Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2012 Annual Report Pursuing Our Unlimited Potential Annual Report 2012
For the year ended March 31, 2012 Pursuing Our Unlimited Potential Annual Report 2012 Annual Report 2012 EAST JAPAN RAILWAY COMPANY JR East’s Strengths 1 AN OVERWHELMINGLY SOLID AND ADVANTAGEOUS RAILWAY NETWORK The railway business of the JR East Being based in the Tokyo metro- Group covers the eastern half of politan area is a major source of our Honshu island, which includes the strength. Routes originating in the Tokyo metropolitan area. We provide Kanto area (JR East Tokyo Branch transportation services via our Office, Yokohama Branch Office, Shinkansen network, which connects Hachioji Branch Office, Omiya Tokyo with regional cities in five Branch Office, Takasaki Branch directions, Kanto area network, and Office, Mito Branch Office, and intercity and regional networks. Our Chiba Branch Office) account for JR EAST’S SERVICE AREA networks combine to cover 7,512.6 68% of transportation revenue. kilometers and serve 17 million Japan’s total population may be people daily. We are the largest declining, but the population of the railway company in Japan and one of Tokyo metropolitan area (Tokyo, TOKYO the largest in the world. Kanagawa Prefecture, Saitama Prefecture, and Chiba On a daily basis, about 17million passengers travel a network of 70 train lines stretching 7,512.6 operating kilometers An Overwhelmingly Solid and Advantageous Railway Network Annual Report 2012 SECTION 1 OVERALL GROWTH STRATEGY Prefecture) continues to rise, mean- OPERATING REVENUES OPERATING INCOME ing our railway networks are sup- For the year ended March 31, 2012 For the year ended March 31, 2012 ported by an extremely sturdy Others 7.9% Transportation Others 6.1% Transportation operating foundation. -
The Annual Compendium of Commercial Space Transportation: 2013
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2013 February 2014 About FAA \ NOTICE ###i# £\£\ ###ii# Table of Contents TABLE OF CONTENTS INTRODUCTION. 1 YEAR AT A GLANCE ..............................................2 COMMERCIAL SPACE TRANSPORTATION 2013 YEAR IN REVIEW ........5 7 ORBITAL LAUNCH VEHICLES .....................................21 3 SUBORBITAL REUSABLE VEHICLES ...............................47 33 ON-ORBIT VEHICLES AND PLATFORMS ............................57 LAUNCH SITES .................................................65 COMMERCIAL VENTURES BEYOND EARTH ORBIT ...................79 44 REGULATION AND POLICY .......................................83 3 5 3 53 3 8599: : : ;55: 9 < 5; < 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS ..........89 4 3 4 : ACRONYMS AND ABBREVIATIONS ...............................186 2013 WORLDWIDE ORBITAL LAUNCH EVENTS .....................192 DEFINITIONS ..................................................196 ###iii# £\£\ LIST OF FIGURES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW = =999 =99 = =3> =:9;> LAUNCH SITES = :< 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS =944 =4 =?4;9 =99493 =3 =:5= =< =;=9 =95;@3 =A =;=9 A 3 =994?: =9999 ? =54 =359 =:5 3 =<999= ? =99=5 ?3 =;>>99: =99 ? 3 ==9 ? 3: =3 =>3 =?: =3?: =:? : ###iv# LIST OF TABLES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW 99 : 3< :9=99< <99 ORBITAL LAUNCH VEHICLES 99 99 59595 593 SUBORBITAL REUSABLE VEHICLES 3 :5933 ON-ORBIT VEHICLES -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Strategic Assessment, Vol 16, No 1
Volume 16 | No. 1 | April 2013 Leading from Behind: The “Obama Doctrine” and US Policy in the Middle East | Sanford Lakoff Eleven Years to the Arab Peace Initiative: Time for an Israeli Regional Strategy | Ilai Alon and Gilead Sher The Emergence of the Sunni Axis in the Middle East | Yoel Guzansky and Gallia Lindenstrauss Islam and Democracy: Can the Two Walk Together? | Yoav Rosenberg The US and Israel on Iran: Whither the (Dis)Agreement? | Ephraim Kam Walking a Fine Line: Israel, India, and Iran | Yiftah S. Shapir Response Essays Civilian Casualties of a Military Strike in Iran | Ephraim Asculai If it Comes to Force: A Credible Cost-Benefit Analysis of the Military Option against Iran | Amos Yadlin, Emily B. Landau, and Avner Golov המכון למחקרי ביטחון לאומי THE INSTITUTE FOR NATIONAL SECURcITY STUDIES INCORPORATING THE JAFFEE bd CENTER FOR STRATEGIC STUDIES Strategic ASSESSMENT Volume 16 | No. 1 | April 2013 CONTENTS Abstracts | 3 Leading from Behind: The “Obama Doctrine” and US Policy in the Middle East | 7 Sanford Lakoff Eleven Years to the Arab Peace Initiative: Time for an Israeli Regional Strategy | 21 Ilai Alon and Gilead Sher The Emergence of the Sunni Axis in the Middle East | 37 Yoel Guzansky and Gallia Lindenstrauss Islam and Democracy: Can the Two Walk Together? | 49 Yoav Rosenberg The US and Israel on Iran: Whither the (Dis)Agreement? | 61 Ephraim Kam Walking a Fine Line: Israel, India, and Iran | 75 Yiftah S. Shapir Response Essays Civilian Casualties of a Military Strike in Iran | 87 Ephraim Asculai If it Comes to Force: A Credible Cost-Benefit Analysis of the Military Option against Iran | 95 Amos Yadlin, Emily B. -
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
Satellite Characterization, Classification, and Operational Assessment Via the Exploitation of Remote Photoacoustic Signatures
Satellite Characterization, Classification, and Operational Assessment Via the Exploitation of Remote Photoacoustic Signatures Justin Spurbeck1 The University of Texas at Austin Moriba K. Jah, Ph.D.2 The University of Texas at Austin Daniel Kucharski, Ph.D.3 Space Environment Research Centre & The University of Texas at Austin James C. S. Bennett, Ph.D.4 EOS Space Systems & Space Environment Research Centre James G. Webb, Ph.D.5 EOS Space Systems ABSTRACT Current active satellite maneuver detection techniques have the ability to detect maneuvers as quickly as fifteen minutes post maneuver for large delta-v when using angles only optical tracking. Medium to small magnitude burn detection times range from 6-24 hours or more. Small magnitude burns may be indistinguishable from natural perturbative effects if passive techniques are employed. Utilizing a photoacoustic signature detection scheme would allow for near real time maneuver detection and spacecraft parameter estimation. We define the acquisition of high rate photometry data as photoacoustic sensing because the data can be played back as an acoustic signal. Studying the operational frequency spectra, profile, and aural perception of an active satellite event such as a thruster fire or any on-board component activation will provide unique signature identifiers that support Resident Space Object (RSO) characterization efforts. A thruster fire induces vibrations in a satellite body which then modulate incident rays of light. If the reflected photon flux is sampled at a sufficient rate, the change in light intensity due to the propulsive event can be detected. Sensing vibrational mode changes allows for a direct timestamp of thruster fire events and thus makes possible the near real time estimation of spacecraft delta-v and maneuver type if coupled with active observations immediately post maneuver. -
→ Space for Europe European Space Agency
number 153 | February 2013 bulletin → space for europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the ESTEC, Noordwijk, Netherlands. Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Canada is a Cooperating State. ESOC, Darmstadt, Germany. In the words of its Convention: the purpose of the Agency shall be to provide for ESRIN, Frascati, Italy. and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view ESAC, Madrid, Spain. to their being used for scientific purposes and for operational space applications systems: Chairman of the Council: D. Williams (to Dec 2012) → by elaborating and implementing a long-term European space policy, by recommending space objectives to the Member States, and by concerting the Director General: J.-J. Dordain policies of the Member States with respect to other national and international organisations and institutions; → by elaborating and implementing activities and programmes in the space field; → by coordinating the European space programme and national programmes, and by integrating the latter progressively and as completely as possible into the European space programme, in particular as regards the development of applications satellites; → by elaborating and implementing the industrial policy appropriate to its programme and by recommending a coherent industrial policy to the Member States. -
G. Madhavan Nair - Wikipedia, the Free Encyclopedia
G. Madhavan Nair - Wikipedia, the free encyclopedia G. Madhavan Nair From Wikipedia, the free encyclopedia G. Madhavan Nair (Malayalam: ജി. മാധവ നായ) (born October 31, 1943) is the G Madhavan Nair present Chairman of Indian Space Research Organisation and Secretary to the Department of Space, Government of India since September 2003. He is also the Chairman, Space Commission and acts as the Chairman of Governing Body of the Antrix Corporation, Bangalore. Madhavan Nair was awarded the Padma Vibhushan, India's second highest civilian honour, on January 26, 2009.[1][2] Contents 1 Early life 2 Career 3 As Chairman of ISRO 4 Additional responsibilities G Madhavan Nair 5 Awards Born 31 October 1943 6 Honours Thiruvanathapuram, India 7 Fellowships/Memberships 8 Lashkar Threat Residence India 9 References Nationality Indian 10 External links Fields Rocket Technology Institutions Indian Space Research Organisation Bhabha Atomic Research Center Early life Alma mate r B.Sc. (Engineering - Electrical & Communication) (1966), College of Nair was born at Neyyattinkara near Thiruvananthapuram, Kerala, India. He also studied in his Engineering, Trivandrum early life in Kanyakumari District. He graduated with a B.Sc. in Engineering (1966) from College Known for Indian Space Program of Engineering, Thiruvananthapuram, Kerala University with specialization in Electrical & Communication Engineering. After his graduation Nair attended a training program at the Bhabha Notable Padma Bhushan (1998) awards Atomic Research Center (BARC) Training School, Mumbai. Padma Vibhushan (2009) Career Nair is a leading technologist in the field of rocket systems and has made significant contribution to the development of multi-stage satellite launch vehicles, achieving self-reliance in independent access to space using indigenous technologies. -
X-Ray and Gamma-Ray Variability of NGC 1275
galaxies Article X-ray and Gamma-ray Variability of NGC 1275 Varsha Chitnis 1,*,† , Amit Shukla 2,*,† , K. P. Singh 3 , Jayashree Roy 4 , Sudip Bhattacharyya 5, Sunil Chandra 6 and Gordon Stewart 7 1 Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India 2 Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India 3 Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India; [email protected] 4 Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411 007, India; [email protected] 5 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; [email protected] 6 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa; [email protected] 7 Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK; [email protected] * Correspondence: [email protected] (V.C.); [email protected] (A.S.) † These authors contributed equally to this work. Received: 30 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. -
Satellite Systems
Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
1998 Year in Review
Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.