Study on Characteristics of Electromagnetic Coil Used in MEMS Safety and Arming Device
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electromagnetic Sheet Forming by Uniform Pressure Using Flat Spiral Coil
materials Article Electromagnetic Sheet Forming by Uniform Pressure Using Flat Spiral Coil Xiaohui Cui 1,2,3,*, Dongyang Qiu 2, Lina Jiang 4, Hailiang Yu 1,2,3, Zhihao Du 1 and Ang Xiao 1 1 Light alloy research Institute, Central South University, Changsha 410083, China; [email protected] (H.Y.); [email protected] (Z.D.); [email protected] (A.X.) 2 College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; [email protected] 3 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China 4 Shandong North Binhai Machinery Company, Zibo 255201, China; [email protected] * Correspondence: [email protected]; Tel.: +86-15388028791 Received: 13 May 2019; Accepted: 13 June 2019; Published: 18 June 2019 Abstract: The coil is the most important component in electromagnetic forming. Two important questions in electromagnetic forming are how to obtain the desired magnetic force distribution on the sheet and increase the service life of the coil. A uniform pressure coil is widely used in sheet embossing, bulging, and welding. However, the coil is easy to break, and the manufacturing process is complex. In this paper, a new uniform-pressure coil with a planar structure was designed. A three-dimensional (3D) finite element model was established to analyze the effect of the main process parameters on magnetic force distribution. By comparing the experimental results, it was found that the simulation results have a higher analysis precision. Based on the simulation results, the resistivity of the die, spacing between the left and right parts of the coil, relative position between coil and sheet, and sheet width significantly affect the distribution of magnetic force. -
Overlapped Electromagnetic Coilgun for Low Speed Projectiles
ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 Journal of Magnetics 20(3), 322-329 (2015) http://dx.doi.org/10.4283/JMAG.2015.20.3.322 Overlapped Electromagnetic Coilgun for Low Speed Projectiles Hany M. Mohamed1, Mahmoud A. Abdalla2*, Abdelazez Mitkees, and Waheed Sabery Electrical Engineering Branch, MTC College, Cairo, Egypt [email protected] [email protected] (Received 20 February 2015, Received in final form 16 June 2015, Accepted 16 June 2015) This paper presents a new overlapped coilgun configuration to launch medium weight projectiles. The proposed configuration consists of a two-stage coilgun with overlapped coil covers with spacing between them. The theoretical operation of a multi-stage coilgun is introduced, and a transient simulation was conducted for projectile motion through the launcher by using a commercial transient finite element software, ANSOFT MAXWELL. The excitation circuit design for each coilgun is reported, and the results indicate that the overlapped configuration increased the exit velocity relative to a non-overlapped configuration. Different configurations in terms of the optimum length and switching time were attempted for the proposed structure, and all of these cases exhibited an increase in the exit velocity. The exit velocity tends to increase by 27.2% relative to that of a non-overlapped coilgun of the same length. Keywords : electromagnetic launch, excitation circuit, lorentz force, overlapped coilgun 1. Introduction is not easy to obtain the main performance parameters and optimize the design [3]. Electromagnetic (EM) launch technology is a strong Sandia National Laboratories has succeeded in coilgun candidate to launch objects with high velocities over long design and operations by developing four guns with distances. -
Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux Core Characteristics Master of Science Thesis
Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics Master of Science Thesis JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ c JOHAN KINDMARK FREDRIK ROSEN,´ 2013. Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology SE–412 96 G¨oteborg Sweden Telephone +46 (0)31–772 1000 Chalmers Bibliotek, Reproservice G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology Abstract The aim of this thesis was to investigate the performanceof alternative powder materials and compare these with conventional iron and ferrite cores when used as inductors. Permeability measurements were per- formed where both DC-bias and frequency were swept, the inductors were put into a small buck converter where the overall efficiency was measured. The BH-curve characteristics and core loss of the materials were also investigated. The materials showed good performance compared to the iron and ferrite cores. High flux had the best DC-bias characteristics while Sendust had the best performance when it came to higher fre- quencies and MPP had the lowest core losses. -
Magnetics Design for Switching Power Supplies Lloydh
Magnetics Design for Switching Power Supplies LloydH. Dixon Section 1 Introduction Experienced SwitchMode Power Supply design- ers know that SMPS success or failure depends heav- ily on the proper design and implementation of the magnetic components. Parasitic elements inherent in high frequency transformers or inductors cause a va- riety of circuit problems including: high losses, high voltage spikes necessitating snubbers or clamps, poor cross regulation between multiple outputs, noise cou- pling to input or output, restricted duty cycle range, Figure 1-1 Transformer Equivalent Circuit etc. Figure I represents a simplified equivalent circuit of a two-output forward converter power transformer, optimized design, (3) Collaborate effectively with showing leakage inductances, core characteristics experts in magnetics design, and possibly (4) Become including mutual inductance, dc hysteresis and satu- a "magnetics expert" in his own right. ration, core eddy current loss resistance, and winding Obstacles to learning magnetics design distributed capacitance, all of which affect SMPS In addition to the lack of instruction in practical performance. magnetics mentioned above, there are several other With rare exception, schools of engineering pro- problems that make it difficult for the SMPS designer vide very little instruction in practical magnetics rele- to feel "at home" in the magnetics realm: vant to switching power supply applications. As a .Archaic concepts and practices. Our great- result, magnetic component design is usually dele- grandparents probably had a better understanding gated to a self-taught expert in this "black art". There of practical magnetics than we do today. Unfor- are many aspects in the design of practical, manu- tunately, in an era when computation was diffi- facturable, low cost magnetic devices that unques- cult, our ancestors developed concepts intended tionably benefit from years of experience in this field. -
Electromagnets and Their Applications
International Journal of Industrial Electronics and Electrical Engineering, ISSN(p): 2347-6982, ISSN(e): 2349-204X Volume-5, Issue-8, Aug.-2017, http://iraj.in ELECTROMAGNETS AND THEIR APPLICATIONS SHAHINKARIMAGHAIE Bachelor of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran E-mail: [email protected] Abstract- Electric current flowing through a wire wound around an iron nail creates a magnetic field, which caused an iron nail to become a temporary magnet. The nail can then be used to pick up paper clips. When the electric current is cut off, the nail loses its magnetic property and the paper clips fall off. The students will make an elecromagnet that will attract a paper clip. They will then increase the strength of an electromagnet(improve on their initial design) so that it will attract an increased number of paper clips. The participants will also compare the properties of magnets and electromagnets. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field. Electromagnets are widely used as components of other electrical devices, such as motors. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel. We will investigate engineering and industrial applications of the case study. Keywords- Electromagnet, Application, Engineering. I. INTRODUCTION William Sturgeon. If you have ever played with a really powerful magnet, you have probably noticed Electromagnet, device in which magnetism is one problem. You have to be pretty strong to separate produced by an electric current. Any electric current the magnets again! Today, we have many uses for produces a magnetic field, but the field near an powerful magnets, but they wouldn’t be any good to ordinary straight conductor is rarely strong enough to us if we were not able to make them release the be of practical use. -
Effective Permeability of Multi Air Gap Ferrite Core 3-Phase
energies Article Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters Piotr Dworakowski 1,* , Andrzej Wilk 2 , Michal Michna 2 , Bruno Lefebvre 1, Fabien Sixdenier 3 and Michel Mermet-Guyennet 1 1 Power Electronics & Converters, SuperGrid Institute, 69100 Villeurbanne, France; [email protected] (B.L.); [email protected] (M.M.-G.) 2 Faculty of Electrical and Control Engineering, Gda´nskUniversity of Technology, 80-233 Gdansk, Poland; [email protected] (A.W.); [email protected] (M.M.) 3 Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, ECLyon, CNRS, Ampère, 69100 Villeurbanne, France; [email protected] * Correspondence: [email protected] Received: 4 February 2020; Accepted: 11 March 2020; Published: 14 March 2020 Abstract: The magnetizing inductance of the medium frequency transformer (MFT) impacts the performance of the isolated dc-dc power converters. The ferrite material is considered for high power transformers but it requires an assembly of type “I” cores resulting in a multi air gap structure of the magnetic core. The authors claim that the multiple air gaps are randomly distributed and that the average air gap length is unpredictable at the industrial design stage. As a consequence, the required effective magnetic permeability and the magnetizing inductance are difficult to achieve within reasonable error margins. This article presents the measurements of the equivalent B(H) and the equivalent magnetic permeability of two three-phase MFT prototypes. The measured equivalent B(H) is used in an FEM simulation and compared against a no load test of a 100 kW isolated dc-dc converter showing a good fit within a 10% error. -
Magnetics in Switched-Mode Power Supplies Agenda
Magnetics in Switched-Mode Power Supplies Agenda • Block Diagram of a Typical AC-DC Power Supply • Key Magnetic Elements in a Power Supply • Review of Magnetic Concepts • Magnetic Materials • Inductors and Transformers 2 Block Diagram of an AC-DC Power Supply Input AC Rectifier PFC Input Filter Power Trans- Output DC Outputs Stage former Circuits (to loads) 3 Functional Block Diagram Input Filter Rectifier PFC L + Bus G PFC Control + Bus N Return Power StageXfmr Output Circuits + 12 V, 3 A - + Bus + 5 V, 10 A - PWM Control + 3.3 V, 5 A + Bus Return - Mag Amp Reset 4 Transformer Xfmr CR2 L3a + C5 12 V, 3 A CR3 - CR4 L3b + Bus + C6 5 V, 10 A CR5 Q2 - + Bus Return • In forward converters, as in most topologies, the transformer simply transmits energy from primary to secondary, with no intent of energy storage. • Core area must support the flux, and window area must accommodate the current. => Area product. 4 3 ⎛ PO ⎞ 4 AP = Aw Ae = ⎜ ⎟ cm ⎝ K ⋅ΔB ⋅ f ⎠ 5 Output Circuits • Popular configuration for these CR2 L3a voltages---two secondaries, with + From 12 V 12 V, 3 A a lower voltage output derived secondary CR3 C5 - from the 5 V output using a mag CR4 L3b + amp postregulator. From 5 V 5 V, 10 A secondary CR5 C6 - CR6 L4 SR1 + 3.3 V, 5 A CR8 CR7 C7 - Mag Amp Reset • Feedback to primary PWM is usually from the 5 V output, leaving the +12 V output quasi-regulated. 6 Transformer (cont’d) • Note the polarity dots. Xfmr CR2 L3a – Outputs conduct while Q2 is on. -
Stripped-Down Motor
Stripped-Down Motor In this activity, you’ll make an electric motor—a simple version of the electric motors found in toys, tools, and appliances everywhere. What Do I Need? • aluminum foil • paper clips (larger is better) • paper, plastic, or foam cup • masking tape • magnets (two or more, available at Radio Shack) • scissors • copper wire (bare or coated) • sandpaper • battery (D or C cell) • permanent marker (any color is fine) What Do I Do? Building the Stand other piece of foil and paper clip. 1. Tear off two narrow sheets of aluminum foil. These will connect 4. Place the paper cup upside-down the motor to the battery. on the table. Tape the foil-covered 2. Take a paper clip and bend the outside wire down, so that you have a loop with post. Repeat with another paper clip. 3. Wrap one end of the aluminum foil around the long post of the paper clip. Make sure there is good contact between the paper clip and the foil. Repeat with the www.exploratorium.edu/afterschool Exploratorium end of one paper clip to the top of Turn over the cup and drop the inverted paper cup. Tape the another magnet inside. The two other paper clip to the opposite magnets will stick together. side. 6. Put the cup back on the table 5. Place a magnet on the top of the upside-down. This is the base for cup, between the paper clips. your motor. Making the Coil wire with two bare ends sticking 1. Cut a length of about 2 feet (60 out from either side. -
(12) United States Patent (10) Patent No.: US 9,000,647 B2 Rapoport (45) Date of Patent: Apr
USOO9000647B2 (12) United States Patent (10) Patent No.: US 9,000,647 B2 Rapoport (45) Date of Patent: Apr. 7, 2015 (54) HIGH EFFICIENCY HIGH OUTPUT DENSITY (56) References Cited ELECTRIC MOTOR U.S. PATENT DOCUMENTS (76) Inventor: Uri Rapoport, Moshav Ben Shemen 5,396,140 A ck 3, 1995 Goldie et al. 310,268 (IL) 5,903,082 A 5/1999 Caamano 6,175,178 B1* 1/2001 Tupper et al. ................. 310,166 (*) Notice: Subject to any disclaimer, the term of this 6,259,233 B1 ck 658) ano f patent is extended or adjusted under 35 g: R g58. Shiki . 310,114 U.S.C. 154(b) by 318 days. 2004/0195931 A1* 10, 2004 Sakoda ......................... 310,268 2008/008.8200 A1* 4/2008 Ritchey......................... 310,268 (21) Appl. No.: 13/495,788 2012/0319518 A1* 12/2012 Rapoport ................. 310,156.12 (22) Filed: Jun. 13, 2012 k cited. by examiner O O Primary Examiner — John K. Kim (65) Prior Publication Data (74) Attorney, Agent, or Firm — The Law Office of Michael US 2012/O319518A1 Dec. 20, 2012 E. Kondoudis (57) ABSTRACT Related U.S. Application Data An electric motor that generates mechanical energy whilst increasing both the motor efficiency and the mechanical (60) Eyal application No. 61/497.536, filed on Jun. power density. The electric motor includes: a plurality of disk s Surfaces having a main longitudinal axis; a plurality of sta 51) Int. C tionary Support structures; and a rotating shaft affixed to the (51) Int. Cl. disk Surfaces. Each disk surface is coupled to an array of HO2K L/27 (2006.01) offset magnets. -
Electromagnetic Launcher: Review of Various Structures
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 9 Issue 09, September-2020 Electromagnetic Launcher : Review of Various Structures Siddhi Santosh Reelkar Prof. Dr. U. V. Patil Department of Electrical Engineering, Department of Electrical Engineering, Government College of Engineering, Government College of Engineering, Karad Karad Prof. Dr. V. V. Khatavkar Department of Electrical Engineering, P.E.S. Modern college of Engineering, Pune Hrishikesh Mehta Utkarsh Alset Aethertec Innovative Solutions, Aethertec Innovative Solutions, Bavdhan, Pune Bavdhan, Pune Abstract— A theoretic review of electromagnetic coil-gun This paper is mainly focusing the basic principle of launcher and its types are illustrated in this paper. In recent electromagnetic coil-gun launcher, inductance and resistance years conventional launchers like steam launchers, chemical calculations, construction and modeling concept of different launchers are replaced by electromagnetic launchers with coil-gun launcher. auxiliary benefits. The electromagnetic launchers like rail- gun and coil-gun elevated with multi pole field structure delivers II. WORKING PRINCIPLE great muzzle velocity and huge repulse force in limited time. Rail gun has two parallel rails from which object is launched. Various types of coil-gun electromagnetic launchers are When current passes through the rails to the object it compared in this paper for its structures and characteristics. The paper focuses on the basic formulae for calculating the produces arc. Because of high current pulse it has more values of inductance and resistance of electromagnetic contact friction losses [4]. Compare to the rail-gun launcher, launchers. Coil-gun launchers have no contact friction losses as there is no electrical contact between coils and object. -
Basics of Control Components
Pilot Devices A pilot device directs the operation of another device (pushbuttons and selector switches) or indicates the status of the operating system (pilot lights). This section discusses Siemens 3SB and Furnas Class 51/52 pushbuttons, selector switches, and pilot lights. 3SB devices are available in 22 mm diameters. Class 51/52 pilot devices are available in 30 mm diameter. The diameter refers to the size of the knockout hole required to mount the devices. Class 51 devices are rated for hazardous locations environments such as Class I, Groups C and D and Class II, Groups E, F, and G. Class 52 devices are heavy duty for harsh, industrial environments. Bifurcated Contacts Whether one chooses the 3SB or the Class 51/52 pilot devices, the fine silver contacts have a 10 A/600 V continuous-current rating and can be used on solid state equipment. The 3SB and the Class 51/52 devices use bifurcated movable contacts. The design of the bifurcated contacts provides four different pathways for current to flow, thus improving contact reliability. 67 Pushbuttons A pushbutton is a control device used to manually open and close a set of contacts. Pushbuttons are available in a flush mount, extended mount, with a mushroom head, illuminated or nonilluminated. Pushbuttons come with either normally open, normally closed, or combination contact blocks. The Siemens 22 mm pushbuttons can handle up to a maximum of 6 circuits. The Furnas 30 mm pushbutton can handle up to a maximum fo 16 circuits. Normally Open Pushbuttons are used in control circuits to perform various Pushbuttons functions. -
MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable Into the Multi-Megawatts
MT Series High-Power Floor-Standing Programmable DC Power Supply • Expandable into the Multi-Megawatts Overview Magna-Power Electronics MT Series uses the same reliable current-fed power processing technology and controls as the rest of the MagnaDC programmable power supply product line, but with larger high-power modules: individual 100 kW, 150 kW and 250 kW power supplies. The high-frequency IGBT-based MT Series units are among the largest standard switched-mode power supplies on the market, minimizing the number of switching components when comparing to smaller module sizes. Scaling in the multi-megawatts is accomplished using the UID47 device, which provides master-slave control: one power supply takes command over the remaining units, for true system operation. As an added 100 kW and 150 kW Models 250 kW Models safety measure, all MT Series units include an input AC breaker rated for full power. 250 kW modules come standard with an embedded 12-pulse harmonic neutralizer, Models ensuring low total harmonic distortion (THD). 2 2 2 Even higher quality AC waveforms are available 100 kW 150 kW 250 kW 500 kW 750 kW 1000 kW with an external additional 500 kW 24-pulse 1 or 1000 kW 48-pulse harmonic neutralizers, Max Voltage Max Current Ripple Efficiency designed and manufactured exclusively by (Vdc) (Adc) (mVrms) Magna-Power for its MT Series products. 16 6000 N/A N/A N/A N/A N/A 35 90 20 5000 N/A N/A N/A N/A N/A 40 90 25 N/A 6000 N/A N/A N/A N/A 40 90 32 3000 4500 N/A N/A N/A N/A 40 90 40 2500 3750 6000 12000 18000 24000 40 91 50 2000 3000 5000 10000 15000 20000 50 91 MT Series Model Ordering Guide 60 1660 2500 4160 8320 12480 16640 60 91 80 1250 1850 3000 6000 9000 12000 60 91 There are 72 different models in the MT Series spanning power levels: 100 kW, 150 kW, 250 kW.