In This Issue

Total Page:16

File Type:pdf, Size:1020Kb

In This Issue Vol. 38 No.12, September 2013 Editor: Jos Heyman FBIS In this issue: Satellite Update 4 Cancelled projects: Conestoga 5 News Ardusat 3 Arirang-5 7 Dnepr 1 7 Dream Chaser 7 Eutelsat and Satmex 2 Fermi 7 Gsat-14 7 HTV-4 3 iBall 3 Kepler 4 Orion 7 PicoDragon 3 Proton M 2 RCM 2 Russian EVAs 2 SARah 4 SGDC-1 4 SPRINT A 4 TechEdSat-3 3 WGS-6 4 HTV-4 Unpressurised Logistics Carrier with STP-H4 TIROS SPACE INFORMATION Eutelsat and Satmex 86 Barnevelder Bend, Southern River WA 6110, Australia Tel + 61 8 9398 1322 Eutelsat has acquired Mexico’s Satmex, a major communicaions satellite operator in the Latin (e-mail: [email protected]) American region. o o The Tiros Space Information (TSI) - News Bulletin is published to promote the scientific exploration and Satmex has currently three satellites in orbit at 113 W (Satmex-6), 114.9 W (Satmex-5) and commercial application of space through the dissemination of current news and historical facts. 116.8 oW (Satmex-8) and it can be expected that, once the acquisition has been completed, In doing so, Tiros Space Information continues the traditions of the Western Australian Branch of the these satellites will be renamed as part of the Eutelsat family. In addition Satmex has the Astronautical Society of Australia (1973-1975) and the Astronautical Society of Western Australia (ASWA) Satmex-7 and -9 satellites on order from Boeing. It is not clear whether these satellites will (1975-2006). remain on order. The News Bulletin can be received worldwide by e-mail subscription only. Subscriptions can be requested by sending an e-mail address to [email protected]. Tiros Space Information reserves the right to refuse Eutelsat has also announced that it has ordered the Eutelsat 65 West A satellite from any subscription request without the need to provide a reason. All opinions expressed are those of the authors and do not necessarily reflect the opinions of the Editor or Space/Systems Loral which, after its launch in early 2016, will serve the Latin American Tiros Space Information. market. The LS-1300 platform will be fitted with 10 C band, 24 Ku band and 24 Ka band All material contained in this publication may be reproduced provided due acknowledgment is made. transponders. Calling card... RCM Canada’s MacDonald, Dettwiler and Associates (MDA) has booked the Falcon 9 for the launch of its three Radarsat Constellation Mission (RCM) Earth observation satellites. The launches will take place in 2018. Proton M ISL, the launch company, expects to resume the use of the Proton M launch vehicle on 15 On 31 August 1973 the Western Australian Branch of the Astronautical Society of Australia September 2013 although Russian officials have denied this. was established and issued its News Bulletin shortly afterwards. Two years later this became The investigation into the launch failure of 2 July 2013 has revealed that the failure was the Astronautical Society of Western Australia which remained in existence until 2006 when caused by the incorrect installation of sensors detecting speed and direction. the News Bulletin, the only remaining activity of the Society, was taken over by Tiros Space By the end of the year up to five Proton M launches are expected to have taken place. Information. This means that this News Bulletin celebrates a 40 years heritage which Meanwhile, the Russian Prime Minister has reprimanded the chief of the Roskosmos space continues in our use of the logo of the long abolished Astronautical Society of Australia. agency, Vladimir Popovkin, for failing to carry out his duties properly. Russian EVAs On 16 August 2013 cosmonauts Yurchikhin and Misurkin made an EVA of 7 hours, 29 minutes during which they installed equipment and routed power cables for the arrival of the Russian Multipurpose Laboratory Module. They also installed a panel of experiments on the Poisk module to collect data on the effects of the microgravity environment in low-Earth orbit. They made a second EVA of 5 hours, 59 minutes on 22 August 2013, during which they removed a space laser communications system from the hull of the Zvezda service module OK, I realise that it reads Vol. 38 on the top of the current issue, but that is because of a and installed a pointing platform on which a small optical telescope will be installed on a future rather strange decision in November 1975, when, with the corporate change, we started with Russian spacewalk. number 1 again. Really, the first News Bulletin was published in September 1973. Jos Heyman Tiros Space Information – News Bulletin, September 2013, page 2 HTV-4, PicoDragon, TechEdSat-3 and Ardusat The HTV-4 cargo spacecraft that was launched on 3 August 2013 and docked with the ISS on 9 August 2013, carried 5400 kg of cargo/supplies to the ISS of which 3900 kg was in the Pressurized Logistics Carrier and 1500 kg on the Unpressurized Logistics Carrier. The HTV-4 pressurized module contained 8 HTV Resupply Racks with station supplies and equipment. The payload also included four cubesats which will be launched through the Kibo module at a later date. The first one is PicoDragon, a single cubesat that carries two amateur radio downlinks and has been developed by the Vietnam National Satellite Centre. The Technical and Educational Satellite (TechEdSat)-3 is a 3U cubesat that has been developed at the San Jose State University (SJSU) and the University of Idaho. The satellite will test the Exo-Brake passive de-orbit system which has been mounted in two of the three cubesat units. After deployment of the satellite the Exo-Brake system will be activated and it is expected that it will de-orbit the satellite within 10 days. ArduSat Edu kit The pressurised cargo also included Kirobo, the humanoid robot referred to in the February 2013 issue of the News Bulletin. The unpressurised cargo included the Space Test Program-Houston (STP-H)-4, a suite of seven experiments to investigate space communications, Earth observation and materials sciences. Two orbital replacement units (ORU), comprising a spare Main Bus Switching Unit (MBSU) and a spare Utility Transfer Assembly (UTA), both to keep the space station’s electrical system operating smoothly, were also carried as unpressurised cargo. HTV-4 is expected to undock on 5 September 2013 at which time it will carry the Space Test Program-Houston (STP-H)-3 experiment towards destruction in the atmosphere two days later. After undocking and just before the break-up of the of the spacecraft, the i-Ball re-entry recorder, a 22 kg, 40 cm diameter sphere developed by IHI Aerospace, will be released from a container. The sphere will descend whilst suspended from a parachute, and record data, including still images, during the re-entry in order to increase the knowledge on what happens during re-entry. On landing in the sea i-Ball will stay afloat for data transmission but will Exo-Brake eventually sink. This capsule was also carried on the previous HTV-3 spacecraft. The first TechEdSat was deployed on 4 October 2012. No data is available on TechEdSat-2. i-Ball Finally Arduino Satellite (Ardusat) -1 and –X are two 1U cubesats developed by NanoSatisfi Inc., as a crowd funded project to provide a platform on which students and DIY space enthusiasts can run their own space - based Arduino experiments. The primary payload is a bank of Arduino processors which can sample data from the satellite’s imaging payload, and on board sensors. Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for artists, designers, hobbyists and anyone interested in creating interactive objects or environments. NanoSatisfi is a small San Francisco based company that offers a special ArduSat educational kit for US$50 and sells three days operating time on board of its satellites for US$125. Experiment time of two weeks will cost US$450. Tiros Space Information – News Bulletin, September 2013, page 3 Satellite Update SARah Launches in July 2013 Germany has ordered the follow up to its SAR-Lupe radar reconnaissance satellite constellation that is being operated by the German military. Int.Des. Name Launch date Launch vehicle Country Notes To be known as SARah, the constellation will consist of one active satellite (SARah Aktiv-1) to 2013 034A IRNSS-R1A 1-Jul-2013 PSLV XL India be built by EADS Astrium, and two passive satellite (SARah Passiv-1 and -2 ) to be built by --- Glonass M 2-Jul-2013 Proton M/Briz M Russia 3 satellites failed OHB-System. 2013 035A SJ-11-5 15-Jul-2013 CZ 2C China Technology The latter two satellites will fly at an altitude of 500 km in formation with the active satellite and 2013 036A MUOS-2 19-Jul-2013 Atlas V-551 USA Military comsat will register the reflected signals of the active satellite. The active satellite will fly at a higher 2013 037A SJ-15 19-Jul-2013 CZ 4C China Technology altitude of about 750 km. 2013 037B CX-3 19-Jul-2013 CZ 4C China Technology The satellites are expected to have a mass of up to 2000 kg and will carry more powerful 2013 037C Shiyan-7 19-Jul-2013 CZ 4C China Technology processing and storage facilities, allowing more images to be taken. 2013 038A Alphasat I-XL 25-Jul-2013 Ariane 5ECA ESA Maritime comsat 2013 038B Insat-3D 25-Jul-2013 Ariane 5ECA India Meteorological The three satellite will be placed in orbit by two Falcon 9 launches that are expected to take 2013 039A Progress M- 27-Jul-2013 Soyuz U Russia Docked with ISS place in 2018 and 2019.
Recommended publications
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • In This Issue
    Vol. 39 No.4, January 2014 Editor: Jos Heyman FBIS In this issue: Satellite Update 3 Cancelled Projects: X-33 4 News Apstar-9 2 AsiaSat-9 7 ICESat-2 7 ISS 7 KSC launch Pad 39A 6 L2 and L3 Missions 2 Mars One 7 NROL-39 6 Panasonic 6 Robonaut-2 3 SGDC 2 SOAR 7 Soyuz 2-1v/Volga 7 TDRS-L 5 Tupac Katari-1 2 TIROS SPACE INFORMATION SGDC 86 Barnevelder Bend, Southern River WA 6110, Australia Tel + 61 8 9398 1322 Brazil has ordered a civil-military communications satellite from Thales Alenia Space using the (e-mail: [email protected]) Spacebus 4000 platform. The Tiros Space Information (TSI) - News Bulletin is published to promote the scientific exploration and To be known as the Satélite Geoestacionário de Defesa e Comunicações Estratégicas (SGDC) commercial application of space through the dissemination of current news and historical facts. (for Geostationary and Defense and Strategic Communications Satellite), it will carry 50 Ka In doing so, Tiros Space Information continues the traditions of the Western Australian Branch of the band transponders. Apart from the military applications, the satellite will also be used to extend Astronautical Society of Australia (1973-1975) and the Astronautical Society of Western Australia (ASWA) internet communications throughout Brazil. (1975-2006). Launch by an Ariane 5 launch vehicle is expected in 2017. The News Bulletin can be received worldwide by e-mail subscription only. Subscriptions can be requested by sending an e-mail address to [email protected]. Tiros Space Information reserves the right to refuse any subscription request without the need to provide a reason.
    [Show full text]
  • Cubesat Data Analysis Revision
    371-XXXXX Revision - CubeSat Data Analysis Revision - November 2015 Prepared by: GSFC/Code 371 National Aeronautics and Goddard Space Flight Center Space Administration Greenbelt, Maryland 20771 371-XXXXX Revision - Signature Page Prepared by: ___________________ _____ Mark Kaminskiy Date Reliability Engineer ARES Corporation Accepted by: _______________________ _____ Nasir Kashem Date Reliability Lead NASA/GSFC Code 371 1 371-XXXXX Revision - DOCUMENT CHANGE RECORD REV DATE DESCRIPTION OF CHANGE LEVEL APPROVED - Baseline Release 2 371-XXXXX Revision - Table of Contents 1 Introduction 4 2 Statement of Work 5 3 Database 5 4 Distributions by Satellite Classes, Users, Mass, and Volume 7 4.1 Distribution by satellite classes 7 4.2 Distribution by satellite users 8 4.3 CubeSat Distribution by mass 8 4.4 CubeSat Distribution by volume 8 5 Annual Number of CubeSats Launched 9 6 Reliability Data Analysis 10 6.1 Introducing “Time to Event” variable 10 6.2 Probability of a Successful Launch 10 6.3 Estimation of Probability of Mission Success after Successful Launch. Kaplan-Meier Nonparametric Estimate and Weibull Distribution. 10 6.3.1 Kaplan-Meier Estimate 10 6.3.2 Weibull Distribution Estimation 11 6.4 Estimation of Probability of mission success after successful launch as a function of time and satellite mass using Weibull Regression 13 6.4.1 Weibull Regression 13 6.4.2 Data used for estimation of the model parameters 13 6.4.3 Comparison of the Kaplan-Meier estimates of the Reliability function and the estimates based on the Weibull regression 16 7 Conclusion 17 8 Acknowledgement 18 9 References 18 10 Appendix 19 Table of Figures Figure 4-1 CubeSats distribution by mass ....................................................................................................
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Aeronautical, Spacecraft, and Launch Vehicle Examples
    The Value of Identifying and Recovering Lost GN&C Lessons Learned: Aeronautical, Spacecraft, and Launch Vehicle Examples Cornelius J. Qennehy 1 NASA Engineering and Safety Center (NESC) Steve Labbe2 NASA Johnson Space Center, Houston, TX, 77058 · Kenneth L. Lebsock3 Orbital Sciences Corporation, Technical Services Division, Greenbelt, MD 20770 Within the broad aerospace community the importance of identifying, documenting and widely sharing lessons learned during system development, flight test, operational or research programs/projects is broadly acknowledged. Documenting and sharing lessons learned helps managers and engineers to minimize project risk and improve performance of their systems. Often significant lessons learned on a project fail to get captured even though they are well known 'tribal knowledge" amongst the project team members. The physical act of actually writing down and documenting these lessons learned for the next generation of NASA GN&C engineers fails to happen on some projects for various reasons. In this paper we will first review the importance of capturing lessons learned and then wlll discuss reasons why some lessons are not documented. A simple proven approach called 'Pause and Learn' will be highlighted as a proven low-impact method of organizational learning that could foster the timely capture of critical lessons learned. Lastly some examples of "lost"GN&C lessons learned from the aeronautics, spacecraft and launch vehicle domains are briefly highlighted. In the context of this paper "lost" refers to lessons that have not achieved broad visibility within the NASA-wide GN&C CoP because they are either undocumented, masked or poorly documented in the NASA Lessons Learned Information System (LLIS).
    [Show full text]
  • A History of Appalachia
    University of Kentucky UKnowledge Appalachian Studies Arts and Humanities 2-28-2001 A History of Appalachia Richard B. Drake Click here to let us know how access to this document benefits ou.y Thanks to the University of Kentucky Libraries and the University Press of Kentucky, this book is freely available to current faculty, students, and staff at the University of Kentucky. Find other University of Kentucky Books at uknowledge.uky.edu/upk. For more information, please contact UKnowledge at [email protected]. Recommended Citation Drake, Richard B., "A History of Appalachia" (2001). Appalachian Studies. 23. https://uknowledge.uky.edu/upk_appalachian_studies/23 R IC H ARD B . D RA K E A History of Appalachia A of History Appalachia RICHARD B. DRAKE THE UNIVERSITY PRESS OF KENTUCKY Publication of this volume was made possible in part by grants from the E.O. Robinson Mountain Fund and the National Endowment for the Humanities. Copyright © 2001 by The University Press of Kentucky Paperback edition 2003 Scholarly publisher for the Commonwealth, serving Bellarmine University, Berea College, Centre College of Kenhlcky Eastern Kentucky University, The Filson Historical Society, Georgetown College, Kentucky Historical Society, Kentucky State University, Morehead State University, Murray State University, Northern Kentucky University, Transylvania University, University of Kentucky, University of Louisville, and Western Kentucky University. All rights reserved. Editorial and Sales Offices: The University Press of Kentucky 663 South Limestone Street, Lexington, Kentucky 40508-4008 www.kentuckypress.com 12 11 10 09 08 8 7 6 5 4 Library of Congress Cataloging-in-Publication Data Drake, Richard B., 1925- A history of Appalachia / Richard B.
    [Show full text]
  • Financial Responsibility Requirements As Determined by the Maximum Probable Loss (MPL) Process
    Federal Aviation Administration Office of Commercial Space Transportation Financial Responsibility Requirements as Determined by the Maximum Probable Loss (MPL) Process As of November 25, 2016 ACTIVE LAUNCH LICENSES Vehicle Year Launch U.S. Government Third Party ($M) Company Site Property ($M) Antares 230 2016 WFF Pre-flight: $5 Pre-flight: $9 Orbital ATK Flight: $44 Flight: $90 Atlas V 401 Pre-flight: $7 Pre-flight: $6 Lockheed Martin 2007 CCAFS Flight: $21 Flight: $45 Atlas V 411 Pre-flight: $7 Pre-flight: $3 Lockheed Martin 2006 CCAFS Flight: $100 Flight: 112.5 Atlas V 421 Pre-flight: $7 Pre-flight: $3 Lockheed Martin 2006 CCAFS Flight: $100 Flight: $193.5 Atlas V 431 & 531 Pre-flight: $7 Pre-flight: $3 Lockheed Martin 2006 CCAFS Flight: $100 Flight: $261 Atlas V 521 Pre-flight: $7 Pre-flight: $3 Lockheed Martin 2006 CCAFS Flight: $100 Flight: $193.5 Atlas V 401 2011 VAFB Pre-flight: $ Pre-flight: $3 Lockheed Martin Flight: $100 Flight: $193.5 Falcon 9 (ISS Resupply) 2016 CCAFS Pre-flight: $13 Pre-flight: 12 Space Exploration Flight: $100 Flight: $45 Technologies Falcon 9 (GEO Missions) 2016 CCAFS Pre-flight: $13 Pre-flight: $12 Space Exploration Flight: $100 Flight: $30 Technologies Falcon 9 2013 VAFB Pre-flight: $1 Pre-flight: $9 Space Exploration Flight: $17 Flight: $90 Technologies Minotaur 2013 WFF Pre-Flight: $1 Pre-Flight: $9 Orbital ATK Flight: $40 Flight: $22 Pegasus Pre-Flight: $1 Pre-Flight: $10 Orbital ATK 1997 CCAFS Flight: $1 Flight: $37.5 1 Pegasus WFF Pre-flight: $1 Pre-flight: $10 Orbital ATK 1997 Flight: $1 Flight:
    [Show full text]
  • Starttabelle 2013 2013-01A 2013-01B 2013-01C 2013-02A 2013-02B 2013-03A 2013-04A NOA-01 2013-05A 2013-05B 2013-05C 2013-05D 2013-05E 2013-05F 2013-06A 2013-06B
    Raumfahrer.net Starttabelle 2013 Bahnnähe Bahnferne Inklination LandLandLand bzw.bzw.bzw. WiederWieder---- COSPAR Satellit StartStartStart (GMT) Trägerrakete Startort Umläuft Bemerkungen Bemannt (km)(km)(km) (km)(km)(km) (Grad) Organisation eintritt 2013-01A Kosmos 2482 15.01.2013 Rokot Plesezk 1.484 1.523 82,504 Erde Russland - Militärischer Datenrelais- Nein (Strela-3M 4) 16.25 satellit 2013-01B Kosmos 2483 15.01.2013 Rokot Plesezk 1.485 1.510 82,505 Erde Russland - Militärischer Datenrelais- Nein (Strela-3M 5) 16.25 satellit 2013-01C Kosmos 2484 15.01.2013 Rokot Plesezk 1.484 1.523 82,504 Erde Russland - Militärischer Datenrelais- Nein (Strela-3M 6) 16.25 satellit 2013-02A IGS-Radar 4 27.01.2013 H2-A Tanegashima 480 500 97 Erde Japan - Radar-Aufklärungssatellit Nein 4.40 2013-02B IGS-Optik 5V 27.01.2013 H2-A Tanegashima 480 500 97 Erde Japan - Optischer Aufklärungs- Nein 4.40 satellit 2013-03A STSat 2C 30.01.2013 Naro 1 Naro-Raumfahrt- 304 1.509 80,275 Erde Südkorea - Forschungs- und Technolo- Nein 7.00 zentrum giesatellit; ca. 100 kg 2013-04A TDRS K 31.01.2013 Atlas 5 Cape Canaveral 35.744 35.845 6,998 Erde USA - Bahnverfolgungs- und Nein 1.48 Datenrelaissatellit; 3.454 kg NOA-01 Intelsat 27 01.02.2013 Zenit 3 Sea-Launch-Plattform - - - - USA - Fehlfunktion der ersten Nein 7.56 Stufe und Absturz 2013-05A Globalstar M78 06.02.3013 Sojus 2 Baikonur 1.420 1.421 52,004 Erde USA - Sprach- und Datenkommu- Nein 16.04 nikationssatellit; 700 kg 2013-05B Globalstar M93 06.02.3013 Sojus 2 Baikonur 1.420 1.421 51,980 Erde USA - Sprach- und Datenkommu-
    [Show full text]
  • Conestoga Launch Vehicles
    The Space Congress® Proceedings 1988 (25th) Heritage - Dedication - Vision Apr 1st, 8:00 AM Conestoga Launch Vehicles Mark H. Daniels Special Projects Manager, SSI James E. Davidson Project Manager, SSI Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Daniels, Mark H. and Davidson, James E., "Conestoga Launch Vehicles" (1988). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-11/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. CONESTOGA LAUNCH VEHICLES by Mark H. Daniels Special Projects Manager, SSI and James E. Davidson Project Manager, SSI launch into space. As such, it represents an Abstract important precedent for all other space launch companies. Several major applications for commercial and government markets have developed recently which In order to conduct the launch, the company will make use of small satellites. A launch solicited and received approvals from 18 different vehicle designed specifically for small satellites Federal agencies. Among these were the Air Force, brings many attendant benefits. Space Services the State Department, the Navy, and the Commerce Incorporated has developed the Conestoga family of Department. Commerce required SSI to obtain an launch vehicles to meet the needs of five major export license, due to the extra-territoriality of markets: low orbiting communication satellites, the vehicle's splashdown point. positioning satellites, earth sensing satellites, space manufacturing prototypes, and scientific Since that time, the company has organized a team experiments.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • IAC-17-#### Page 1 of 6 IAC-17-### Crowdfunding for Space Missions
    68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved. IAC-17-### Crowdfunding For Space Missions Graham Johnsona a Inmarsat Global Ltd. [email protected] Abstract Crowdfunding (via websites such as kickstarter.com) has become an increasingly popular method for funding projects and start-up companies for a wide range of terrestrial products and services. A small, but not insignificant number of space projects have also used this method of fundraising, and there is potentially much greater scope for this type of funding. This paper presents an analysis of crowd-funding campaigns that have been used to fund space- related projects, and in particular, spaceflight missions. It assesses the relative success of these campaigns and proposes some insights as to what makes a successful space crowdfunding campaign. Keywords: Crowdfunding, Space, Mission Acronyms/Abbreviations have attempted to use crowdfunding as either their CAT Cubesat Ambipolar Thruster principle source of funding, or as a stepping stone to ISS International Space Station further progress their project. Kickstarter appears to be LEO Low Earth Orbit the most popular platform for space mission funding, although there have also been a small number of space projects on IndieGoGo, Rockethub and Gofundme. 1. Introduction In this paper a summary of space mission ‘Crowdfunding’ is a process by which the creator of crowdfunding campaigns is presented, an assessment is a product or service can appeal directly to the public for made of the typical level of funding which individuals cash funding. It is important to note that the contribute, and the potential for scale-up to future space contributors, or ‘funders’, are not actually investing in projects is discussed.
    [Show full text]