern Warfare (Categorized by Mankind’s Development of Group Lethality Tools) . 323 10 SPOT Control and Data Reception Network . 341 11 Current RLV Concepts . 445 12 Cumulative 2,000-Pound Weapons Delivery within Three Days . 468 13 Space Regions and Environs . 518 14 Earth and Moon Gravity Wells . 519 15 Continuum of Operations and Characteristics of Home-Based Terrestrial Forces . 529 16 Continuum of Operations and Characteristics of Deployed Terrestrial Forces . 532 17 Continuum of Operations and Characteristics of Engaged Terrestrial Forces . 536 18 Continuum of Operations and Characteristics of Space Power versus Terrestrial Forces . 543 Table 1 Aerospace Industry Sales (millions of current dollars) . 7 v Table Page 2 Trade Balance of Selected Commodities (billions of dollars) . 8 3 US Government Research and Development Expenditures (millions of current dollars) . 12 4 Changing Aircraft Production Costs . 35 5 USSPACECOM Lessons . 69 6 USCENTCOM Lessons . 72 7 Persian Gulf War Space Power Shortcomings and Issues . 75 8 Advantages of Space Systems . 109 9 Perceived Disadvantages of Space Systems . 111 10 Space System Terms and Definitions . 112 11 Space Architecture Elements . 114 12 Space Architecture Attributes . 115 13 Command-Oriented Architecture Priorities . 118 14 Demand-Oriented Architecture Priorities . 119 15 Space Architecture Determinants . 131 16 Constellation Implications, Command-Oriented Architecture . 132 17 Launch Vehicle Implications, Command-Oriented Architecture . 133 18 Constellation Implications, Demand-Oriented Architecture . 134 19 Launch Vehicle Implications, Demand-Oriented Architecture . 135 vi Table Page 20 Theater RSTA Description . 138 21 Theater RSTA Qualitative Requirements . 140 22 Command-Oriented Architecture for RSTA Requirements . 142 23 Demand-Oriented Architecture for RSTA Requirements . 148 24 Space-Capable Nations by Tier Groups . 257 25 Existing and Projected Landsat Ground Stations . 258 26 Existing and Projected SPOT Ground Stations . 261 27 Qualitative Measures of Various Civilian Satellite Systems . 265 28 Ground Resolution Requirements for Object Identification (in meters) . 266 29 Landsat and SPOT Spectral Band Applications (in microns) . 269 30 Civil/Military Uses of Multispectral Imagery . 270 31 Planned Imagery Systems 1995–2000 . 329 32 Resolution Required for Specific Military Tasks . 331 33 Some Means of Denial . 336 34 SPOT Direct Receiving Stations . 340 35 Attributes of Proposed RLV Concepts and One Popular TAV Concept . 446 36 Summary of Attributes of a Notional RLV . 452 vii Table Page 37 CONOPS A and B RLV Capabilities . 454 38 Cumulative 2,000-Pound Weapons Delivery within Three Days . 468 39 Summary of Analysis . 485 viii Overview Bruce M. DeBlois Major issues have plagued the US military space community for years. Foremost among these issues is the relationship between air and space. At a recent airpower conference, military leaders from the western powers presented discussions of airpower and space issues with a pervasive underlying assumption: that the next logical step from the exploitation of airpower and space capabilities was the merging of the two environments toward the exploitation of “aerospace” power.1 The current distinction between air and space rests on the fiscal and technical inability to merge them—an inability that is soon to be overcome. Conferees dismissed environmental distinctions between the two on the grounds that there is no absolute boundary between air and space.2 In Paths of Heaven, the chapter titled “Ascendant Realms: Characteristics of Air and Space Power,” I examine this assumption from the perspective of 21 different military characteristics and conclude it to be invalid. The reasons extend well beyond an inability—fiscally and technically—to merge the two realms. Similarities based upon functions and the lack of a distinct boundary are offset by distinctions in the physical environments. The physical laws of air and space are profoundly different. A vehicle flying on a cushion of air is not equivalent to a vehicle in free-fall orbit. Aside from the issue of access due to huge differences in energy requirements, the airborne vehicle is maneuverable and allows for flexible operations while the space-borne platform is fixed to a high-velocity orbital path. The latter expends little energy to stay in a fixed orbital position, allowing it a duration capability well beyond airborne vehicles. The issue is not whether the two environments can be merged technically, but given that they can be merged, should they be merged. An analogy is useful to illustrate the argument. ix Land and sea forces maintain a two-dimensional perspective and relatively slow pace of operations. The amphibious mission certainly illustrates the fact that there is no absolute boundary between land and sea for military purposes. Fiscal and technical capability to merge the two environments in an attempt to exploit surface power exists. In spite of these similarities, land power and sea power have not been merged as surface power because of environmental differences. The question is not whether to make a land/sea capable vehicle or system, but whether they should be the mainstay of a military surface capability. The answer is a resounding no. Given limited fiscal resources, the choice between making either 1,000 land/sea vehicles or making 490 land vehicles, 490 sea vehicles, and 20 land/sea vehicles is trivial. A land vehicle will out-perform a land/sea vehicle on land, and a sea vehicle will out-perform a land/sea vehicle at sea. Most missions are either at land or at sea; only a few cross the hazy boundaries. It makes sense to invest in the best capability for the environment in which the mission will be performed. Doctrine, organization, and strategies flow from the environments and the systems employed to exploit those environments. Hence land power is distinct from sea power. Surface power would be a less optimal approach. The same argument holds true for air and space power. Air and space forces maintain a three-dimensional perspective and relatively fast pace of operations. The similarities end there. Although there is no absolute boundary between air and space, no physicist would refute the fact that once the fuzzy boundary is transcended, the nature of the environment changes radically. Fiscal and technical capability to merge the two environments in an attempt to exploit aerospace power is emerging, but should it be pursued? Again, environmental differences drive the answer. The question is not whether to make an aerospace capable vehicle/system, but whether we should make many as the mainstay of a military aerospace capability. The answer, again, is a resounding no. A space vehicle will out-perform an aerospace vehicle in space: A typical aerospace vehicle will carry the baggage of air capability, such as wings, into space.
Recommended publications
  • Potential of Polarization/Raman Lidar to Separate Fine Dust, Coarse Dust
    Atmos. Meas. Tech., 10, 3403–3427, 2017 https://doi.org/10.5194/amt-10-3403-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles Rodanthi-Elisavet Mamouri1,2 and Albert Ansmann3 1Cyprus University of Technology, Dep. of Civil Engineering and Geomatics, Limassol, Cyprus 2The Cyprus Institute, Energy, Environment, and Water Research Center, Nicosia, Cyprus 3Leibniz Institute for Tropospheric Research, Leipzig, Germany Correspondence to: Rodanthi-Elisavet Mamouri ([email protected]) Received: 26 April 2017 – Discussion started: 4 May 2017 Revised: 28 July 2017 – Accepted: 2 August 2017 – Published: 19 September 2017 Abstract. We applied the recently introduced polarization advantages in comparison to 355 and 1064 nm polarization lidar–photometer networking (POLIPHON) technique for lidar approaches and leads to the most robust and accurate the first time to triple-wavelength polarization lidar measure- POLIPHON products. ments at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long- Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON 1 Introduction method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the Polarization lidar is a very powerful remote sensing tool for new, extended approach to separate even the fine and coarse aerosol and cloud research. The technique has been used for dust backscatter fractions. We show that the traditional and a long time to monitor and investigate cirrus cloud systems the advanced method are compatible and lead to a consis- (e.g., Sassen, 1991, 2005; Reichardt et al., 2002, 2008) and tent set of dust and non-dust profiles at simplified, less com- polar stratospheric cloud evolution (see, e.g., Browell et al., plex aerosol layering and mixing conditions as is the case 1990; Achtert and Tesche, 2014).
    [Show full text]
  • To All the Craft We've Known Before
    400,000 Visitors to Mars…and Counting Liftoff! A Fly’s-Eye View “Spacers”Are Doing it for Themselves September/October/November 2003 $4.95 to all the craft we’ve known before... 23rd International Space Development Conference ISDC 2004 “Settling the Space Frontier” Presented by the National Space Society May 27-31, 2004 Oklahoma City, Oklahoma Location: Clarion Meridian Hotel & Convention Center 737 S. Meridian, Oklahoma City, OK 73108 (405) 942-8511 Room rate: $65 + tax, 1-4 people Planned Programming Tracks Include: Spaceport Issues Symposium • Space Education Symposium • “Space 101” Advanced Propulsion & Technology • Space Health & Biology • Commercial Space/Financing Space Space & National Defense • Frontier America & the Space Frontier • Solar System Resources Space Advocacy & Chapter Projects • Space Law and Policy Planned Tours include: Cosmosphere Space Museum, Hutchinson, KS (all day Thursday, May 27), with Max Ary Oklahoma Spaceport, courtesy of Oklahoma Space Industry Development Authority Oklahoma City National Memorial (Murrah Building bombing memorial) Omniplex Museum Complex (includes planetarium, space & science museums) Look for updates on line at www.nss.org or www.nsschapters.org starting in the fall of 2003. detach here ISDC 2004 Advance Registration Form Return this form with your payment to: National Space Society-ISDC 2004, 600 Pennsylvania Ave. S.E., Suite 201, Washington DC 20003 Adults: #______ x $______.___ Seniors/Students: #______ x $______.___ Voluntary contribution to help fund 2004 awards $______.___ Adult rates (one banquet included): $90 by 12/31/03; $125 by 5/1/04; $150 at the door. Seniors(65+)/Students (one banquet included): $80 by 12/31/03; $100 by 5/1/04; $125 at the door.
    [Show full text]
  • Leviathan Leviathan
    Leviathan™ st Low Cost Heavy Lift for the 21 Century™ Approved For Public Distribution - Copyright © 2011, DIRECT - All Rights Reserved Leviathan™ st Low Cost Heavy Lift for the 21 Century™ ™ The centerpiece of DIRECT ’s new fleet of space systems, Leviathan™, is a brand-new breed of low cost commercial heavy lift launch vehicle. It is specifically designed to provide unrivaled performance at a price that will finally enable affordable industrial access to space. Leviathan™ With a Payload Fairing diameter of 13.80 meters and a payload capacity over 140 metric tons, Leviathan™ is significantly larger than any other launch vehicle in history, including the Saturn-V rocket that once took astronauts to the moon. Nation / Vehicle Mission Reliability Launch Cost† LEO Payload† Cost / kg to LEO Space Shuttle 130 of 132 (98.48%) $850 million 24,400 kg $34,836 Delta-IV Heavy 13 of 14 (92.86%) $265 million 23,040 kg $11,502 Atlas-V 552 22 of 23 (95.65%) $190 million 20,050 kg $9,476 Ariane-V ES 51.55 (92.73%) $120 million 21,000 kg $5,714 Falcon-9 <Insufficient Data> $56 million 10,450 kg $5,359 Long March 2E 112 of 122 (91.80%) $55 million 14,100 kg $3,901 Proton-M 294 of 335 (87.76%) $80 million 21,000 kg $3,810 Leviathan™ 98.00% * $60 million * 140,000 kg * $429 * * Initial Estimates based on 6 flights per year † Based on publicly available information Leviathan™ is designed to be fully reusable (except the payload fairings) with a minimum of inspections and maintenance between flights.
    [Show full text]
  • Dr. George Friedman Founder and CEO of STRATFOR
    Dr. George Friedman Founder and CEO of STRATFOR Dr. Friedman is the Chief Executive Officer and founder of STRATFOR. Since 1996 Dr. Friedman has driven the strategic vision guiding STRATFOR to global prominence in private geopolitical intelligence and forecasting. Dr. Friedman is the author of The New York Times bestseller “The Next Decade: Where We’ve Been…and Where We’re Going,” which forecasts the major events and challenges that will test America and the American President over the course of the next decade. Dr. Friedman’s previous book, “The Next 100 Years: A Forecast for the 21st Century” was also a New York Times bestseller and was published in over 20 languages. His other books on warfare and intelligence have included “America’s Secret War,” “The Future of War” and “The Intelligence Edge.” A very popular keynote speaker, Dr. Friedman is in high demand at numerous conferences and industry-specific events for major financial firms such as JP Morgan, Citibank, Ernst & Young and many Fortune 500 companies. In addition he has briefed the Australian Command and Staff College, Eglin Air Force Research Laboratory, U.S. Marine Corps Command and Staff College and many other military and government organizations. Dr. Friedman is frequently invited to speak internationally, including in Turkey, Germany, Poland, Azerbaijan, Australia and New Zealand. Major television and radio networks such as CNN, Fox News, and NPR frequently invite Dr. Friedman to appear as an international intelligence expert. He and STRATFOR have also been featured in cover stories in Barron’s and in the UK’s New Statesman.
    [Show full text]
  • Antisatellite Systems the Nation's First Operational Antisatellite Weapon System Was Known As Program 505
    This group photo, taken in 1968, shows 14 of the 17 MOL astronauts. The first group of eight astronauts was selected in November 1965, the second group of five in June 1966, and the third group of four in June 1967. Following cancellation of the MOL program, seven of the former MOL astronauts became astronauts for NASA, and three later attained general officer or admiral rank. James Abrahamson (top right) became a lieutenant general and Director of the Strategic Defense Initiative Organization. Robert Herres (top left) became a four-star general and Commander-in-Chief of the U.S. Space Command. Richard Truly (bottom right) became a vice admiral and head of the U.S. Naval Space Command. After retiring from the Navy, Admiral Truly joined NASA, serving first as Associate Administrator for Space Flight and later as Administrator. Antisatellite Systems The nation's first operational antisatellite weapon system was known as Program 505. It was developed by the U.S. Army, using Nike Zeus missiles originally designed for an anti-ballistic-missile role. The Army based the missiles on Kwajalein Atoll in the Pacific, conducted tests, and declared the system operational on 1 August 1963. Secretary of Defense McNamara at first kept the system on alert but abandoned it in favor of the Air Force’s antisatellite system in 1964. The Air Force’s antisatellite system was brought into being by Space Systems Division during late 1963 and early 1964. A ground-based system known as Program 437, it employed Thor missiles with nuclear warheads which could be shot into space accurately enough to destroy or disable a hostile space-based weapon or satellite.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Kazakhstan Missile Chronology
    Kazakhstan Missile Chronology Last update: May 2010 As of May 2010, this chronology is no longer being updated. For current developments, please see the Kazakhstan Missile Overview. This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation. 2009-1947 March 2009 On 4 March 2009, Kazakhstan signed a contract to purchase S-300 air defense missile systems from Russia. According to Ministry of Defense officials, Kazakhstan plans to purchase 10 batteries of S-300PS by 2011. Kazakhstan's Air Defense Commander Aleksandr Sorokin mentioned, however, that the 10 batteries would still not be enough to shield all the most vital" facilities designated earlier by a presidential decree. The export version of S- 300PS (NATO designation SA-10C Grumble) has a maximum range of 75 km and can hit targets moving at up to 1200 m/s at a minimum altitude of 25 meters.
    [Show full text]
  • We Help Earth Benefit from Space in Summary 2019 Contents
    WE HELP EARTH BENEFIT FROM SPACE IN SUMMARY 2019 CONTENTS About this report 2019 HIGHLIGHTS This is an English summary of Swedish 3 Space Corporation’s (SSC) 2019 Annual and Sustainability Report. CEO STATEMENT The Swedish report, available at our web- 4 site, is the legally binding annual report. THIS IS SSC The report summarizes the 2019 fiscal 6 year and covers performance on issues most important to SSC's ability to deliver SSC GLOBAL PRESENCE value to stakeholders in a changing and complex business environment. This 8 summary serves as our United Nations Global Compact (UNGC) Communi- EVOLVING SPACE LANDSCAPE 9 cations on Progress. Visit: STRATEGIC APPROACH https://www.sscspace.com/about-ssc/finances/reports-archive/ 10 Copyright: Unless otherwise indicated, SSC has the copyright to images in this publication. FOCUS AREAS FOR PROFITABLE SUSTAINABLE GROWTH 12 EMPLOYEES - OUR GREATEST ASSET 14 MEET OUR PEOPLE 15 2019 HIGHLIGHTS 2019 HIGHLIGHTS 2019 was another year of exciting space missions and projects for the space sector as a whole, but also for SSC. The rapid development has allowed us to grow and take new steps to prepare for the future. MASER 14 and inauguration of SubOrbital Express as a service Our MASER 14 sounding rocket reached an altitude of approximately 250 kilometers and spent over six minutes in microgravity. The mission inaugurated SubOrbital Express, a service to enable research into microgravity applications, atmospheric physics or other scientific disciplines. In this microgravity environment, we conducted experiments on fluid drainage, X-ray radio graphy and dust formation. Read more: https://www.suborbitalexpress.com Inauguration of exciting antenna art in Inuvik The two SSC antennas at the Inuvik site are painted by the local artists Anick Jenks and Ron English.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Monsoon 2008 (July-September) AIR POWER CENTRE for AIR POWER STUDIES New Delhi
    AIR POWER Journal of Air Power and Space Studies Vol. 3, No. 3, Monsoon 2008 (July-September) AIR POWER CENTRE FOR AIR POWER STUDIES New Delhi AIR POWER is published quarterly by the Centre for Air Power Studies, New Delhi, established under an independent trust titled Forum for National Security Studies registered in 2002 in New Delhi. Board of Trustees Shri M.K. Rasgotra, former Foreign Secretary and former High Commissioner to the UK Chairman Air Chief Marshal O.P. Mehra, former Chief of the Air Staff and former Governor Maharashtra and Rajasthan Smt. H.K. Pannu, IDAS, FA (DS), Ministry of Defence (Finance) Shri K. Subrahmanyam, former Secretary Defence Production and former Director IDSA Dr. Sanjaya Baru, Media Advisor to the Prime Minister (former Chief Editor Financial Express) Captain Ajay Singh, Jet Airways, former Deputy Director Air Defence, Air HQ Air Commodore Jasjit Singh, former Director IDSA Managing Trustee AIR POWER Journal welcomes research articles on defence, military affairs and strategy (especially air power and space issues) of contemporary and historical interest. Articles in the Journal reflect the views and conclusions of the authors and not necessarily the opinions or policy of the Centre or any other institution. Editor-in-Chief Air Commodore Jasjit Singh AVSM VrC VM (Retd) Managing Editor Group Captain D.C. Bakshi VSM (Retd) Publications Advisor Anoop Kamath Distributor KW Publishers Pvt. Ltd. All correspondence may be addressed to Managing Editor AIR POWER P-284, Arjan Path, Subroto Park, New Delhi 110 010 Telephone: (91.11) 25699131-32 Fax: (91.11) 25682533 e-mail: [email protected] website: www.aerospaceindia.org © Centre for Air Power Studies All rights reserved.
    [Show full text]
  • The Philip Glass Ensemble in Downtown New York, 1966-1976 David Allen Chapman Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Spring 4-27-2013 Collaboration, Presence, and Community: The Philip Glass Ensemble in Downtown New York, 1966-1976 David Allen Chapman Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Part of the Music Commons Recommended Citation Chapman, David Allen, "Collaboration, Presence, and Community: The hiP lip Glass Ensemble in Downtown New York, 1966-1976" (2013). All Theses and Dissertations (ETDs). 1098. https://openscholarship.wustl.edu/etd/1098 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Music Dissertation Examination Committee: Peter Schmelz, Chair Patrick Burke Pannill Camp Mary-Jean Cowell Craig Monson Paul Steinbeck Collaboration, Presence, and Community: The Philip Glass Ensemble in Downtown New York, 1966–1976 by David Allen Chapman, Jr. A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2013 St. Louis, Missouri © Copyright 2013 by David Allen Chapman, Jr. All rights reserved. CONTENTS LIST OF FIGURES ....................................................................................................................
    [Show full text]