<<

www.unionmaterials.com

FERRITE The World Best Magnet Creator! Union, providing the best performance in the value of “Q.C.D.S.M.”

Union Ferrite Magnet Ferrite Magnet

The World Contents First Class Technology Union Ferrite Magnet st in the 21 Century! Application Group 04 - for Automotive - Magnets for Home Appliance - Other Applications Manufacturing Process 06 Characteristics Distribution Chart 07 Standard Magnetic Characteristics 08 Demagnetization Curves 10

Technical Data

Quality Assurance 18 Typical Shapes & Dimensional Tolerances 19 Research & Development Equipment 20 Unit Conversion Information 22 Characteristics 23

Union Materials Corporation

About Union 26 - Brief History of Union Material Corporation Application Group

Magnets for Automotive

HVAC Motor

Starter Motor

Cooling Fan Motor

ABS Motor

Magnets for Home Appliance

Compressor Compressor Main Motor Union Ferrite Magnet 05

Wiper Motor

Window Lift Motor

Fuel Pump Motor

Seat Adjusted Motor

Electric Power Steering

Other Applications

Main Motor Main Motor Union Materials Corporation

1 2 3 4

0.8 ~1.2μm

H2O

3~5μm Additives

Raw Material Mixing Calcination Rough Milling Fine Milling (SrCO3 or BaCO3, Fe2O3) (Rotary Kiln) (Roller Mill) (Ball Mill)

5 6 H2O H2O

Manufacturing

H Process H2O

Slurry Concentration Control Pressing in Magnetic Field

7 0.8~1.2μm 2 H O H2O

300℃ 800℃ 900℃ 1000℃ 1250℃

Drying &

8 9 10 11

Grinding Inspection Packaging Shipment Union Ferrite Magnet 07

Characteristics Distribution Chart

(mT) (G)

480 4800 12th grade SSM-XT20iH

9+ grade 460 4600 SSM-U50H SSM-XT10iH

SSM-K50H 7th grade 440 SSM-740H SSM-K30iH 4400 (K40H) 9th grade 6th grade SSM-430H SSM-K20iH SSM-K10iH

SSM-720H 420 4200 SSM-720iH 5th grade SSM-390H SSM-400H SSM-710iH

400 4000 SSM-380iH

SSM-360iH Residual Magnetic Flux Density (Br)

380 3800

360 3600 2500 3000 3500 4000 4500 5000 5500 (Oe)

200 250 300 350 400 450 (kA/m)

Intrinsic Coercive Force (iHc)

Specifications and data are subject to change without notice. Union Materials Corporation

Standard Magnetic Characteristics

Bending Br bHc iHc BHmax Density Strength Grade Material 2 3 3 kg/mm G mT Oe kA/m Oe kA/m MGOe kJ/m g/cm (MPa)

4000 400 3200 255 3300 263 3.6 28.6 4.85 5 < 5 SSM-390H ~ 4200 ~ 420 ~ 3500 ~ 279 ~ 3600 ~ 286 ~ 4.0 ~ 31.8 ~ 4.95 (49 <)

4000 400 3600 286 3900 310 3.8 30.2 4.85 5 < SSM-400H ~ 4200 ~ 420 ~ 3900 ~ 310 ~ 4200 ~ 334 ~ 4.2 ~ 33.4 ~ 4.95 (49 <)

4200 420 3200 255 3300 263 4.1 32.6 4.90 5 < SSM-430H ~ 4400 ~ 440 ~ 3500 ~ 279 ~ 3600 ~ 286 ~ 4.5 ~ 35.8 ~ 5.00 (49 <) 6 3800 380 3600 286 4600 366 3.4 27.1 4.75 5 < SSM-360iH ~ 4000 ~ 400 ~ 3900 ~ 310 ~ 5000 ~ 398 ~ 3.8 ~ 30.2 ~ 4.85 (49 <)

3900 390 3500 279 4300 342 3.6 28.6 4.80 5 < SSM-380iH ~ 4100 ~ 410 ~ 3800 ~ 302 ~ 4800 ~ 382 ~ 4.0 ~ 31.8 ~ 4.90 (49 <)

4000 400 3700 294 4800 382 3.8 30.2 4.90 5 < SSM-710iH ~ 4200 ~ 420 ~ 4000 ~ 318 ~ 5200 ~ 414 ~ 4.2 ~ 33.4 ~ 5.00 (49 <)

4100 410 3700 294 4200 334 3.9 31.0 4.90 5 < SSM-720iH ~ 4300 ~ 430 ~ 4000 ~ 318 ~ 4600 ~ 366 ~ 4.3 ~ 34.2 ~ 5.00 (49 <) 7 4150 415 3700 294 3900 310 4.0 31.8 4.90 5 < SSM-720H ~ 4350 ~ 435 ~ 4000 ~ 318 ~ 4300 ~ 342 ~ 4.4 ~ 35.0 ~ 5.00 (49 <)

SSM-740H 4300 430 3200 255 3250 259 4.4 35.0 4.95 5 < (K40H) ~ 4500 ~ 450 ~ 3500 ~ 279 ~ 3650 ~ 290 ~ 4.8 ~ 38.2 ~ 5.05 (49 <)

4200 420 3800 302 4800 382 4.3 34.2 4.95 5 < SSM-K10iH ~ 4400 ~ 440 ~ 4100 ~ 326 ~ 5200 ~ 414 ~ 4.7 ~ 37.4 ~ 5.05 (49 <)

4200 420 3800 302 4300 342 4.3 34.2 4.95 5 < SSM-K20iH ~ 4400 ~ 440 ~ 4100 ~ 326 ~ 4700 ~ 374 ~ 4.7 ~ 37.4 ~ 5.05 (49 <) 9 4300 430 3900 310 4300 342 4.5 35.8 4.95 5 < SSM-K30iH ~ 4500 ~ 450 ~ 4200 ~ 334 ~ 4700 ~ 374 ~ 4.9 ~ 39.0 ~ 5.05 (49 <)

4400 440 3300 263 3500 279 4.7 37.4 4.95 5 < SSM-K50H ~ 4600 ~ 460 ~ 3600 ~ 286 ~ 3900 ~ 310 ~ 5.1 ~ 40.6 ~ 5.05 (49 <)

4450 445 3300 263 3400 271 4.8 38.2 5.00 5 < 9+ SSM-U50H ~ 4650 ~ 465 ~ 3600 ~ 286 ~ 3800 ~ 302 ~ 5.2 ~ 41.4 ~ 5.10 (49 <)

4500 450 4000 318 4800 382 5.0 39.8 5.05 5 < SSM-XT10iH ~ 4700 ~ 470 ~ 4400 ~ 350 ~ 5200 ~ 414 ~ 5.4 ~ 43.0 ~ 5.15 (49 <) 12 4600 460 4000 318 4400 350 5.1 40.6 5.05 5 < SSM-XT20iH ~ 4800 ~ 480 ~ 4400 ~ 350 ~ 4800 ~ 382 ~ 5.5 ~ 43.8 ~ 5.15 (49 <)

Specifications and data are subject to change without notice. Union Ferrite Magnet 09

Compressive Tensile Thermal Recoil Reversible Curie Magnetizing Remarks Strength Strength Expansion Permaeability Temperature Temperature Force

kg/mm2 kg/mm2 ΔBr/ ΔiHc/ kOe Materials // ⊥ µ rec °C (MPa) (MPa) Br/ΔT iHc/ΔT (kA/m) (Forming Type)

>70 2 < 11 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.33 460 (>686) (19 <) (875) (Wet)

> 70 2 < 11 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.3 460 (> 686) (19 <) (875) (Wet)

> 70 2 < 12 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.3 460 (> 686) (19 <) (955) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.3 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 12 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.3 460 (> 686) (19 <) (955) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.25 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.25 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.25 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.2 0.25 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.2 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.2 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.2 460 (> 686) (19 <) (1035) (Wet)

> 70 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.2 460 (> 686) (19 <) (1035) (Wet)

> 56 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.19 440 (> 550) (19 <) (1035) (Wet)

> 47 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.17 420 (> 450) (19 <) (1035) (Wet)

> 47 2 < 13 SrO·nFe2O3 15 10 1.05 ~ 1.10 -0.18 0.17 420 (> 450) (19 <) (1035) (Wet)

Specifications and data are subject to change without notice. Demagnetization Curves

SSM-390H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 5 0.5 -60℃ 0.7 -20℃ 20℃ 4 0.4 0.6 60℃ ℃ 0.5 100 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-400H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 5 0.5 -60℃ 0.7 -20℃ 20℃ 4 0.4 0.6 60℃

0.5 100℃ 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Union Ferrite Magnet 11

SSM-430H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 -60℃ 5 0.5 -20℃ 0.7 20℃ 4 0.4 0.6 60℃ 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-360iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 5 0.5 -60℃ 0.7 -20℃ 4 0.4 ℃ 0.6 20 60℃ 0.5 ℃ 100 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Demagnetization Curves

SSM-380iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 5 0.5 -60℃ 0.7 -20℃ 4 0.4 20℃ 0.6 60℃

0.5 ℃ 100 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-710iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 5 0.5 -60℃ 0.7 -20℃ 20℃ 4 0.4 0.6 60℃ 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Union Ferrite Magnet 13

SSM-720iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

5 0.5 0.8 -60℃ -20℃ 0.7 20℃ 4 0.4 60℃ 0.6 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-720H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

5 0.5 0.8 -60℃ -20℃ 0.7 ℃ 20 4 0.4 0.6 60℃ 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1 0 0 Induction B(T) 6 5 4 3 2 1 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Demagnetization Curves

SSM-740H (K40H)

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9 -60℃ 0.8 5 0.5 -20℃ 0.7 20℃ 60℃ 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-K10iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 -60℃ 5 0.5 -20℃ 0.7 20℃ 60℃ 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Union Ferrite Magnet 15

SSM-K20iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

5 0.5 0.8 -60℃ -20℃ 0.7 ℃ 20 4 0.4 ℃ 0.6 60 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-K30iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 -60℃ 5 0.5 -20℃ 0.7 20℃ 4 0.4 60℃ 0.6 100℃ 0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Demagnetization Curves

SSM-K50H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9

0.8 -60℃ 5 0.5 -20℃ 0.7 20℃ 60℃ 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-U50H

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9 -60℃ 0.8 5 0.5 -20℃ 20℃ 0.7 ℃ 60 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Union Ferrite Magnet 17

SSM-XT10iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9 -60℃ 0.8 5 0.5 -20℃ 20℃ 0.7 ℃ 60 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m)

SSM-XT20iH

Permeance Coefficient(P=B/H) 1 1.2 1.5 2 3 4 5 10 6 0.6

0.9 -60℃ 0.8 -20℃ 5 0.5 20℃ 0.7 60℃ 4 0.4 0.6 100℃

0.5 3 0.3 B(kG)

2 0.2

1 5 0.1 4 3 2 1

0 Induction B(T) 6 5 4 3 2 1 0 -H(kOe) Energy Product(BHmax) (MGOe) Product(BHmax) Energy 400 300 200 100 0 Demagnetizing Force -H(kA/m) Technical Data

Quality Assurance

To ensure and maintain the high quality of magnets, Union Materials Corporation(hereinafter called “Union”) conducts continuous performance tests on the most advanced inspection equipment. We meet customers’ expectations by maintaining a perfect quality assurance system under the principle; “Supply superior quality products through continuous improvement of manufacturing process coupled with the elevation of core technology.”

The preferred method for quality assurance is to work with customers by developing mutual standards. Union also applies industrial standards such as MMPA, JIS, DIN or other recommended standards by customers. The chosen standards become our acceptable criteria for final inspection procedures. Furthermore, Union fulfills its requirements and regulations according to certified quality manual and formalities. ISO/TS 16949 & ISO 14001 are the results of the company’s dedication to improve the quality to ensure the customers’ satisfaction. The quality assurance data has been supplied in various formats including Control Plans, Statistic Process Control and P-FMEA as requested by customers.

RoHS

The EU RoHS Directive restricts the use of certain hazardous substances such as lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE in products. Union Materials Corporation fully complied with RoHS as of its effective date, 1 July 2006. Union Ferrite Magnet 19

Typical Shapes & Dimensional Tolerances

Dimensional Tolerance Shape Item W/O grinding Grinding

A - ±0.2 Arc (Segment) (Width)

B C ±2.0% ±0.2 D (Length)

IR C OR B - ±0.1 A (Thickness)

D - ±0.15 (Height)

OR - ±0.1 (Outside Radius)

Magnetization direction : Diametral type IR - ±0.1 (Inside Radius)

Outside & Inside Chamfer The shape will be designed after (Shape, Angle) consultation with the customer

Magnetization Magnetization direction will be designed Magnetization direction : Radial type direction after consultation with the customer

A Rectangular (Block) ±2.0% ±0.2 (Width)

B ±2.0% ±0.2 C (Length)

A C B - ±0.1 (Thickness)

Perpendicular Perpendicular 90°±2° between two surfaces

Within 5/100mm between Parallel Parallel two ground surfaces

To manufacture ferrite magnets, sintering process is crucial for the particle alignment. We endeavor to maintain even distribution for the magnet alignment from highly refined raw materials to overall manufacturing process. Even then, sintering shrinkage rate of magnet may have a variation. Therefore sintered magnet needs to have grinding process to satisfy required dimensional tolerance. If the dimensional tolerance is far stricter than our standard tolerance, it will cause manufacturing cost rising. Therefore, we recommend you adopt our standard dimensional tolerance to your drawings for reducing developing cost. Please contact our customer service representatives to receive more specific information. Technical Data

R & D Equipment

X-ray Fluorescence Analysis Scanning Electron Microscope

Quantitative/Qualitative Analysis of Element Microstructure analysis Physical Properties Analysis Subsieve Auto Sizer Automatic 3D-Coordinator

Powder sizing by air-permeability Measurement of dimension Union Ferrite Magnet 21

B-H Curve Tracer Robograph II & RE

Measurement of magnetic characteristics of permanent magnets Flux measurement of permanent magnets Magnetic Properties Analysis Flux 2D (FEM software) Surface Flux Density Analyzer

Analysis of electromagnetic simulation Analysis of distribution of surface flux density Technical Data

Unit Conversion Information

SI System CGS System SI System CGS System Item Symbol Unit Symbol Unit Symbol CGS System SI System

Maxwell Magnetic Flux Ø Weber Wb Maxwell 1Wb = 108 Maxwell 1Maxwell = 10-8 Wb (Ø = BA)

Magnetic Flux Density B Tesla T Gauss G 1T = 104G 1G = 10-4T (Magnetic Induction)

Vaccum Henry per μ0 H/m - - - - Permeability meter

Ampere per 1A/m = 4πμ/103Oe 1Oe = 103/4πA/m Magnetic Intensity H A/m Oersted Oe meter = 1.257×10-2Oe = 79.5775 A/m

Henry per 1H/m = 107/4π 1 = (4π/107)H/m Permeability μ H/m - - meter = 7.95775×105 = 1.257×10-6 H/m

Magnetomotive 1A = 4π/10 Gilbert 1Gilbert = 10/4πA Fm Ampere turns A Gilbert Gilbert Force = 1.257 Gilbert = 0.7958A

1H = 109/4π Maxwell per 1Maxwell/Gilbert Henry Maxwell/ Maxwell/Gilbert Permeance P H Gilbert = 4π/109H (P = Ø/Fm) Gilbert = 7.958×107π (P = Ø/Fm) = 1.257×10-8H Maxwell/Gilbert

1H-1 = 4π/109 Gilbert per 1Gilbert/Maxwell Magnetic per Henry Gilbert/ Gilbert/Maxwell Rm H-1 Maxwell = 109/4πH-1 Resistance (Rm = Fm/Ø) Maxwell = 1.257×10-8 (Rm = Fm/Ø) = 7.958×107H-1 Gilbert/Maxwell

Gauss· 1J/m3 1GOe GOe Magnetic Energy Joule per Oersted or = 4π×10GOe = (1/4π)×10-1J/m3 J/m3 or Product Cubic meter erg = 1.257×102 GOe = 7.96×10-3J/m3 erg/cm3 per Cubic cm = 1.257×102 erg/cm3 = 1erg/cm3

Magnetic Energy E Joule J erg erg 1J = 107 erg 1erg = 10-7J

Magnetic Newton dyne 1N = 105 dyn 1dyn = 10-5N F 2 N 2 dyn Absorption Force (B A/2μ0) (B A/2μ0) (1N = 0.1019kgf) (1kgf = 9.806N) Union Ferrite Magnet 23

Characteristics

1. Physical and Mechanical Characteristics

Ferrite Magnets are hard materials in which solidified particles are densely combined. However, ceramic magnet materials are inherently brittle and can be chipped and broken if dropped on the hard ground and rubbed each other. It is recommended that they be not used for structural purpose since they are low in tensile and flexural strength.

2. Thermal Characteristics

2-1 Temperature Changes and Shifting of Cunic Point Predicting magnetic performance, temperature is a critical factor. In case of Union ferrite magnets, temperature coefficient of the residual flux density ΔBr/Br/ΔT indicates the negative property to the degree of around -0.2%/℃, and the intrinsic coercive force iHc indicates the positive property of around +0.25~0.5%/℃. As shown in Fig.1, when the intrinsic coercive force of ferrite magnets is low, the Cunic point (the point in which B-H curve falls sharply) goes to the second quadrant, but this Cunic point changes its position according to temperature changes. For example, when the temperature of ferrite magnets goes down, this Cunic point shifts gradually toward the Br axis from its original position. This is because, as the temperature falls, residual flux density(Br) increases(negative property), but, on the other hand, the intrinsic coercive force (iHc) decreases

Fig.1 Shift of Cunic Point by Temperature Changes (positive property).

2-2 Reversible Demagnetization at Low Temperatures When designing magnetic circuit of ferrite magnet, the demagnetization by temperature changes is one of the most significant factors to be considered. Technical Data

In Fig.2, when the operating line of magnet(permeance coefficient : PC1) at room temperature is sufficiently higher than the Cunic point, the operating point a1 shifts to a2 on B-H curve shown in dotted line at low temperature. In this case, when returned to room temperature, the operating point returns to the original point a1 as the point a2 is at the higher position than the Cunic point. Therefore, the magnet is not affected in demagnetization by temperature.

2-3 Irreversible Demagnetization at Low Temperatures In Fig.2, when the operating line of magnet(permeance coefficient Fig.2 ‌Reversible and Irreversible Changes of the Operating Point. PC2) at room temperature is slightly higher than the Cunic point, the operating point b1 shifts to b2 on B-H curve shown in dotted line at low temperature. When returned to room temperature, the point b2 shifts to R2, and the point R2 corresponds to the point b3 on the operating line PC2. But, as the operating line of the magnet remains unchanged, the operating point is the point b3 on the minor loop originating from R2. In this case, the magnetization amount of the magnet by irreversible process is Bd1- Bd3.

3. Demagnetizing Effect by External Magnetic Field

3-1 ‌The analysis of demagnetizing effect by external magnetic field Generally, the characteristics of permanent magnets in magnetic circuits are shown by the B-H curve in the second quadrant, and J-H Curve (SI unit / CGS unit : 4πI-H) shows the magnetizing strength of magnet itself. The analysis of demagnetization effect by external magnetic field is based on the B-H Curve in the second quadrant as well as on the B-H Curve extending into the third quadrant and J-H Curve (4πI-H Curve).

In Fig.3, point Q1 is the operating point on the B-H Curve for the operating line Pc found from the magnetic circuit and the corresponding point on the J-H Curve is point B.

When the demagnetizing field (-H1) is applied to the magnet, the operating Fig.3 ‌Demagnetization analysis of ferrite magnets in point moves from A1 on the J-H Curve to the operating line through A1' on the an external field Union Ferrite Magnet 25

B-H Curve, and the operating point shifts to Q2 after the demagnetizing field is removed. We can realize that flux density at operating point after application of the demagnetizing field shifts from Bd0 to Bd1, on the B axis. Finally, the magnet is affected to the degree of ΔBd (=Bd0 - Bd1) by external magnetic field.

And, supposing that larger demagneting field is loaded as like (-H2) in Fig.3, the point A2 on the J-H Curve and the point A2' on the B-H Curve are positioned lower than the Cunic point.

The operating point shifts to Q3 after the demagnetizing field is removed. Therefore, Demagnetizing effect of the magnet occurs more than the loading of -H1. This tells us that the demagnetizing amount depends largely on the strength of external magnetic field. As shown in the following formula, the demagnetizing ratio by demagnetizing field depends much on not only the strength of demagnetizing field but also magnetic characteristics (the shape of B-H Curve & minor loop) or permeance coefficient.

Bd0 - Bd1 • Demagnetizing ratio (%)at(-H1) = × 100 Bd0

Bd0 - Bd2 • Demagnetizing ratio (%)at(-H2) = × 100 Bd0

• Bd 1 : ‌the magnetic flux density at the operating point which is slightly affected by application of demagnetizing field.

• Bd 2 : ‌the magnetic flux density at the operating point which is greatly affected by application of demagnetizing field.

3-2 To prevent demagnetizing effect of external magnetic field Ferrite magnets can be demagnetized by the effect of external magnetic field. Therefore, it is recommended that the material of higher intrinsic coercive force be selected in advance, especially in the field of application of demagnetizing field such as generators and motors in which the operating point is not lowered than the Cunic point on B-H Curve by the effect of demagneting field. Union Materials Corporation

EUROPE

Frankfurt Tel : (49-6196) 481756~7 Fax : (49-6196) 43439 JAPAN

CHINA Tokyo Tel : (81-3) 3436-0564 Shanghai Guangzhou Fax : (81-3) 3434-3856 Tel : (86-21) 6440-0321 Tel : (86-20) 8752-0586 Fax : (86-21) 6440-0334 Fax : (86-20) 8752-0508

Beijing Hongkong Tel : (86-10) 6510-1299 Tel : (852) 2542-3151 Fax : (86-10) 6510-1239 Fax : (852) 2544-9342

Dalian Tel : (86-411) 8230-2555 Fax : (86-411) 8230-3838

Brief History of Union Materials Corporation

1990 1995 Starting Ferrite Magnet Constructed Daegu Plant Business for Ceramic Business

1962 1994 2000 Union Cement Industrial Co., Acquired ISO9001 Spun off as Ltd. Established Certification for Ferrite Magnet “Union Materials Corp.” Union Ferrite Magnet 27

About Union

Union has been a consistent forerunner in the industrial development since the beginning of the USA industrialization in Korea. Launched as a manufacturer Huston, TX Tel : (1-281) 556-5180 of basic household goods in 1939 when Korean Fax : (1-281) 556-5122 industrialization was still in its infancy, the Group had Orange, CA diversified into the areas of cement, trading, and Tel : (1-714) 385-2802 Fax : (1-714) 202-3168 transportation-key driving forces of the nation’s economy at that time. Through the 1970s, as Korea headed into an all-out boom, growth in Union’s business portfolio was maintained with expansions into heavy industry, oil refining, energy and construction. The 1980s saw the Group moving forward into telecommunications, automobiles, and financial services. Determined to build on this progress in the approaching 21st century, Union is currently investing in environmental protection & recycling and other cutting-edge sectors.

2001 2009 2012 Constructed the 3rd Plant Listed on Korea Stock Extension of Sintering Kiln(1) Exchange Market (Sep. 29) and R-Grinder(2)

2003 2011 Acquired the ISO/TS16949 & Extension of R-Grinder ISO14001 certification www.unionmaterials.com OCI Building 12FL, #94, Sogong-Ro, Jung-Gu, Seoul 04532, Korea Tel : +82 (54) 289-6701~6710 Fax : +82 (54) 289-6799 E-mail : [email protected]

EB-1709-PL