IAC-17-#### Page 1 of 6 IAC-17-### Crowdfunding for Space Missions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Before You Launch Your Project, Do These Things
Before you launch your project, do these things. Getting ready to launch a project on Kickstarter can be an exciting and busy time. Here are some tips and important things to keep in mind as you work towards your launch date. Important First Steps Back a project on Kickstarter If you haven’t already, backing a project on Kickstarter will help you better understand the backer experience. What does a backer look for on a project page? What catches their eye? What is essential information, what is not essential? What kinds of rewards are most appealing? By backing a project on Kickstarter you will also gain insight into what steps your backers will take when backing your project and how the payments process works. You will also learn what emails Kickstarter will send your backers to confirm their pledge and keep them in the loop. Account Set-up After you click the Start button on Kickstarter and are in what we call “Project Build,” skip ahead to the Account tab. This is where you will set-up your verified identity and your bank account info. You may have questions about this process or run into unexpected problems. Take care of this step early on so it doesn’t hold you up at the end. Do your homework There are so many guides to planning for and running a successful project on Kickstarter. We have linked to some of our favorites throughout this document. Before you launch, take some time and look around at what else is out there, and learn from other people’s experience. -
Cubesats to the Moon | the Planetary Society
8/1/2019 CubeSats to the Moon | The Planetary Society Casey Dreier • September 2, 2015 CubeSats to the Moon An interview with the scientist behind NASA’s newest planetary exploration mission On Tuesday, NASA announced its selection of two CubeSats to ¼y beyond Earth as part of its Small, Innovative Missions for Planetary Exploration (SIMPLEx) program. The CubeSats were limited to a total budget of $5.6 million (though they were encouraged to be cheaper), and will ride along on the ¹rst ¼ight of the Space Launch System (SLS) in 2018. They were competitively selected from a number of proposals submitted by the scienti¹c community. The Lunar Polar Hydrogen Mapper (LunaH-Map) was one of the two missions selected. Led by 33-year-old planetary scientist Dr. Craig Hardgrove, a post- doctoral scholar at Arizona State University, it will attempt to map the distribution of water-ice over the south pole of the Moon at high resolutions. www.planetary.org/blogs/casey-dreier/2015/0902-cubesats-to-the-moon.html 1/11 8/1/2019 CubeSats to the Moon | The Planetary Society Sean Amidan / ASU / SpaceTREx LUNAR POLAR HYDROGEN MAPPER (LUNAH-MAP) Artist's concept of the Lunar Polar Hydrogen Mapper (LunaH-Map), an Arizona State University-built CubeSat about the size of a shoebox that will be used to produce a map of the water resources on the Moon for future human exploration. I interviewed Dr. Hardgrove about his lunar CubeSat, how it came together, and how NASA’s support for small missions are important for early career scientists like himself. -
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
Cubesat Data Analysis Revision
371-XXXXX Revision - CubeSat Data Analysis Revision - November 2015 Prepared by: GSFC/Code 371 National Aeronautics and Goddard Space Flight Center Space Administration Greenbelt, Maryland 20771 371-XXXXX Revision - Signature Page Prepared by: ___________________ _____ Mark Kaminskiy Date Reliability Engineer ARES Corporation Accepted by: _______________________ _____ Nasir Kashem Date Reliability Lead NASA/GSFC Code 371 1 371-XXXXX Revision - DOCUMENT CHANGE RECORD REV DATE DESCRIPTION OF CHANGE LEVEL APPROVED - Baseline Release 2 371-XXXXX Revision - Table of Contents 1 Introduction 4 2 Statement of Work 5 3 Database 5 4 Distributions by Satellite Classes, Users, Mass, and Volume 7 4.1 Distribution by satellite classes 7 4.2 Distribution by satellite users 8 4.3 CubeSat Distribution by mass 8 4.4 CubeSat Distribution by volume 8 5 Annual Number of CubeSats Launched 9 6 Reliability Data Analysis 10 6.1 Introducing “Time to Event” variable 10 6.2 Probability of a Successful Launch 10 6.3 Estimation of Probability of Mission Success after Successful Launch. Kaplan-Meier Nonparametric Estimate and Weibull Distribution. 10 6.3.1 Kaplan-Meier Estimate 10 6.3.2 Weibull Distribution Estimation 11 6.4 Estimation of Probability of mission success after successful launch as a function of time and satellite mass using Weibull Regression 13 6.4.1 Weibull Regression 13 6.4.2 Data used for estimation of the model parameters 13 6.4.3 Comparison of the Kaplan-Meier estimates of the Reliability function and the estimates based on the Weibull regression 16 7 Conclusion 17 8 Acknowledgement 18 9 References 18 10 Appendix 19 Table of Figures Figure 4-1 CubeSats distribution by mass .................................................................................................... -
An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program ......................................................................................................................... -
Crowdfunding and Its Interaction with Urban Development
Crowdfunding and its Interaction with Urban Development CHEN Hung-Yi1 Crowdfunding is a mechanism of fundraising on the Internet without a conventional financial institution as agency, especially for small and middle enterprises (SMEs). This is an intermediary system for people raising funding much more easily and efficiently. The difficulties for SMEs to raise funding from capital market are universal problems in the world. Under consideration of efficient fundraising, Malaysia, Taiwan and Thailand are already provided regulation toward crowdfunding. The financial authority of China and Singapore are also drafting the bill of crowdfunding in early 2015. With the development of crowdfunding for several years, it also provides citizens an alternative way to participate public affair and raise capital they need. In 2014, there is a crowdfunding campaign by citizens in Taiwan which raise up 11,984,994 TWD (around 387,481 USD) from 11,523 people only in 45 hours to organize a group recalling three controversy congressmen representing of Taipei city. This campaign was not held by any parties or organizations but a combination of citizens who did not know each other before. This campaign successfully promotes the idea of citizens by using crowdfunding to engage public affair by citizens. This is an innovative way for citizens having more opportunities to engage public affair. Additionally, there are some local governments in Japan, the United States, and the United Kingdom using crowdfunding to fulfill the gap of insufficient budget and also attract citizens invest their funding into public projects. Moreover, there are drafting bills in Hawaii and New Jersey for government using crowdfunding to raise capital for public projects. -
Crowdfunding for a Laser Campaign
Crowdfunding For a Laser Campaign www.troteclaser.com Summary of Contents 1. What is Crowdfunding? 2. How to Start a Campaign for Your Laser 3. Kickstarting Your Way to Success 4. How to Build Your Laser Business 5. Trotec Laser Overview www.troteclaser.com What is Crowdfunding? www.troteclaser.com What is Crowdfunding? Crowdfunding is the practice of funding a creative project or personal cause using an online platform to reach a large audience. - Platforms such as Kickstarter, Indiegogo, or GoFundMe are full of financial backers who are responsible for the project coming to life. - Initially, funds are sourced through the support of the creator’s friends and family. Before long, it evolves into a larger show of support and admiration from fans. Therefore increasing word-of-mouth advertisement for the project. www.troteclaser.com How to Start a Campaign for Your Laser www.troteclaser.com How to Start a Campaign for Your Laser Which Crowdfunding Platform is Right for Your Business? Kickstarter IndieGoGo GoFundMe Description Global community built around A global community set on Platform designed to support artists, filmmakers, designers, creative projects, personal personal causes and life-events, developers and innovators causes, and life-events regardless if it is focused on a which aims to bring creative business or charity projects to life The goal is to “empower everyone” with lower funding It is recognized more as The funding approach focuses goals and reasonable fees donations than a community of on “All or Nothing” and the fees backers are reasonable Costs 5% fee from funding total if 5% overall platform fee Free to create and share campaign is successful campaign 3-5% for PayPal transactions 3-5% processing fee from each 5% fee from each donation pledge 3% for each credit card transaction 3% processing fee for each donation www.troteclaser.com How to Start a Campaign for Your Laser How Does Crowdfunding Work? 1. -
Planetary Defence Activities Beyond NASA and ESA
Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world. -
Mission Overview
CRS Orb-1 Mission Mission Overview Overview Under the Commercial Resupply Services (CRS) contract with NASA, Orbital will provide approximately 20 metric tons of cargo to the International Space Station over the course of eight missions. Orb-1 is the first of those missions. The Orb-1 mission builds on the successful Commercial Orbital Transportation Services (COTS) demonstration mission conducted from September 18 to October 23, 2013. The Orb-1 flight will carry substantially more cargo (1465 kg vs. 700 kg) than the COTS mission, including several time-sensitive payloads and Cygnus’ first powered payload, the Commercial Generic Bioprocessing Apparatus (CGBA) from Bioserve. Mission Overview, Cont. Antares® The configuration of the Antares launch vehicle for the Orb-1 Mission is much the same as the two previous Antares flights with a CASTOR 30B second stage motor instead of the CASTOR 30 used previously. The first stage includes a core that contains the tanks for the liquid oxygen and kerosene, the first stage avionics, and two AJ26 rocket engines. The second stage consists of the CASTOR® 30B solid rocket motor, an avionics section containing the flight computer and guidance/ navigation/control functions, an interstage that connects the solid rocket motor to the first stage, the Cygnus spacecraft, and a fairing that encloses and protects the Cygnus spacecraft during ascent. Continued on Next Page Mission Overview, Cont. Cygnus™ The Cygnus spacecraft is composed of two elements, the Service Module (SM) and the Pressurized Cargo Module (PCM). The SM provides the propulsion, power, guidance, navigation and control, and other “housekeeping” services for the duration of the mission. -
In This Issue
Vol. 38 No.12, September 2013 Editor: Jos Heyman FBIS In this issue: Satellite Update 4 Cancelled projects: Conestoga 5 News Ardusat 3 Arirang-5 7 Dnepr 1 7 Dream Chaser 7 Eutelsat and Satmex 2 Fermi 7 Gsat-14 7 HTV-4 3 iBall 3 Kepler 4 Orion 7 PicoDragon 3 Proton M 2 RCM 2 Russian EVAs 2 SARah 4 SGDC-1 4 SPRINT A 4 TechEdSat-3 3 WGS-6 4 HTV-4 Unpressurised Logistics Carrier with STP-H4 TIROS SPACE INFORMATION Eutelsat and Satmex 86 Barnevelder Bend, Southern River WA 6110, Australia Tel + 61 8 9398 1322 Eutelsat has acquired Mexico’s Satmex, a major communicaions satellite operator in the Latin (e-mail: [email protected]) American region. o o The Tiros Space Information (TSI) - News Bulletin is published to promote the scientific exploration and Satmex has currently three satellites in orbit at 113 W (Satmex-6), 114.9 W (Satmex-5) and commercial application of space through the dissemination of current news and historical facts. 116.8 oW (Satmex-8) and it can be expected that, once the acquisition has been completed, In doing so, Tiros Space Information continues the traditions of the Western Australian Branch of the these satellites will be renamed as part of the Eutelsat family. In addition Satmex has the Astronautical Society of Australia (1973-1975) and the Astronautical Society of Western Australia (ASWA) Satmex-7 and -9 satellites on order from Boeing. It is not clear whether these satellites will (1975-2006). remain on order. The News Bulletin can be received worldwide by e-mail subscription only. -
COMPACT) Joe Mrozinski JPL, Michael Saing JPL, Mary Covert Aerospace Corp., Tim Anderson Aerospace Corp
CubeSat Or Microsat Probabilistic + Analogies Cost Tool (COMPACT) Joe Mrozinski JPL, Michael Saing JPL, Mary Covert Aerospace Corp., Tim Anderson Aerospace Corp. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. What is a CubeSat? CubeSat = Extremely small (i.e. Nanosat scale 1- 10kg) spacecraft of standard dimensions that hitchhikes to space with a traditional spacecraft. • Standard Form Factors: how many “U’s” is your Cubesat? 1 to 6 U’s: A “1U” A “2U” Cubesat is Cubesat is 3U: roughly twice as big 10x10x10 cm 6U! 11/16/16 COMPACT 2 jpl.nasa.gov What is a Microsat? A Microsat is simply a satellite with mass between 10 kg and 100 kg. Most 1-3U CubeSats are 1 - 10 kg, and fall into the “Nanosat” range. But a 6U Cubesat likely has a mass >10 kg and thus would be a microsat. CubeSat Or Microsat Probabilistic + Analogies Cost Tool (COMPACT) COMPACT is exploring CubeSats first. 11/16/16 COMPACT 3 jpl.nasa.gov NASA does not have a CubeSat Cost Estimating …But NASA Capability… clearly needs one -- ASAP! Graphic from: “CubeSat Most of Technology and Systems,” these Janson, S., Presentation to “Nanosats” USGIF Small Satellite are Working Group, 27 Cubesats May 2015 11/16/16 COMPACT 4 jpl.nasa.gov COMPACT just completed Phase 1 to begin addressing this cost estimating capability gap Phase 1 Requirement: Collect & Normalize Key Cost Driver Data for 10 CubeSats 11/16/16 COMPACT 5 jpl.nasa.gov Phase 1 Delivery: Normalized Data for 18 CubeSats 11/16/16 COMPACT 6 jpl.nasa.gov O_OREOS CINEMA EDSN GRIFEX LMRST KickSat Phase 1 Delivery: Normalized Data for: IPEX Firefly 18 CubeSats M-Cubed 2 PSSC-2 SkyCube SporeSat-1 MarCO NanoSail-D RACE RAX 1 11/16/16 M-Cubed COMPACT PharmaSat 7 jpl.nasa.gov Key Data i.e. -
Access to Capital Directory
State of Nevada Department of Business and Industry Access to Capital Resource Directory Page | 1 GRANTS Government grants are funded by your tax dollars and, therefore, require very stringent compliance and reporting measures to ensure the money is well spent. Grants from the Federal government are authorized and appropriated through bills passed by Congress and signed by the President. The grant authority varies widely among agencies. Some business grants are available through state and local programs, nonprofit organizations and other groups. These grants are not necessarily free money, and usually require the recipient to match funds or combine the grant with other forms of financing such as a loan. The amount of the grant money available varies with each business and each grantor. Below are some resources to grant searches and specific grant opportunities: Program/Sponsor Product Details Contact Information There is a loan/grant search tool (Access Business.usa.gov Financing Wizard). Mostly loans here but Support Center some grant possibilities. SBA has authority to make grants to non- For Clark County Only – profit and educational organizations in Phone: 702-388-6611 many of its counseling and training Email: Roy Brady at SBA-Government programs, but does not have authority to [email protected] Grant Resources make grants to small businesses. Click on the 'Program/Sponsor" link for articles on Outside of Clark County – government grant facts and research Phone: 775-827-4923 Email: [email protected] grants for small businesses. Grant program assistance is provided in many ways, including direct or guaranteed loans, grants, technical assistance, Nevada USDA service centers by USDA Rural research and educational materials.