Development of Low-Iron-Loss Powder Magnetic Core Material for High-Frequency Applications

Total Page:16

File Type:pdf, Size:1020Kb

Development of Low-Iron-Loss Powder Magnetic Core Material for High-Frequency Applications AUTOMOTIVE Development of Low-Iron-Loss Powder Magnetic Core Material for High-Frequency Applications Tomoyuki IshImIne*, Asako WATAnAbe, Tomoyuki Ueno, Toru mAedA and Terukazu TokUokA Recently, there has been a growing trend toward reducing society's carbon footprint. In the field of energy, development of clean power generation systems, such as solar and wind generators, have been promoted. Electric vehicles are also replacing petrol vehicles in the automotive industry, and energy-saving electrical appliances are in demand more than ever. Due to this trend, small and powerful power-supply devices with better conversion efficiency are increasingly demanded, and accordingly, high performance inductors are required. Thus far, the authors have engaged in the development of powder magnetic cores, which are made by press compacting soft magnetic powder coated with insulating film, for use in motors and solenoid valves. In this study, the technology accumulated in the development of these cores has been successfully applied to that of an inductor core. The developed inductor core shows superior properties to ferrite and dust cores which are commonly used for inductors. In this paper, the advantageous properties of the developed core and the result of application to the inductor are reported. Keywords: soft magnetic material, inductor, reactor, choke coil, converter, inverter, eco-friendly vehicle 1. Introduction a low-iron-loss powder magnetic core material for high-fre- quency applications with characteristics superior to ferrite There has been a shift in recent years toward green or general-use dust cores previously used in these applica- power characterized mainly by solar- and wind-generated tions.(3),(4) In this study, the various characteristics of the power in the energy field, with an aim toward reducing so- developed material and result of application to power coils ciety's carbon footprint. The automotive industry is tran- are reported. sitioning from internal combustion engines using fossil fuel to electric-power-driven systems, and there is also a movement to reduce the consumption of electricity in the field of household appliances. Power storage, energy re- 2. Current Technologies Aimed at Development covery and voltage control technologies are critical to mov- Objectives and Issues ing these trends forward, and electric power devices that efficiently convert energy to the required power are in de- From the viewpoint of downsizing and high electric mand. Switching power supplies have recently become the power capacity, the iron core material used in power coils mainstream from the viewpoint of conversion efficiency should show a high saturation flux density and a high elec- and component downsizing. The choke coils, inverter tromagnetic conversion efficiency. Table 1 shows the typical coils used in transformer circuits and rectifier circuits, coil soft magnetic materials used in high-frequency applications, components such as power inductors, electric reactors and compares their power characteristics. Soft magnetic comprising an iron core and a winding greatly affect the materials generally used in iron cores for processing power performance of power devices. There is also a shift from included ferrite and general-use dust cores. Ferrite shows conventional energy systems, wherein power is conducted low loss (iron loss), and superior power efficiency, but as in one-way systems from the power generation source or shown in Fig. 1, because of its low saturation flux density, it storage battery to the electronic device, to two-way systems lacks the operation flux density required for high-capacity that recover the excess energy generated by power-con- power supplies, and so the device becomes large in size and suming devices. To this end, power devices and power requires much copper for use in the winding. General-use coils are needed to show complex transforming and recti- dust cores, on the other hand, are obtained by compres- fying functions, to be capable of handling greter power sion-molding magnetic metal powder in the same way as levels, and also to be smaller in size. powder magnetic cores, and they show superior saturation Recently, we have developed a “powder magnetic core flux density compared to ferrite and have a good high cur- material" obtained by press compacting magnetic metal rent handling capacity (DC bias characteristic), thus facili- powder, which is used used as a soft magnetic material in tating a compact device. However, compared to ferrite, they the iron core of coil components.(1),(2) Using the developed have a number of problems, including heat generation and technoogy to the problems of power devices described low power efficiency due to large iron loss. In addition to above, we have improved the high-frequency response in the above, there is also amorphous ribbon that realizes the several-hundred-kHz band, which is the target fre- high flux density and conversion efficiency, but because it quency band wherein the material characteristics are to uses a laminated structure that requires a rolling process be applied, and as a result, we have successfully achieved to manufacture, it is difficult to form the core into complex SEI TECHNICAL REVIEW · NUMBER 72 · APRIL 2011 · 117 Table 1. Soft magnetic materials used in power coils for high-frequency applications, and their power Magnetic material Material Schematic View Downsizing Power capacity Power efficiency Shape complexity content Controlling factors in Magnetic flux den- Magnetic flux den- Iron loss Electrical Complex shape − soft magnetic material sity Packing density sity Packing density resistance formability Ferrite 100vol% (Spinel type) △ △ ◎ ○ General-use dust 50 ~ 70 (Fe-Si-Al, Fe-Si-B) ○ ○ △ ○ Amorphous foil 80 ~ 90 (Fe-Si-B) ◎ ◎ ○ × Conventional sintered soft magnetic material 90 ~ 95 ◎ ◎ × ◎ (pure iron, Fe-3Si) Note: ◎: Excellent ○: Good △: Fair ×: Poor Powder magnetic (i.e., tens to hundreds of kHz) of switching power supplies, core materials 1.5 the material shows extremely large iron loss, thus resulting Motors, actuators in heat generation greater than that in general-use dust lamineted steel cores and lower conversion efficiency. Therefore, we set Low-Iron-Loss Powder magnetic core material for high-freqquecy application 1.0 out to develop a new soft magnetic material superior to High-capacity switching general-use dust cores and ferrite through optimization of power supplies Low-capacity switching power supplies the characteristics of our previous powder magnetic core General-use dust cores & inductors for signal applications materials to the several-hundred-kHz frequency range. 0.5 Figure 2 summarizes the controlling factors that affect iron loss in powder magnetic core materials.(2) Iron loss is Ferrite the sum of hysteresis loss (Wh) and eddy-current loss (We). A low coercive force is required to reduce the Wh, which downsizing and electric power capacity Operating flux density (T): contributor to 0 1k 10k 100k 1M 10M is the external energy required to change the magnetic Switching frequency (Hz): contributor to conversion efficiency field direction. Reducing the amount of impurities in the material and using a magnetic alloy with a small magnetic Fig. 1. Applications and performance ranges of typical soft magnetic ma- anisotropy or magnetostriction constant are effective, ad- terials and their development objectives ditionally, eliminating the strain generated during powder compacting through heat treatment is an important tech- nology, particularly in powder magnetic core materials. On the other hand, the Joule heat from the eddy-current gen- shapes. Further, the production cost is much higher than that of powder metallurgical processes, and the electrical resistance is low, which greatly reduces the conversion ef- ficiency in the high-frequency range. For these and other reasons, amorphous ribbon has limited application. As ex- Iron Loss <Controlling factors> <Countermeasure> [Composition factors] plained above, existing soft magnetic materials all present Hysteresis loss ①Achieving Magnetic anisotropy (BH hysteresis loop area) low coercive force obstacles to realizing the kind of compact devices with high Magnetstriction 䚽 B Find new alloy electorical power capacity that will be in demand in the Small loss [Constitution factors] 䚽 High purity Large loss 䚽 near future, so a new kind of soft magnetic material with Inpurity Thin and uniform coating 䚽 superior characteristics is desired. H Particle Boundary High-temp anneal Hc (Insulation Layer) (heat-resistant insulation coating) Dislocation 䚽 Strain-free, Reduced coercive high-density forming Reduced hysteresis loss = force Hc, Improved Grain Boundary permeability µ interparticle ②Subdivision of 3. Various Characteristics of Developed Material eddy-current Eddy Interarticles Fe Fe Insulation generating regions Current eddy-current interpaticles 䚽 loss loss High-resistance 3-1 Approach and Experimental Method of Development Fe Fe insulation coating We previously developed a powder magnetic core ma- ③Achieving high Intraparticle intraparticle electrical resistance terial with superior soft magnetic properties for use in de- eddy-current generating regions vices such as motors and actuators that operate in a loss Electrical resistance 䚽 of core material Addition elements relatively low frequency range (up to several kHz), whereby that raise electrical resistance technology that greatly improved the saturation flux den- sity and loss characteristic of the powder magnetic
Recommended publications
  • Ferrite / Ceramic Data Sheet
    Ferrite / Ceramic Data Sheet Ferrite / Ceramic Magnets These magnets are the best choice for low cost applications. They are excellent at resisting corrosion due to water. Their properties make them an excellent choice when used in motors, loudspeakers and clamping devices and for use with reed switches. Chinese Standard - commonly used globally, especially in UK and EU Typical Range of Values Br Hc (Hcb) Hci (Hcj) BHmax Material mT kG kA/m kOe kA/m kOe kJ/m3 MGOe Y8T 200-235 2.0-2.35 125-160 1.57-2.01 210-280 2.64-3.52 6.5-9.5 0.8-1.2 Physical Characteristics Y10T 200-235 2.0-2.35 128-160 1.61-2.01 210-280 2.64-3.52 6.4-9.6 0.8-1.2 Characteristic Symbol Unit Value Y20 320-380 3.2-3.8 135-190 1.70-2.39 140-195 1.76-2.45 18.0-22.0 2.3-2.8 Density D g/cc 4.9 to 5.1 Y22H 310-360 3.1-3.6 220-250 2.76-3.14 280-320 3.52-4.02 20.0-24.0 2.5-3.0 Vickers Hardness Hv D.P.N 400 to 700 Y23 320-370 3.2-3.7 170-190 2.14-2.39 190-230 2.39-2.89 20.0-25.5 2.5-3.2 Compression Strength C.S N/mm2 680-720 Y25 360-400 3.6-4.0 135-170 1.70-2.14 140-200 1.76-2.51 22.5-28.0 2.8-3.5 Coefficient of Thermal Expansion C// 10-6/C 15 Y26H 360-390 3.6-3.9 220-250 2.76-3.14 225-255 2.83-3.20 23.0-28.0 2.9-3.5 C^ 10-6/C 10 Y26H-1 360-390 3.6-3.9 200-250 2.51-3.14 225-255 2.83-3.20 23.0-28.0 2.9-3.5 Specific Heat Capacity c J/kg°C 795-855 Y26H-2 360-380 3.6-3.8 263-288 3.30-3.62 318-350 4.00-4.40 24.0-28.0 3.0-3.5 Electrical Resistivity r m Ω.cm 1x1010 Y27H 370-400 3.7-4.0 205-250 2.58-3.14 210-255 2.64-3.20 25.0-29.0 3.1-3.6 Thermal Conductivity k W/cm°C 0.029 Y28 370-400 3.7-4.0 175-210 2.20-2.64 180-220 2.26-2.76 26.0-30.0 3.3-3.8 Modulus of Elasticity l / E Pa 1.8x1011 Y28H-1 380-400 3.8-4.0 240-260 3.02-3.27 250-280 3.14-3.52 27.0-30.0 3.4-3.8 Compression Strength C.S.
    [Show full text]
  • A TWO DIMENSIONAL FERRITE-CORE MEMORY Bv M
    A TWO DIMENSIONAL FERRITE-CORE MEMORY Bv M. M. FAROOQUI, S. P. SKiVASTAVA AND R. N. NEOGI (Tata Institute of Fundamental Research, Bomba),) Received January t0, 1957 (Communicated by Prof. Bernard P ABS'IXACT This paper describes a two dimensional matrix memory using ferrite- cores. A urtit consisting of 100 words of I 1 binary digits each has been cortstructed for parallel operation. The word drive is from a biasr switch-core matrix, while the digit drive makes use of pulse--trans- formers. Logic and circuit techniques enable high discrimination bet- ween wanted and unwanted signals. A semi-automatic method for testing the memory cores is also described. INTRODUCTION THE potentiality of magnetie fer¡ with a rectangular hysteresis loop as binary storage elements for digital computer was realised earlier by Forrester. x Later, Papian% s and almost simultaneously Rajchman4, ~ showed the practicability of such a system by successfully operating memories of fairly large capacity. This paper describes a modest attempt in this direction. A memory of I00 words, 11 bits each, has beca constructed to operate with a smaU digital computer at the Tata institute of Fundamental Research, Bombay. THE PRINClPLE OF OPERATION OF THE MEMORY The two stable states required for sto¡ binary information in magnetic cores ate the states of positive and negative magnetisation. These are the states corresponding to the position A0 and Ax on the hysteresis loop and can be termed as the 0- and the 1-states respectively (Fig. 2). Con- sider a number of sucia cores with ah ideaUy rectangular hysteresis character- istic, arranged in rows and columns in the form of a matrix.
    [Show full text]
  • Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux Core Characteristics Master of Science Thesis
    Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics Master of Science Thesis JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ c JOHAN KINDMARK FREDRIK ROSEN,´ 2013. Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology SE–412 96 G¨oteborg Sweden Telephone +46 (0)31–772 1000 Chalmers Bibliotek, Reproservice G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology Abstract The aim of this thesis was to investigate the performanceof alternative powder materials and compare these with conventional iron and ferrite cores when used as inductors. Permeability measurements were per- formed where both DC-bias and frequency were swept, the inductors were put into a small buck converter where the overall efficiency was measured. The BH-curve characteristics and core loss of the materials were also investigated. The materials showed good performance compared to the iron and ferrite cores. High flux had the best DC-bias characteristics while Sendust had the best performance when it came to higher fre- quencies and MPP had the lowest core losses.
    [Show full text]
  • Magnetics Design for Switching Power Supplies Lloydh
    Magnetics Design for Switching Power Supplies LloydH. Dixon Section 1 Introduction Experienced SwitchMode Power Supply design- ers know that SMPS success or failure depends heav- ily on the proper design and implementation of the magnetic components. Parasitic elements inherent in high frequency transformers or inductors cause a va- riety of circuit problems including: high losses, high voltage spikes necessitating snubbers or clamps, poor cross regulation between multiple outputs, noise cou- pling to input or output, restricted duty cycle range, Figure 1-1 Transformer Equivalent Circuit etc. Figure I represents a simplified equivalent circuit of a two-output forward converter power transformer, optimized design, (3) Collaborate effectively with showing leakage inductances, core characteristics experts in magnetics design, and possibly (4) Become including mutual inductance, dc hysteresis and satu- a "magnetics expert" in his own right. ration, core eddy current loss resistance, and winding Obstacles to learning magnetics design distributed capacitance, all of which affect SMPS In addition to the lack of instruction in practical performance. magnetics mentioned above, there are several other With rare exception, schools of engineering pro- problems that make it difficult for the SMPS designer vide very little instruction in practical magnetics rele- to feel "at home" in the magnetics realm: vant to switching power supply applications. As a .Archaic concepts and practices. Our great- result, magnetic component design is usually dele- grandparents probably had a better understanding gated to a self-taught expert in this "black art". There of practical magnetics than we do today. Unfor- are many aspects in the design of practical, manu- tunately, in an era when computation was diffi- facturable, low cost magnetic devices that unques- cult, our ancestors developed concepts intended tionably benefit from years of experience in this field.
    [Show full text]
  • Electromagnets and Their Applications
    International Journal of Industrial Electronics and Electrical Engineering, ISSN(p): 2347-6982, ISSN(e): 2349-204X Volume-5, Issue-8, Aug.-2017, http://iraj.in ELECTROMAGNETS AND THEIR APPLICATIONS SHAHINKARIMAGHAIE Bachelor of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran E-mail: [email protected] Abstract- Electric current flowing through a wire wound around an iron nail creates a magnetic field, which caused an iron nail to become a temporary magnet. The nail can then be used to pick up paper clips. When the electric current is cut off, the nail loses its magnetic property and the paper clips fall off. The students will make an elecromagnet that will attract a paper clip. They will then increase the strength of an electromagnet(improve on their initial design) so that it will attract an increased number of paper clips. The participants will also compare the properties of magnets and electromagnets. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field. Electromagnets are widely used as components of other electrical devices, such as motors. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel. We will investigate engineering and industrial applications of the case study. Keywords- Electromagnet, Application, Engineering. I. INTRODUCTION William Sturgeon. If you have ever played with a really powerful magnet, you have probably noticed Electromagnet, device in which magnetism is one problem. You have to be pretty strong to separate produced by an electric current. Any electric current the magnets again! Today, we have many uses for produces a magnetic field, but the field near an powerful magnets, but they wouldn’t be any good to ordinary straight conductor is rarely strong enough to us if we were not able to make them release the be of practical use.
    [Show full text]
  • Effective Permeability of Multi Air Gap Ferrite Core 3-Phase
    energies Article Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters Piotr Dworakowski 1,* , Andrzej Wilk 2 , Michal Michna 2 , Bruno Lefebvre 1, Fabien Sixdenier 3 and Michel Mermet-Guyennet 1 1 Power Electronics & Converters, SuperGrid Institute, 69100 Villeurbanne, France; [email protected] (B.L.); [email protected] (M.M.-G.) 2 Faculty of Electrical and Control Engineering, Gda´nskUniversity of Technology, 80-233 Gdansk, Poland; [email protected] (A.W.); [email protected] (M.M.) 3 Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, ECLyon, CNRS, Ampère, 69100 Villeurbanne, France; [email protected] * Correspondence: [email protected] Received: 4 February 2020; Accepted: 11 March 2020; Published: 14 March 2020 Abstract: The magnetizing inductance of the medium frequency transformer (MFT) impacts the performance of the isolated dc-dc power converters. The ferrite material is considered for high power transformers but it requires an assembly of type “I” cores resulting in a multi air gap structure of the magnetic core. The authors claim that the multiple air gaps are randomly distributed and that the average air gap length is unpredictable at the industrial design stage. As a consequence, the required effective magnetic permeability and the magnetizing inductance are difficult to achieve within reasonable error margins. This article presents the measurements of the equivalent B(H) and the equivalent magnetic permeability of two three-phase MFT prototypes. The measured equivalent B(H) is used in an FEM simulation and compared against a no load test of a 100 kW isolated dc-dc converter showing a good fit within a 10% error.
    [Show full text]
  • Magnetics in Switched-Mode Power Supplies Agenda
    Magnetics in Switched-Mode Power Supplies Agenda • Block Diagram of a Typical AC-DC Power Supply • Key Magnetic Elements in a Power Supply • Review of Magnetic Concepts • Magnetic Materials • Inductors and Transformers 2 Block Diagram of an AC-DC Power Supply Input AC Rectifier PFC Input Filter Power Trans- Output DC Outputs Stage former Circuits (to loads) 3 Functional Block Diagram Input Filter Rectifier PFC L + Bus G PFC Control + Bus N Return Power StageXfmr Output Circuits + 12 V, 3 A - + Bus + 5 V, 10 A - PWM Control + 3.3 V, 5 A + Bus Return - Mag Amp Reset 4 Transformer Xfmr CR2 L3a + C5 12 V, 3 A CR3 - CR4 L3b + Bus + C6 5 V, 10 A CR5 Q2 - + Bus Return • In forward converters, as in most topologies, the transformer simply transmits energy from primary to secondary, with no intent of energy storage. • Core area must support the flux, and window area must accommodate the current. => Area product. 4 3 ⎛ PO ⎞ 4 AP = Aw Ae = ⎜ ⎟ cm ⎝ K ⋅ΔB ⋅ f ⎠ 5 Output Circuits • Popular configuration for these CR2 L3a voltages---two secondaries, with + From 12 V 12 V, 3 A a lower voltage output derived secondary CR3 C5 - from the 5 V output using a mag CR4 L3b + amp postregulator. From 5 V 5 V, 10 A secondary CR5 C6 - CR6 L4 SR1 + 3.3 V, 5 A CR8 CR7 C7 - Mag Amp Reset • Feedback to primary PWM is usually from the 5 V output, leaving the +12 V output quasi-regulated. 6 Transformer (cont’d) • Note the polarity dots. Xfmr CR2 L3a – Outputs conduct while Q2 is on.
    [Show full text]
  • Ferrite and Metal Composite Inductors
    Ferrite and Metal Composite Inductors Design and Characteristics © 2019 KEMET Corporation What is an Inductor? Coil Magnetic Magnetic flux φ (Wire) Field dφ Core e = - dt Material i The coil converts electric energy into magnetic energy and stores it. e Core Material Current through the coil of wire creates a magnetic field Air Ferrite Metal and stores it. (None) (Iron) Composite Different core materials change magnetic field strength. © 2019 KEMET Corporation Ferrite Inductor or Metal Composite Inductor? Ferrite InductorFerrite Metal InductorMetal Composite MaterialMaterial Type type Ni-ZnNi-Zn Mn-Zn Mn-Zn Fe based Fe Based Very Good!! No Good.. InductanceInductace GoodGood! Very Good No Good Very Good!! Magnetic Saturation Good! No Good.. Good! No Good.. Very Good!! MagneticThermal Saturation Property Good No Good Very Good Good! Very Good!! Good! Efficiency Very Good!! No Good.. Good! ThermalResistance Property of core Good No Good Very Good Efficiency SBC/SBCPGood TPI Very GoodMPC, MPCV Good Products MPLC, MPLCV Resistance of Core Very Good No Good Good © 2019 KEMET Corporation Ferrite and Metal Composite Comparison Advantage of Ferrite 1. Higher inductance with high permeability 2. Stable inductance in the right range High L and Low DCR capability Advantage of Metal Composite 1. Very slow saturation 2. Very stable saturation for the thermal Core Loss Comparison Good for Auto app especially Advantage of Ferrite Very low core loss in dynamic frequency range Mn-Zn Ferrite Metal Core Low power consumption capability © 2019 KEMET Corporation
    [Show full text]
  • Switch Mode Power Supplies and Their Magnetics Tutorial
    Datatronic Switch Mode Power Supplies and their Magnetics Many factors must be considered by designers when choosing the magnetic components required in today’s electronic power supplies DATATRONIC DISTRIBUTION, INC. Datatronic In today’s day and age the most often used topology for electronic power supplies is that of the Switch Mode Power Supply (SMPS), which is a major user of magnetics. In some applications the “older type” linear supplies are still used, but in the early 70’s SMPS came into being spurred by the development of faster switching transistors. This facilitated the use of much smaller magnetic components and greater efficiencies. DATATRONIC DISTRIBUTION, INC. Datatronic SMPS and their General Magnetic Usage In general, there are four different types of magnetic components that are needed for the typical SMPS. They include the Output Transformer, usually the most noticeable because of its size compared to the others, the Output Inductors, the Input Inductors and the Current Sense Transformer, each with its own important function. DATATRONIC DISTRIBUTION, INC. Datatronic SMPS and their General Magnetic Usage 1.The Output Transformer or “Main” Transformer takes the input voltage that is supplied to its primary winding and then transforms the input voltage to one or more voltages that are the output of the secondary winding or windings. 2. The Output Inductors are used to filter the output voltage so that the load “sees” a filtered DC voltage. DATATRONIC DISTRIBUTION, INC. Datatronic SMPS and their General Magnetic Usage 3. The Input Inductors filter out the noise generated by the switching transistors so that this noise isn’t emitted back to the source.
    [Show full text]
  • Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device
    micromachines Article Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device Yi Sun 1,2,*, Wenzhong Lou 1,2, Hengzhen Feng 1,2 and Yuecen Zhao 1,2 1 National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of technology, Beijing 100081, China; [email protected] (W.L.); [email protected] (H.F.); [email protected] (Y.Z.) 2 Beijing Institute of Technology, Chongqing Innovation Center, Chongqing 401120, China * Correspondence: [email protected]; Tel.: +86-158-3378-5736 Received: 27 June 2020; Accepted: 27 July 2020; Published: 31 July 2020 Abstract: Traditional silicon-based micro-electro-mechanical system (MEMS) safety and arming devices, such as electro-thermal and electrostatically driven MEMS safety and arming devices, experience problems of high insecurity and require high voltage drive. For the current electromagnetic drive mode, the electromagnetic drive device is too large to be integrated. In order to address this problem, we present a new micro electromagnetically driven MEMS safety and arming device, in which the electromagnetic coil is small in size, with a large electromagnetic force. We firstly designed and calculated the geometric structure of the electromagnetic coil, and analyzed the model using COMSOL multiphysics field simulation software. The resulting error between the theoretical calculation and the simulation of the mechanical and electrical properties of the electromagnetic coil was less than 2% under the same size. We then carried out a parametric simulation of the electromagnetic coil, and combined it with the actual processing capacity to obtain the optimized structure of the electromagnetic coil.
    [Show full text]
  • INTRODUCTION:- Ferrites Are Ferromagnetic Material Containing Predominantly Oxides Iron Along with Other Oxides of Barium, Stron
    INTRODUCTION:- Ferrites are ferromagnetic material containing predominantly oxides iron along with other oxides of barium, strontium, manganese, nickel, zinc, lithium and cadmium .Ferrites are ideally suited for making device like inductor core, circulators, memory devices and also for various microwave application. Although the saturation magnetisation of ferrites less than that of ferromagnetic alloys, they have advantages such as applicability at higher frequency, lower price and greater electrical resistance. Since 1950, soft ferrites have been widely studied and have become a field of interest of many researches because of their application potential in the modern electronics industry. The electrical and magnetic properties of these materials are structure sensitive and can be altered by doping or substitution. The substitution of aluminium in the inverse ferrites like Nickel, copper and cobalt ferrites have proved to be useful by increasing their saturation, magnetization, resistivity, however, at the cost of decrease of Curie temperature. Cadmium ferrite is a normal spinel ; its magnetic moment per unit cell is zero. Low magnetic high resistive ferrite are so applicable in the high frequency transformer cores. The addition of aluminium which has strong preference for the octahedral sites should exhibit the decrease of the magnetisation because aluminium is nonmagnetic. As aluminium content increases, the magnetic moment of unit cell decreases that means show triangular spin moment, their occurs a reduction in the sub lattice interaction. The removal of iron ions from magnetic sublattice and substitution of the nonmagnetic aluminium ion in its place weakens the magnetism. Due to this substitution improves catalytic, dielectric and magnetic properties, as they possess high resistivity and negligible eddy current losses.
    [Show full text]
  • MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable Into the Multi-Megawatts
    MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable into the Multi-Megawatts Overview Magna-Power Electronics MT Series uses the same reliable current-fed power processing technology and controls as the rest of the MagnaDC programmable power supply product line, but with larger high-power modules: individual 100 kW, 150 kW and 250 kW power supplies. The high-frequency IGBT-based MT Series units are among the largest standard switched-mode power supplies on the market, minimizing the number of switching components when comparing to smaller module sizes. Scaling in the multi-megawatts is accomplished using the UID47 device, which provides master-slave control: one power supply takes command over the remaining units, for true system operation. As an added 100 kW and 150 kW Models 250 kW Models safety measure, all MT Series units include an input AC breaker rated for full power. 250 kW modules come standard with an embedded 12-pulse harmonic neutralizer, Models ensuring low total harmonic distortion (THD). 2 2 2 Even higher quality AC waveforms are available 100 kW 150 kW 250 kW 500 kW 750 kW 1000 kW with an external additional 500 kW 24-pulse 1 or 1000 kW 48-pulse harmonic neutralizers, Max Voltage Max Current Ripple Efficiency designed and manufactured exclusively by (Vdc) (Adc) (mVrms) Magna-Power for its MT Series products. 16 6000 N/A N/A N/A N/A N/A 35 90 20 5000 N/A N/A N/A N/A N/A 40 90 25 N/A 6000 N/A N/A N/A N/A 40 90 32 3000 4500 N/A N/A N/A N/A 40 90 40 2500 3750 6000 12000 18000 24000 40 91 50 2000 3000 5000 10000 15000 20000 50 91 MT Series Model Ordering Guide 60 1660 2500 4160 8320 12480 16640 60 91 80 1250 1850 3000 6000 9000 12000 60 91 There are 72 different models in the MT Series spanning power levels: 100 kW, 150 kW, 250 kW.
    [Show full text]