<<

Rochester Institute of Technology RIT Scholar Works

Theses

2007

Design and simulation of strained-Si/strained-SiGe dual channel hetero-structure

Puneet Goyal

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Goyal, Puneet, "Design and simulation of strained-Si/strained-SiGe dual channel hetero-structure MOSFETs" (2007). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Design and Simulation of Strained-Si/Strained-SiGe Dual Channel Hetero-structure MOSFETs By

PuneetGoyal

AThesisSubmitted

inPartialFulfillment

oftheRequirementsfortheDegreeof

MasterofScience

inElectricalEngineering

Approvedby:

Professor Dr.JamesE.Moon(ThesisAdvisor) Professor Dr.P.R.Mukund(ThesisCommitteeMember) Professor Dr.SantoshK.Kurinec(ThesisCommitteeMember)

Professor Dr.VincentAmuso(DepartmentChair)

DEPARTMENTOFELECTRICALENGINEERING

COLLEGEOFENGINEERING

ROCHESTERINSTITUTEOFTECHNOLOGY

ROCHESTER,NEWYORK

OCTOBER,2007

CopyrightbyPuneetGoyal,2007

AllRightsReserved

ii Thesis/Dissertation Author Permission Statement Form

Titleofthesisordissertation : Design and Simulation of Strained Si/Strained SiGe Dual Channel Heterostructure MOSFETs______Nameofauthor: Puneet Goyal______Degree: Master of Science______Program: Electrical Engineering______ College: Kate Gleason College of Engineering______ IunderstandthatImustsubmitaprintcopyofmythesisordissertationtotheRITArchives,per currentRITguidelinesforthecompletionofmydegree.IherebygranttotheRochesterInstitute ofTechnologyanditsagentsthenonexclusivelicensetoarchiveandmakeaccessiblemythesis ordissertationinwholeorinpartinallformsofmediainperpetuity.Iretainallotherownership rightstothecopyrightofthethesisordissertation.Ialsoretaintherighttouseinfutureworks (suchasarticlesorbooks)allorpartofthisthesisordissertation.

Print Reproduction Permission Granted: I, Puneet Goyal ,hereby grant permission totheRochesterInstitute Technologytoreproducemyprintthesisordissertationinwholeorinpart.Anyreproductionwill notbeforcommercialuseorprofit. SignatureofAuthor:______Date:______

Inclusion in the RIT Digital Media Library Electronic Thesis & Dissertation (ETD) Archive I, Puneet Goyal , additionally grant to the Rochester Institute of Technology Digital Media Library (RIT DML) thenonexclusive license to archive and provide electronic access to my thesisordissertationinwholeorinpartinallformsofmediainperpetuity. Iunderstandthatmywork,inadditiontoitsbibliographicrecordandabstract,willbeavailableto theworldwidecommunityofscholarsandresearchersthroughtheRITDML.Iretainallother ownershiprightstothecopyrightofthethesisor dissertation.Ialsoretaintherighttousein futureworks(suchasarticlesorbooks)allorpartofthisthesisordissertation.Iamawarethat theRochesterInstituteofTechnologydoesnotrequireregistrationofcopyrightforETDs. Iherebycertifythat,ifappropriate,Ihaveobtainedandattachedwrittenpermissionstatements fromtheownersofeachthirdpartycopyrightedmattertobeincludedinmythesisordissertation. IcertifythattheversionIsubmittedisthesameasthatapprovedbymycommittee. SignatureofAuthor:______Date: ______

iii Acknowledgement ItismyextremepleasuretothankmythesisandacademicadvisorDr.JamesMoonforhis ableguidance,enthusiasticsupervision,inspiringsupportandhavingfaithinmyworkduringall thestagesofresearchandthesiswork.Itwasinhisclassof AdvanceFieldEffectDevice, thatI learnedthebasicsofCMOSdevicetheorywhichbecamethefoundationstoneofthisresearch work.

SamethingistrueforDr.SantoshKurinec.Itwasinherclassof NanoscaleDevices ,where forfirsttimeIlearntaboutthestateoftheartstrainedtechnologyandexploratorydevices inCMOStechnology.Itwashercontinuumeffortandmotivationwhichinspiredmeto conductresearchonstrainedsilicondevices.

Iwouldalsoliketothankmycommitteemember,Dr.P.R.Mukundforhisprecioustimein reviewingthismanuscriptandprovidingmeavaluablefeedback.

Thisresearchworkwasalsopossibleduetogeneroussupportof AdvancedMicroDevices, Austin Texas , where I interned as a process development engineer for strained Si devices. I would like to specially thank my managers Dr. Edward Ehrichs, Belinda Hannon, Amado Ramirez,andVassilPapageorgiouv,andmymentorKarolFinfandoandAshwinChincoliallof process development team at AMD for their excellent guidance and series of meaningful discussionwhichenrichedandaddedmeaningtomythesiswork . IwouldalsoliketothankDr. SyedIslamforhisexpertsupportandguidanceinlearninganddevelopingskillswithadvance modelingandsimulationtechniquesandespeciallyusingadvancedsimulationtoolswhichisthe backboneofthiswork.

AspecialthankstoDr.AmitavaDasGuptaof IITMadras ,Indiaforprovidingusthedetails aboutthecompactmodelsusedinthisworkforvalidation.

Thisworkwasateameffortandsuccessofthisworkwouldnothavebeenpossiblewithout help from Shrinivas Pandharpure, Gaurav Thareja (PhD. Student Stanford University ), Kunal

iv Rohilla,SankhaMukherjee,MichaelLatham.Ireallycannotimaginemyresearchwithouttheir support,valuablediscussionduringeachstageoftheresearchwork.Iamalsothankfultoallmy friends, my roommates for providing me a joyful and learning environment at both graduate officeandbackathomeandforthesupportduringthestageofthisproject.

IamalsogratefultoElectricalEngineeringStaffmembers:MrKenSnyder,PattiVicari,and JamesStefanoforprovidingmeexcellenttechnicalsupportforthiswork.

Aspecialthanksto Intel’sreliabilityteam atHillsboro,OregonandDr.JoeWattsandDr. ScottSpringerall ofIBMSemiconductorResearchandDevelopmentCenter(SRDC)Burlington VT for providing me a valuable feedback and suggestions for this work during the series of interviewpresentations.Inaddition,IwouldliketoacknowledgeDr.Zhiyuan(Charles)Cheng of AmberWaveSystemsCorporation forinitiatingstrainedsiliconactivitiesatRIT.

I would like to thank my parents, my brother for having faith in me and above all the almightyGODwhohasbeenalwayswithmeateverystageoflife.

Iwouldliketoexpressmyappreciationto Silavco/SimucadCorporation fordonatingTCAD and EDA Omni licenses to Professor Sean Rommel for the Department of Microelectronic Engineeringthatprovidedmethenecessarysupportandsoftwarerequiredforthiswork.

ThisprojectwaspartiallyfundedbytheNationalScienceFoundationthrough grantno.# EEC0530575.

v Dedication

Dedicated to my parents, brother,

&

Above all

The Almighty GOD.

vi

ABSTRACT WithaunifiedphysicsbasedmodellinkingMOSFETperformance to carrier mobility anddrivecurrent,itisshownthatnearlycontinuouscarriermobilityincreasehasbeen achievedbyintroductionofprocessinducedandglobalinducedstrain, whichhasbeen responsible for increase in device performance commensurately with scaling. Strained silicontechnologyisahotresearcharea,exploredbymanydifferentresearch groupsforpresentandfutureCMOStechnology,duetoitshighholemobilityandeasy processintegrationwithsilicon.SeveralheterostructurearchitecturesforstrainedSi/SiGe havebeenshownintheliterature.

A dual channel heterostructure consisting of strained Si/Si 1xGe x on a relaxedSiGebufferprovidesaplatformforfabricatingMOSwithhighdrive currents, resulting from high carrier mobility and carrier velocity, due to presence of compressivelystrainedsilicongermaniumlayer.Thisworksreportsthedesign,modeling andsimulationofNMOSandPMOStransistorswithatensilestrainedSichannellayer andcompressivelystrainedSiGechannellayerfora65nmlogictechnologynode.Since mostoftherecentworkondevelopmentofstrained Si/SiGe has been experimental in nature,developmentsofcompactmodelsarenecessarytopredictthedevicebehavior.A unified modeling approach consisting of different physicsbased models has been formulated in this work and their ability to predict the device behavior has been investigated. In addition to this, quantum mechanical simulations were performed in ordertoinvestigateandmodelthedevicebehavior.Highp/nchanneldrivecurrentsof 0.43and0.98mA/m,respectively,arereportedinthiswork.Howeverwithimproved performance, ~ 10% electrostatic degradation was observed in PMOS due to buried channeldevice.

vii

TableofContents Acknowledgement...... iv

ABSTRACT...... vii

Listoftables...... xi

Listoffigures...... xi

ListofAcronymsandSymbols...... xiv

Chapter1:Introduction...... 1

1. Scalingtheoryandpathforwards...... 1

1.1. StrainedSiasaperformanceadder...... 2

1.2. StatementofProblemandThesiscontribution...... 6

1.3. ThesisOrganization....... 8

Chapter1:References...... 9

Chapter2:StrainedSi/SiGeTheoryandArchitecture...... 10

2. Introduction...... 10

2.1. StrainedSiliconFormation...... 12

2.1.1. UniaxialstressGeneration...... 13

2.1.2. BiaxialStressFormation...... 15

2.2.StrainedSiliconPhysics...... 21

Chapter2:References...... 32

Chapter3:ProcessModelingAnalysis,SimulationandDeviceDesign...... 35

3. Introduction...... 35

3.1. DualChannelSubstrateStackFormation...... 37

3.2. STIandGateStackFormation...... 39

3.3. SourceandDrainFormation...... 41

viii

3.4. Silicidation...... 45

3.5. ThermalEffectsonDopantDiffusion....... 46

3.5.1. ArsenicDiffusionProfile...... 46

3.5.2. Phosphorousdiffusionprofiles...... 47

Chapter3References...... 49

Chapter4:DeviceModelingAnalysisandQuantumMechanicalModeling...... 50

4. Introduction...... 50

4.1. DeviceSimulation...... 50

4.1.1. NumericalSolutionTechniques...... 50

4.1.2.Models...... 51

4.2. OperationofStrainedSi/strainedSiGeMOS...... 54

4.3. QuantumMechanicalEffectsinStrainedSiGePMOS....... 57

Chapter4:Reference...... 60

Chapter5:ElectricalCharacterization:PerformanceAnalysisofDCHMOS...... 61

5. Introduction...... 61

5.1. DrainCurrentCharacteristics(I DVD,V GS )...... 61

5.2. ThresholdVoltage...... 66

5.3. ShortChannelEffects...... 68

5.3.1.SubthresholdConduction...... 69

5.3.2.DIBL...... 71

5.3.3.Leakage...... 73

5.4. MobilityExtraction...... 75

5.5. CapacitanceVoltageCurveAnalysis....... 81

Chapter5:References...... 89

ix

Chapter6:ConclusionandFutureWork....... 91

6.1 Summary...... 91

6.2 RecommendationsforFutureWork...... 94

APPENDIXA:SIMULATIONCODES...... 97

ProcessSimulation...... 97

DeviceSimulations...... 102

APPENDIXB:MaterialParametersUsedinSimulation...... 105

x

List of tables Number Page Table1.1:Materialproperties...... 3

Table3.2Keyprocessparameterandprocessrecipe ...... 36

TableB1:BandParametersforSiliconandPolysilicon...... 105

TableB2:Staticdielectricconstantforsiliconandpolysilicon...... 105

TableB3:Latticemobilitymodel(LowFieldMobility)forSiandpolysilicon...... 105

TableB4:BandGapNarrowingParameters...... 105

TableB5:MaterialParameterforSiGe(x=0.3...... 106

List of figures Number Page Figure 1.1.0 SchematicofStrainSiliconHeterostructure[1]...... 6 Figure 1.1.1 ComparisonofholeeffectivemobilityinvariousSichannel...... 6 andStrainedSi/SiGechannel[1] Figure 2.1.0 DifferentMethodsofStrainingSiLattice[8]...... 13 Figure 2.1.1 StressLineconfigurationandschematicofadualstressliner[13][14]...... 15 Figure 2.1.2 TEMImageofeSiGeTransistor[14]...... 16 Figure 2.1.3 BandmodificationoftensilestrainedSiandcompressivelystrainedSiGe.Adapted from[18]………………………………………………………………………………………….17 Figure 2.1.4 SchematicIllustrationofMatthewandBlakesleemodelofcriticalthickness.Apre existing threading dislocation at (a) critical interface and (b) incoherent interface. Critical thickness hCisdeterminedbyforceexertedindislocationlinebymisfitstress FEandtensionin dislocationline FL.Adaptedfrom[18]……….………………………………………………..19 Figure 2.1.6 SchematicIllustrationofnucleationandgrowthofdislocationhalfloop.Adapted from(Top)[18](Bottom)[19]……………………………………………………………………20 Figure 2.1.7 ThreadingdislocationasafunctionofGecompositioninaLPCVDgrownbuffer layer.Adaptedfrom[23]………………………………………………………………………….22 Figure 2.1.8 (a)GrowthdependenceofsurfaceroughnessandrelaxationrationinSiGebuffer layer.(b)GecontentdependenceofsurfaceroughnessandthreadingdislocationinSiGebuffer. Adaptedfrom[18]………………………………………………………………………………..22

xi

Figure 2.1.9 BanddiagramofbiaxialtensilestrainedSibasedonsix k.p method.Adaptedfrom [28]………………………………………………………………………………………………..25 Figure 2.2.0 CBandVBshiftingofbiaxialtensilestrainedSiasafunctionofgermaniumcontent calculated from 30 k.p method grown on a[001] buffer.The value0 indicates theVBlevel. Adaptedfrom[34]………………………………………………………………………………...26 Figure 2.2.1 BanddiagramofbiaxialtensilestrainedSibasedonsix k.p method.Adaptedfrom [3]………………………………………………………………………………………………...27 Figure 2.2.2 CBofuniaxialtensilestrainedSishowingsubbandquantizationandbandsplitting. Adaptedfrom[1]…………………………………………………………………………………27 Figure 2.2.3 Effective mass in strained Silicon grown on [001] SiGe buffer as a function of germaniumcontent.Adaptedfrom[31]…………………………………………………………29 Figure 2.2.4 DOSeffectivemasscomputedfromsix k. pmethodinabiaxialtensilestrainedSias afunctionofgermaniumcontent.Adaptedfrom[28]……………………………………………30 Figure 2.2.5 Valencebandmixingandsplittingincaseofbiaxial compressive strained SiGe. Adaptedfrom[15]……………………………………………………………………………….32 Figure 3.1.0 Schematicofdualchannelstrainedwafer..………………………………………..39 Figure 3.1.1 Simulatedwaferstructure(001)bufferSiGefor(A)PMOS(B)NMOS…………..40 Figure 3.1.2simulated(A)PMOS(B)NMOSaftergatestackpatternwithfeaturesize………..42 Figure 3.1.3 Source/DrainconcentrationforPMOS(a)afterImplantI(b)afterImplantII.The regionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,Relaxedand GradedSiGe………………………………………………………………………………………44 Figure 3.1.4 Source/DrainconcentrationforNMOS(a)afterImplantI(b)afterImplantII.The regionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,RelaxedandGradedSiGe. ……………………………………………………………………………………………………44 Figure 3.1.5 Source/Drain concentration after RTA (900C, 15 Sec) (Top) PMOS (bottom) NMOS.Theregionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,Relaxedand GradedSiGe.PhosphorousdiffusesmoreinSiGethanArsenic.Theplotalsoshowamountof germaniumoutdiffusion…………………………………………………………………………45 Figure 3.1.6 SimulatedNMOS(Left)andPMOS(Right)structureafterselfalignedsilicidation process……………………………………………………………………………………………46 Figure 3.1.7 SimulatedArsenicconcentrationinNMOSstructureasafunctionofannealstime andtemperature(NoAnneal,800C/30sec,700C/15Sec,900C/15Sec)……………………...48 Figure 3.1.8 SimulatedPhosphorousconcentrationinNMOSstructureasafunctionofanneals timeandtemperature(NoAnneal,800C;30min,700C;15Sec,900C;15Sec)………..………….49 Figure 4.1.0 SchematicdiagramofastrainedSi/StrainedSiGeMOSFET[8]………………….55 Figure 4.1.1 EnergybanddiagramofstrainedSi/StrainedSiGePMOS (Top), NMOS (Bottom). Simulated band diagram (Left) and schematic showing hole and electron concentration (right) …………………………………………………………………………………………….55

xii

Figure 4.1.2 Conduction Current Density in strained Si in NMOS (Left) at VG=0.2V ( VTns ), (Right) at VG=1.2V(| VG|>> |VTns |),theelectronsheetconcentrationremainsinstrainedSi…...56

Figure 4.1.3 (a)ConductionCurrentDensityinstrainedSi/strainedSiGeinPMOS (Left) at VG= 0.22V( VTns ),inversiontakesplaceinstrainedSiGelayer , (Right) at VG=1.2V(| VG|>> |VTns |),the holesheetconcentrationisstillinstrainedSiGe,howeverasmallparasiticconductionchannel formsinstrainedSi……………………………………………………………………………….57 Figure 4.1.3 (b)ConductionCurrentDensityasafunctionofholedensityinstrainedSi/strained SiGeinPMOS…………………………………………………………………………………...58 Figure 4.1.4 Classical and Quantum Mechanical Electron Density versus Depth for a NMOS devicewith2nmofthickgateoxide.Adaptedfrom[10]………………………………………...59

Figure 4.1.5 PMOSI DVD curveswithandwithoutQME………………………………………60

Figure 5.1.0 IDVD|VGcurvesfornMOSandpMOSdevices…………………………………...64

Figure 5.1.1 IDVD|VGcurvesfornMOSandpMOSdevicescomparedtoresultspublishedin[2] foruniaxialstrainedSi……………………………………………………………………………65

Figure 5.1.2 Comparison of simulated dual channel IDVD|VG curves for nMOS and pMOS devicestosinglechannelbiaxialtensilestraineddevice[3]……………………………………..66

Figure 5.1.3 Comparisonof IDVD|VGcurvesobtainedfromunifiedmodelsvs.conventionalMOS model……………………………………………………………………………………………..66

Figure 5.1.4 Simulateddualchannel IDVG|VDcurvesfornMOSandpMOSdevices…………68

Figure 5.1.5 Comparison of simulated dual channel IDVG|VD curves for nMOS and pMOS devicestosinglechannelbiaxialtensilestraineddevice[3]……………………………………..69 Figure 5.1.6 Typicalsubthresholdcurvesshowingvariousleakagecurrents..……………... …... 70

Figure 5.1.7 Subthresholdcurves(logarithmicplotof IDVsV G)(A)forpMOSand(b)forn MOS…………………………………………………………………………………………...7172 Figure 5.1.8 ReversechanneleffectandDIBLinNMOSwithinitialDIBI…...………………..74 Figure 5.1.9 Subthresholdplotsof(a)pMOS(b)nMOSshowingvariousleakagecurrents…..75 Figure 5.2.0 Subthreshold plots of (a) pMOS showing various off state leakage current as a functionofgatelength……………………………………………………………………………76 Figure 5.2.2 Draincurrentinlinearregionfor(a)pMOSand(b)nMOS…………………...…79 Figure 5.2.3 (a)EffectiveHolemobilityvs.verticalelectricfield,comparedtovariouspublished work[2]…………………………………………………………………………………………...80 Figure 5.2.3 (b) Effective Electron mobility vs. vertical electric field for dual channel n MOS...... 81 Figure 5.2.4 Gatetodrainoverlapcapacitanceobtainedfromsplit CV method(a)nMOS(b)p MOS………………………………………………………………………………………………84 Figure 5.2.5 Schematicrepresentationofchargethicknessmodelfortotalgatecapacitance[11]. ……………………………………………………………………………………………………85

xiii

Figure 5.2.6 Equivalentgatecapacitancemodelbasedonchargethicknessmodelfor(a)Strained Si/SiGedevice(b)StrainedSi/SiGe[12]…………………………………………………………85 Figure 5.2.7 Total gate capacitance curves based on charge thickness model obtained from simulation(a)pMOSand(b)nMOS…………………………………………………………....89 List of Acronyms and Symbols 1. 2D:TwoDimensional 2. As:Arsenic 3. AMD:AdvancedMicroDevices 4. B:Boron

5. CA:AccumulationCapacitance 6. CB:ConductionBand

7. CD:DepletionCapacitance

8. CF:FringingFieldCapacitance

9. CG:GateCapacitance 10. CGDO:GatetoDrainOverlapCapacitance 11. CGSO:GatetoSourceOverlapCapacitance 12. CMOS:ComplimentaryMetalOxideSemiconductor 13. CMP:ChemicalMechanicalPlanarization 14. CPEN:CompressivePlasmaEnhancedNitride

15. Cox :OxideCapacitance/DielectricCapacitance

16. CT:TotalCapacitanceofstrainedLayer

17. CTH :InversionCapacitanceatheterointerface

18. CTS :InversionCapacitanceinStrainedSi 19. CV:Capacitance–Voltage 20. CVD:ChemicalVaporDeposition 21. DC:DirectCurrent 22. DCH:Dual/DoubleChannelHeterostructure 23. dESL:DualEtchStopLiner 24. DG:DensityGradient 25. DIBLDrainInducedBarrierLowering 26. DIBI:DrainInducedBarrierIncrease 27. DOS:DensityofStates

xiv

28. eSiGe:EmbeddedSiliconGermanium

29. Eg:BandGapEnergy 30. GIDL:GateInducedDrainLeakage 31. GSMBE:GasSourceMolecularBeamEpitaxy 32. HH:HeavyHole 33. IBM:InternationalBusinessMachine

34. ID:DrainCurrent 35. IEEE:InstituteofElectricalandElectronicEngineer(USA) 36. IEDM:InternationalElectronDeviceMeeting 37. IIT:IndianInstituteofTechnology 38. ILD:InterLayerDielectric

39. IOFF :OffStateLeakageCurrent

40. ION :OnStateCurrent 41. L:GateLength 42. LDD:LightlyDopedDrain

43. Leff :EffectiveGateLength 44. LH:LightHole 45. LPCVD:LowPressureChemicalVaporDeposition 46. MBE:MolecularBeamEpitaxy 47. MIT:MassachusettsInstituteOfTechnology 48. MOS:MetalOxideSemiconductor 49. MOSFET:MetalOxideSemiconductorFieldEffectiveTransistor 50. NMOS:NtypeMetalOxideSemiconductor

51. NA:AcceptorConcentration

52. ND:DonorDopingConcentration 53. ONO:OxideNitrideOxide 54. P:Phosphorous 55. PECVD:PlasmaEnhancedChemicalVaporDeposition 56. PEN:PlasmaEnhancedNitride 57. PMOS:PtypeMetalOxideSemiconductor

58. QB:BaseDepletionCharge

59. Qi:InversionCharge

xv

60. QME:QuantumMechanicalEffects 61. RPCVD:RegularPressureCVD 62. RSCE:ReverseShortChannelEffects 63. S/D:SourceandDrain 64. Si:Silicon 65. SiGe:SiliconGermanium

66. SiO 2:SiliconDioxide 67. SIMS:SecondaryIonMassSpectroscopy 68. STI:ShallowTrenchIsolation 69. SOSpinOrbital 70. SOI:SilicononInsulator 71. SRH:ShockleyReadHall 72. SSMBE:SolidSourceMolecularBeamEpitaxy

73. Tcap :ThicknessofStrainedSiliconCapLayer 74. TEM:TransmissionElectronMicrograph

75. Tox : GateOxideThickness 76. TPEN:TensilePlasmaEnhanceNitride

77. Tpoly :HeightofPolysilicon 78. UHV–UltraHighVacuum 79. VB:ValenceBand

80. VD:DrainVoltage

81. VDS :DrainSourceVoltage

82. VDSAT :DrainSaturationVoltage

83. VG:GateVoltage

84. VT: ThresholdVoltage 85. W:WidthofTransistor

86. WD:DepletionWidth

xvi Chapter 1 : Introduction

Chapter 1:Introduction 1. Scalingtheoryandpathforwards ...... 1 1.1. StrainedSiasaperformanceadder ...... 2 1.2. StatementofProblemandThesiscontribution ...... 6 1.3. Thesisoutline...... 8

1. Scalingtheoryandpathforwards Inthelastfewdecades,thesemiconductorindustryhasenabledalargescaledecrease inchiparea,withtheconventionalMOSFETproventoberemarkablyscalabletogate lengthsof45nmbysimplyscalingthegatelength,oxidethickness,andjunctiondepth.

Theintrinsicdeviceperformancedowntothe65nmnodehasincreasedbyabout17% peryearfollowingthedecreaseindrawngatelengthandconsequentlythechannellength

[1]. This performance increase has mainly relied on increasing the effective carrier velocitybyvariousinnovativeprocessmethodssuchasgatescaling,dielectricthickness scaling, use of highk dielectrics, steep retrograde wells, heavily doped S/D junctions.

However, with conventional MOSFET the carrier mobility has been more or less constant. Hence, to effectively increase the drive current, performance boosters are needed.Lookingintothehistoryofsilicon,oneofthepossiblemethodstovarymobility isstrainingthesiliconlattice.Ithasbeenshownearlierthatwheneverthebandstructure ofmaterialischanged,propertieslikebandgap,effectivemass,mobilityanddiffusion profilechange.Hence,bytheimpositionofeitherprocessinducedorgloballyinduced

P a g e | 1 Chapter 1 : Introduction strain in the silicon lattice, it has been shown that effective mobility has improved significantly.

1.1. StrainedSiasaperformanceadder Silicongermanium technology is not a very new technology. The effects of SiGe suchasstress,strain,bandgapandpiezoelectriceffectsonsilicontechnologyhavebeen studied since the 1950s. Various studies and research have shown that if the band structure of the material is changed, physics and electrical properties of the material change, such as effective mass, mobility, and diffusivity of dopant [2]. Table 1.1 summarizes the material properties of silicon, germanium and silicongermanium materials. From Table 1.1 it can be observed that 4.17 % lattice mismatch between siliconandgermanium,makesSiGeafavorablematerialinstrainedsilicontechnology.

Theotheraspectiseasyintegrationwithcurrentsiliconprocesstechnologywithoutany majordesignandcapitalinvestment.

P a g e | 2 Chapter 1 : Introduction

Table 1.1: Material properties. Property Material Type/ Empirical Equation Temp Crystal structure Si (x=0) Diamond 300K Ge (x=1) Diamond 300K

Si 1-xGe x Diamond(randomalloy) Melting point 2 o Si 1-xGe x Ts(1412738 x+263 x ) C solidus,300K 2 o Si 1-xGe x Tl(141280 x395 x ) C liquid,300K Si (x=0) 1412K 300K Ge (x=1) 937K 300K Thermal conductivity 1 1 Si 1-xGe x (0.046+0.084 x)Wcm K 0.2< x <0.85; 300K. Si (x=0) 1.3Wcm 1K1 300K Ge (x=1) 0.58Wcm 1K1 300K Thermal diffusivity Si (x=0) 0.8cm 2s1 300K Ge (x=1) 0.36cm 2s1 300K Thermal expansion 6 1 Si 1-xGe x α=(2.6+2.55 x)x10 K x<0.85,300 K 6 1 Si 1-xGe x α=(7.530.89 x)x10 K x>0.85,300K Surface micro hardness 2 Si 1-xGe x (1150350x)kgmm 300K Dielectric constant (static) Si (x=0) 11.7 300K Ge (x=1) 16.2 300K

Si 1-xGe x 11.7+4.5 x 300K Effective electron mass (longitudinal)

Si 0.98 mo 300K Ge 1.6 mo 300K

Si 1-xGe x 0.92 mo 300K, x<0.85 0.159 mo 300K, x>0.85 Effective electron mass (transverse)

Si 0.19 mo 300K Ge 0.08 mo 300K

Si 1-xGe x 0.19 mo 300K, x<0.85 0.08 mo 300K, x>0.85 2/3 Effective mass of density of states mcd =M mc for all conduction bands

Si 1-xGe x 1.06 mo 300K, x<0.85 1.55 mo 300K, x>0.85

P a g e | 3 Chapter 1 : Introduction

2 1/3 Effective mass density of states mc=( ml+mt ) in one valley of conduction bands

Si 1-xGe x 0.32 mo 300K, x<0.85 0.22 mo 300K, x>0.85

Effective hole masses (heavy) mhh

Si (x=0) 0.537 mo 4.2K Ge (x=1) 0.33 mo

Effective hole masses (light) mlh

Si (x=0) 0.153 mo 300K Ge (x=1) 0.0430 mo 300K Effective hole masses (spin-orbit-split ) mso

Si 1-xGe x (0.230.135 x) mo 300K Si (x=0) 0.234 mo 300K Ge (x=1) 0.095(7) mo 300K

Effective mass of conductivity mcc = 3/(1/m l+2/m t) Si 1-xGe x 0.26 mo 300K, x<0.85 0.12 m 300K, x>0.85 Lattice constant a(x) Si 5.431Å 300K Ge 5.658Å 300K

Si 1-xGe x ( 5.431 + 0.20 x + 300K 0.027 x2)Å

Figure 1.1.0 [1] shows the schematic of various strainedsilicon heterostructure materialstacks.Theselayers,whengrownoneachother,havedifferentlatticeconstants thuscreatingastressinthelattice.Whenastressorstrainisappliedonthelattice,the symmetryofthelatticeisbrokenandwithittheelectronicsymmetry.Certainlythishas consequences for energy band gap of the material and thus results in energy level splittingintotwooutofplanevalleysandfourinplanevalleys,inversionlayerquantum confinement shifts, average effective mass changes due to repopulation and band wrapping, changes in two dimensional densities of states, and reduced interband scattering changes. All these effects lead to repopulation of electrons and holes,

P a g e | 4 Chapter 1 : Introduction improvement in inplane conductive mass and high density of states, and reduced scatteringeffectsthusenablinghigherelectronandholemobility.

Therearenumerouswaystocreateastressinafilm.Thekeyideashouldbetomake process simple, cost effective, and compatible with existing technology with high throughput. The stress can be induced by stressing the lattice either in the xy plane, widely known as biaxial strain, or in just in the channel direction {110}, commonly referredasuniaxialstrain[3].Bothofthesestrainingtechniqueshavedifferenteffectson thebandstructureandcarriertransport.

Based on experimental and theoretical research, the uniaxial processinduced strain hasbeenwidelyacceptedbydifferentindustrygroupsandwassuccessfullyfollowedin

90 nm mainstream production [4] . There are two major reasons for choosing uniaxial strained silicon over biaxial tensile strained Si. First, it results in an increase in both electronandholemobilityatlowergermaniumcontentandshowsless degradationof mobilityathighelectricfieldunlikebiaxialstrainedsiliconwherehighholemobilityis possiblewithhighgermaniumcontent.Secondishighthroughputandcosteffectiveness.

However,thereexistsathirdtypeofstrainwhichisbiaxialcompressivestrain.Various researchpapers[57]haveshownhighholemobilityinabiaxialcompressivelystressed

SiGe layer compared to uniaxial compressively strained Si layer and biaxial tensile strainedSilayer.

Inthisworkwehaveinvestigatedtheperformanceandworkingofthedualchannel heterostructure device. A dual channel heterostructure(DCH)usesacombinationofa

P a g e | 5 Chapter 1 : Introduction biaxialtensilestrainedSiandbiaxialcompressively strainedSiGelayer[810] [Figure

1.1.0(b)] to enable simultaneously high electron and hole mobility as shown in figure

1.1.1[1].

Figure1.1.0SchematicofStrainSiliconHeterostructure [1]

Figure1.1.1ComparisonofholeeffectivemobilityinvariousSichannel andStrainedSi/SiGechannel [1] 1.2. StatementofProblemandThesiscontribution Theobjectiveofthisworkistwofold,firsttopresentdualchannelheterostructureasa potential candidate for nextgeneration strained silicon devices, secondly to develop a

P a g e | 6 Chapter 1 : Introduction unified modeling approach based on different physicsbased models to simulate and predictthedevicebehavior.

Most current stateoftheart transistors are based on the uniaxial processinduced strainusingbothadualstresslinerandembeddedSiGe(eSiGe)technology.Themain drawbackforthesedevicesisdependenceongeometryandgatepitch,withthekeybeing toachieveconformalityofnitridefilmswithoutpinchingoffthetopofoverlayerfilm.

This becomes a process challenge with shrinking gate dimensions and ultimately will createabottleneckinachievinghighperformancefromthedevice.

Dual channel heterostructure at present seems to be a promising solution in addressingtheaboveissue.Unlikebiaxialtensile strainedMOS,which enhancesonly electronmobilitysignificantly,dualchannelheterostructureenhancesbothelectronand holemobilityatlowgermaniumcontent.

AsmostoftherecentdevelopmentalworkinstrainedSihasbeenexperimentalin nature,developmentofcompactmodelsisnecessaryinordertounderstandandcorrectly predictthedevicebehavior.Further,therearenoknowncompactSPICE(BSIM)models existingforstrainedSitransistors.Howeverseveralauthorshaverecentlyproposedand publishedthecompactSPICEmodelsforstrainedSi/StrainedSiGedevices.

Inthisworkwereportthedesign,modelingandsimulationofnMOSandpMOS transistorsfora65nmlogictechnologynode.Aunifiedmodelingapproachconsistingof different physicsbased models has been formulated in this work and their ability to predictthedevicebehaviorhasbeenevaluated.Inabsenceofaccesstoexperimentaldata,

P a g e | 7 Chapter 1 : Introduction theresultsarebenchmarkedwithIntel’spublished65nmwork.Further,anattempthas been made to validate simulated device parametric results with recently published compactSPICEmodels [1113].

1.3. ThesisOrganization. This thesis work has been divided into six chapters. Chapter 2 briefly discusses the fundamentalsofstrainedsilicontechnology,physicsbehindthemobilityimprovementin the strained silicon devices, and processing fundamentals for fabricating the device.

Chapter 3describestheprocessflowandsimulationtechniquesforthestrainedsilicon devices.Italsoaddressestheprocesschallenges,effectsofannealtimeandtemperature dependent dopant diffusion profiles as well as techniques to overcome them. Various assumptionstakenduringsimulationsarealsodiscussedinordertomakethesimulations simpler. Chapter 4 discussesthedevicemodelingandsimulation.Bandgapengineering, quantumconfinement,andtheoperatingmechanismofthedualchannelheterostructure areshown.Chapter 5discussestheelectricalcharacterizationsandvalidationofphysics based models based on published compact model and experimental data. Mobility improvementanddegradationhasbeenbrieflydiscussedwithotherdeviceparameters.

Chapter 6 summarizes and concludes the work with suggestions for future improvements. Appendix Agivesthecompiledcode.

P a g e | 8 Chapter 1 : Introduction Chapter1:References

[1]D.A.Antoniadis etal.,“ContinuousMOSFETperformancewithdevicescaling:Theroleof strain and channel material innovations”, IBM J RES & DEV, Vol 50, No 4/5, pp 114, July/September2006. [2] P.R. Chidambaram et al., “Fundamental of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing”, IEEE Trans Electron Devices, Vol53,No5,pp944964,May2006. [3]LukeCollins,“Silicontakesthestrain”, IEEReview” ,Vol49Issue11,Dec2003,pp4649 Available: http://ieeexplore.ieee.org/iel5/2188/28227/01262450.pdf?arnumber=1262450 . [4] Scott E. Thompsons et al. , “Uniaxial processinduced strained Si: extending the CMOS roadmap”, IEEETransElectronDevices, Vol53,No5,pp10101020,May2006. [5]SarahH.Olsen etal., “HighperformancenMOSFETsusinganovelstrainedSi/SiGeCMOS Architecture”, IEEETransactionsonElectronDevices ,Vol50, No9,pp19611969,2003. [6]J.Jung etal. ,“ImplementationofbothhighholeandelectronmobilityinstrainedSi/strained Si 1xGe xonrelaxedSi 1yGe y(x<y)virtualsubstrate,” IEEEElectronDeviceLett. ,vol.24,pp. 460–462,July2003. [7]SarahH.Olsen etal., “Studyofsingleanddualchanneldesignsforhighperformancestrained –SiSiGenMOSFETs”,IEEETransElectronDevices, Vol51,No7,July2004. [8] Shaofeng Yu et al., “Strained –Sistrained SiGe dual channel layer structure as CMOS substrateforsingleworkfunctionmetalgatetechnology” IEEEElectronDeviceLett., Vol25,No 6,pp402405,June2004. [9]YeeChiaYeo etal., “Designandfabricationof50nmThinBodypMOSFETwithaSiGe HeterostructureChannel” IEEETransElectronDevices,Vol49,No2,pp279286 ,Feb2002. [10]MasashiShima,“<100>Strained–SiGechannelPMOSFETwithenhancedholemobility andlowerparasiticresistance” FujitsuSciTechJournal” ,Vol.39,pp7883,June2003. [11]B.Bindu etal., “AnalyticalmodelofdraincurrentofstrainedSi/strainedSi 1YGe Y/relaxed Si 1xGe xNMOSFETandPMOSFETforcircuitsimulation”, SolidStateElectron, 50,pp448455, March2006. [12]B.Bindu etal., “Aunifiedmodelforgatecapacitance–voltagecharacteristicsandextraction ofparametersofSi/SiGeheterostructurepMOSFET”, IEEETransElectronDevices, Vol54,No 8,pp18891896,Aug2007. [13]B.Binduetal. ,“Analyticalmodelofdrain–currentofSi/SiGeheterostructurepchannel MOSFETsforcircuitsimulation,” IEEETrans.ElectronDevices ,vol.53,No.6,pp1411–1419, Jun.2006. P a g e | 9 Chapter 2 : StrainedSi/SiGeTheory

Chapter 2 : StrainedSi/SiGeTheoryandArchitecture 2. Introduction ...... 10 2.1. StrainedSiliconFormation ...... 12 2.1.1. UniaxialstressGeneration ...... 13 2.1.2. BiaxialStressFormation ...... 15 2.2. StrainedSiliconPhysics ...... 21

2. Introduction Impressivetechnologicalprogresshasbeenachievedbythesemiconductorindustryin

the last few decades by feature scaling. However, the era of scaling of planar

conventional CMOS as outlined by Dennard et al. is slowly diminishing, due to

fundamental scientific and engineering limits, high cost of production and saturating

performance. For the next several decades, there is no viable alternative to replace

siliconCMOS;however,byincorporatingperformanceimprovementstotheexisting

technology, the limits of engineering can always be pushed. The first major

performanceboostertoconventionalCMOSwastheintroductionofstrainedSiinthe

channelregion [1].Inordertocontinuetodrivetheperformancefromstrainedsilicon

technology, it is necessary to understand the physics behind strain and to develop

unifiedmodelstoeffectivelypredictadevicebehavioranddesignthem.Thefollowing

sections of this chapter will focus on a brief history of strained Si, different strain

formation processes, physics behind strain, performance improvements in strain

technologyandfinallythedesignofastrainedSi/strainedSiGeheterostructuredevice.

P a g e | 10 Chapter 2 : StrainedSi/SiGeTheory

A) History of Strained Silicon

Theinfluenceofstrainonthemobilityofintrinsicsiliconwasfirstobservedin1950

[23] .TheoriginofstrainedSifilmgrownonrelaxedSiGecanbetracedtothe1980’s

[4]. ThethinSilayertakesthelargerlatticeconstantofsilicongermaniumandcreates

a biaxial strain. While strain effects were not largely exploited, it was in the early

1990’sthatthestrainwasonceagainrevivedatMIT,onprocessinducedandbiaxial

strain.In1992,thefirstnchannelMOSwithastrainedSichannelexhibitinga70%

higher mobility was demonstrated. Gannavaram et al. [5] proposed the idea of

embeddedSiGeinsourceanddrain,whichisnowthemainstreamtechnologyinthe

stateoftheartstrainedsilicontransistors.Carefulanalysisandcosteffectivenessled

industrytoadoptprocessinduceduniaxialstrain,mainlyduetotworeasons.First,it

resultsinanincreaseinbothelectronandholemobilityatlowergermaniumcontent

and shows less degradation of mobility at high electric field unlike biaxial strained

silicon where high hole mobility is possible with high germanium content. Second,

uniaxialstrainiscosteffectiveandcanbeeasilyintegratedwithconventionalCMOS

technology. With processinduced strain or uniaxial strain showing lots of promise,

commercial adoptionof straintechnologywasfollowedin90nmnodebyallmajor

semiconductorcompanies,includingAMD,Intel,IBM.WhileIBMandAMDadopted

strainedSiwiththeirSOItechnology,IntelwentaheadwithstrainedSionbulkSi.To

datealotofnewstructuresforstrainedsiliconhavebeenproposed,includingprocess

inducedstrain,SiGefreestrainedSitechnology,strainedSioninsulatorandstrained

siliconheterostructures.

P a g e | 11 Chapter 2 : StrainedSi/SiGeTheory

2.1. Strained Silicon Formation Straininthethinfilmlatticecanbeduetovariousreasons,includinglatticeconstant differences,inclusionofatomsofimpuritiesintheinterstitials,andthermalprocessing.

However,notallstraininthelatticeisconstructiveandbeneficialtothedevice.Thereare numerouswaystoinducestraininthesiliconlattice.Thekeyrequirementistomake process repeatable, cost effective and compatible with existing manufacturing technology,andabletowithstandthethermalcycles [67].

Therearevarioustypesofstrainwhichcanbeappliedeitherinone,twoorthree dimensions,eachhavingitsowneffectonthephysicalpropertiesofthematerial.Thetwo majorstrainingtechniqueswidelystudiedandusedintheindustryarebiaxialstrainand uniaxial strain. Biaxial strain is strain to the lattice in the xy plane with a negative compressivestraininthe zdirection.Theothertypeofstrainisprocess–inducedstrainor uniaxialstrain,wheretheprincipalstrainliesinonedirectionandothertwodirections adjusttomatch.Figure2.1.0[8]shows,thecollectivesummaryofdifferentmethodsof strainingtechniques.

P a g e | 12 Chapter 2 : StrainedSi/SiGeTheory

Figure2.1.0DifferentMethodsofStrainingSiLattice [8]

2.1.1. Uniaxial stress Generation Uniaxial stress generation process is a widely adopted process in almost all high performance logic technology devices. In uniaxial processinduced strain, the strain is addedinthechannellayerbeneaththegate/gatedielectric stack in the (110) plane by introducingatensile/compressivestressednitridecappinglayeronthedevicestructure

[3][9][10].Apredominantmethodfordepositinganultrahigh stress nitride layer is plasmaenhancedchemicalvapordepositionprocessalongwithpostdepositiontreatment

[11]athightemperature(~650°C)tominimizehydrogencontentandmaximizestress enhancement. In this process a tensile plasmaenhanced nitride (TPEN) layer is first deposited over the device and then selectively etched over pMOS leaving a tensile stressednMOS,followedbycompressiveplasmaenhancednitridelayer(CPEN)layer deposition over PMOS [12] . Because these stress lines also act as an etch stops for contactetchthisapproachisreferredtoasdualetchstopliners(dESL) [13][14].This process is mostly used by IBM and AMD with SOI integration [15]. However, this processhasadrawbackduetodependenceongeometryandgatepitch.Withstressliners

P a g e | 13 Chapter 2 : StrainedSi/SiGeTheory thekeyistoachieveandmaintainconformalityofthefilmwithoutpinchingoffthetop of overlayer film [13]. To accommodate these limitations, the process integration challenge involves the thinning of nitride stress liners without degradation of stress.

Figure2.1.1[13][14]showsthestressconfigurationandschematicofdevice.

Figure2.1.1StressLineconfigurationandschematicofadualstressliner[13][14]. TheothercommonstressorapproachisincorporationofSiGeinthesourceanddrain region of pMOS commonly known as eSiGe or embedded SiGe. Because of the epitaxialdepositionandlatticemismatch,withSiGehavinghigherlatticeconstantthan

Si, a compressive stress is formed in the Si channel. The advantages to the eSiGe

P a g e | 14 Chapter 2 : StrainedSi/SiGeTheory methodincludesabilitytoretainholemobilityathighverticalelectricfieldandreduce

S/D extension resistance[14][16] . However, the process challenge with SiGe S/D epi includes creating a defectfree epi region and source/drain area in proximity to the channel, which influences the drive current. Figure 2.1.2 [14] shows the transmission electronmicrograph(TEM)imageoftheeSiGeinS/DregionofPMOS.

Figure2.1.2TEMImageofeSiGeTransistor[14].

2.1.2. Biaxial Stress Formation Awidelyadoptedapproachtointroducewaferbasedstressreliesonthefactthatthe lattice constant of SiGe alloy is slightly larger than pure Si. When a film is pseudomorphicallygrownordepositedonasubstrate,themismatchstrainbetweenthe twolayersduetodifferencelatticeconstantisgivenby [17]

asub − afilm εstrain = Equation(1) asub where asuband afilm arethelatticeinsubstrateandfilm,respectively.Thestressthencan finallybecomputedbasedonHooke’slawas [17]:

ν +1 σo = −2γ εstrain Equation(2) ν −1

P a g e | 15 Chapter 2 : StrainedSi/SiGeTheory whereγistheshearmodulusandνisthePoissonratio.

Asthereisa4.2%latticemismatchbetweenSiandGe,thestraininducedbylattice modifies the bandstructure of the SiGe layer and Si layer. Whenever a silicon germanium film is deposited over Si, it is forced to accommodate a film with lower latticeconstant;hencethesilicongermaniumfilmisunderalongitudinalandtransverse compressivestresswithanoutofplanetensilecomponent.Onotherhand,ifaSifilmis depositedonaSiGefilm,abiaxiallongitudinalandtransversetensilestressedlayeris producedwithanoutofplanecompressivecomponent.ThiseffectisillustratedinFigure

2.1.3[18]withcorrespondingsixellipsoidal єk diagrams.

Figure2.1.3BandmodificationoftensilestrainedSiandcompressivelystrainedSiGe.Adapted from[18]. A) Growth of Si/SiGe epitaxial layer

The two common process technologies used in fabrication of biaxial stressed virtual substrate 1 are (a) molecular beam epitaxial (MBE) and (b) chemical vapor deposition

1 VirtualsubstrateisastackcomprisingofbufferSiGeandSi .

P a g e | 16 Chapter 2 : StrainedSi/SiGeTheory

(CVD)[1819][2024] .TypicallyMBEcanbeperformedeitherusingsolidsourceMBE

(SSMBE) or gassource MBE (GSMBE). Both processes are fairly simple; however, a typicaladvantageofGSMBEisthecapabilityofselectiveepitaxialgrowthonSiO 2mask patternedbySisubstrate.Growthcanbeperformedatbothatlowandhightemperature with the former being a surfacereaction limited growth, growth rate increasing with increaseinGecontent,andthelatterbeinganimpingementfluxlimitedgrowth,where growth rate saturates with increasing temperature and decreases with increasing Ge concentration.CVDcanbeemployedtoproducethinepitaxialSiGealloyfilms.UHV,

LPCVDandRPCVDarethemostcommonlyusedmethods.

B) Critical thickness

As an epitaxial layer grows on latticemismatched films, the difference in lattice parameterisaccommodatedelasticallyuptoacertaincriticalthicknesssothatinplane lattice parameter of the pseudomorphic film is equivalent to substrate [1819] . The elastic energy due to strain in the films increases with film thickness. When this thickness and elasticstrain energy rises above the critical value, the introduction of misfitdislocationbecomesenergeticallyfavorable and the epilayer relaxes plastically.

The minimum value of film thickness is referred to as critical thickness, based on

Matthews and Blakeslee [18] which considers the balance of force exerted on a propagateddislocationwithmisfitandthreadingsegmentsinstrainedfilmsasshownin figure2.1.4[18] .

P a g e | 17 Chapter 2 : StrainedSi/SiGeTheory

Figure2.1.4SchematicIllustrationofMatthewandBlakesleemodelofcriticalthickness.Apre existing threading dislocation at (a) critical interface and (b) incoherent interface. Critical thickness hCisdeterminedbyforceexertedindislocationlinebymisfitstress FEandtensionin dislocationline FL.Adaptedfrom[18]. Thecriticalthicknessbasedontheabovemodelisgivenby [18]

2 b 1( −ν cos α)   hc  hc = 1+ ln  Equation(3) 8π ()1+ν f cosθ   b  whereαistheanglebetweenmisfitdislocationlineanditsburgersvectorandθisthe angle between misfit dislocation burgers vector and a line in the interface drawn perpendiculartothedislocationline.Figure2.1.5[19]showsthecriticalthicknesswith dependenceongermaniumcontentandtemperature.

Figure 2.1.5 Experimental determined critical thickness as a function of germanium content andtemperature.Adaptedfrom[19].

P a g e | 18 Chapter 2 : StrainedSi/SiGeTheory

C) Misfit Dislocation and Strain Relaxation

Thelatticemismatchinducesstraininthefilmandelasticenergyisaccumulatedwith increasingfilmthickness.However,afteracriticalthicknessthereliefofelasticenergy in strain film takes place mainly due to two reasons: (a) elastic deformation accompanying surface evolution of film; (b) plastic deformation with introduction of misfitdislocation [18][19][23] .AsshowninFigure2.1.6 [18][23] ,attheinitialstageof relaxation, dislocation or half loops nucleate either heterogeneously on local imperfections or homogenously at the film surface. These half loops grow until they reachthesubstrate/overlayerinterface,theneachthreadingpartofthedislocationbends andglidestowardtheedges,leavingamisfitdislocationintheplaneoftheinterface.

Figure 2.1.6 Schematic illustration of nucleation and growth of dislocation half loop. Adaptedfrom(Top)[18](Bottom)[19].

P a g e | 19 Chapter 2 : StrainedSi/SiGeTheory

D) Approaches to Reduce Defect Density

There are several known process techniques by which threading dislocations and misfit dislocations can be controlled. One of the most widely used methods is a compositionallygradedbuffer [18][19][22] .Inthisprocessthegermaniumcontentof theSiGealloygraduallyincreaseswithfilmthickness.Theprofilecaneitherbelinearor stepwise. The structure can be considered as the sum of low mismatched interfaces.

Misfitdislocationsaresuccessivelyintroduced,resultingintotalrelaxationofstrain.As each atomic plane tends to have its own equilibrium lattice, the dislocations due to differencesinlatticeparameterbetweensubstrateandtoplayeraredistributedoverthe thickness of graded regions. Such a configuration results in much lower threading dislocation density typically in order of 10 5~ 10 7 cm 2. However, this method suffers fromserioussurfaceroughness,crosshatchpatternandresidualthreadingdislocations, commonlyknownasfielddislocationdensityandpileupdensity [2326] .Theresidual threadingdislocationandpileupcanberemovedfromthewafersusingadvancedepi methodssuchasLPCVDgrowthofthebufferlayer[23] .Theeffectisshowninfigure

2.1.7.Alowtemperaturemethodcanalsobeincorporatedtogrowcrystalqualitybuffer as proposed in [18]. Itisfoundthatsurface roughnessismuchbetter and dislocation densityismuchsmaller.Figure2.1.8 [23] shows the surface roughness and relaxation ratiowithSiGegrowthtemperature.Anothermethodcommonlyusedtoprovideahigh quality epi layer is CMP. The other methods apart from above listed methods are selectiveepitaxy,waferbondingtechnique;SiGefreestrainedSi,andSOIintegration.

P a g e | 20 Chapter 2 : StrainedSi/SiGeTheory

Figure 2.1.7 Threading dislocation as a function of Ge composition in a LPCVD grown bufferlayer.Adaptedfrom[23].

Fig2.1.7Fig2.1.8 Figure 2.1.8 (a) Growth dependence of surface roughness and relaxation ratio in SiGe buffer layer.(b)GecontentdependenceofsurfaceroughnessandthreadingdislocationinSiGebuffer. Adaptedfrom[18].

2.2. Strained Silicon Physics StrainedSihasbeenstudiedforalmost50yearsandthemotivationbehindtheuseof strained Si devices was the strong dependence of mobility on the strain. The simple qualitative Drude model dictates =eτ/m where 1 /τ is the scattering rate and m is the conductivityeffectivemass.Strainenhancestheelectronandholemobilitybyreducing the effective mass and scattering. For electrons, the two most acceptable theories are

P a g e | 21 Chapter 2 : StrainedSi/SiGeTheory reductionineffectivemassandphononscattering(dominantatroomtemperature)[27

31] .However,basedonvariousexperimentsandmodels,theeffectivemasstheoryseems tobemostfittingreasonandforrestofthemechanismsscatteringtheoryseemstobe exemplary case of serendipity [31] . In the case of holes, valance band wrapping and repopulationofholesexplainsthesignificantincreaseinmobility[1][3][27][3233] .In this section we first explain the mechanics of strain, followed by its effects on band structureandcarriertransportmechanisms.

A) EffectsofstrainonSicrystalSymmetryandBandStructure.

Band Structure: Biaxial Tensile Strained Si

DuetocommutationbetweensymmetryandcrystalHamiltonian,crystalsymmetry is a key parameter in determining the band structure and in understanding the band splitting induced strain/stress. Due to the cubic crystal structure of Si, the heavy hole

(HH)andlighthole(LH)bandsaredegenerateattheҐpoint.Asstrainisinducedinthe

Silattice,(assumingthatstrainisnotequalin x,y,z plane)duetothedisturbanceinthe symmetry,degeneracybetweenHHandLHbandisremoved.

Thebiaxialstraininthe[001]directionisduetolatticedifferencesbetweenthe bulksiliconandSiGealloy.Thestraintensorsinthe[001]directiontakeformsas

εxx = εyy = ε ||= [a || −a0(Si)]/ a0(Si) Equation(4)

εzz = ε ⊥= [a ⊥ −a0(Si ]/) a0(Si) Equation(5)

εxy = εzx = εyz = 0 Equation(6)

P a g e | 22 Chapter 2 : StrainedSi/SiGeTheory with a|| =a 0(Si xGe 1x) and a┴ = a 0(Si){ 12C 12 /C 11 x[ a|| a0(Si)]} where C11 and C 12 are elasticconstants.Thedeformationpotentialsa c,a v,andb vrelatethecorrespondingshifts andsplittingofstraintensors.Foracaseofanindirectbandgapsemiconductor,likeSi, the minimum of the conduction band is not at k= 0 and this minimum stems from Ґ 5c conductionband.Basedonthe k.p methodthebanddispersioncanbecalculatedoverthe

Brillouinzone [28].

/1 2 /3 2 Basedonthetriplydegenerate Γ5v,c band( Γ8v,c ,Γ8v,c and Γ7v,c )thestrainHamiltonian matrixtakesformsgivenby [28]:

2/3 2/1 Γ8v,c Γ ,8 vc Γ ,7 vc

av, cε + bv, cε ||⊥ 0 0

0av, cε − bv, cε ||⊥ 2bv, cε ||⊥ Equation(7)

0 2bv, cε ||⊥av, cε

where є= 2є|| +є ┴,є ||┴=є ┴є|| and av,c and bv,c arehydrostaticandsplittingdeformation potential, respectively. Based on the above Hamiltonian, the conduction band (CB) is splitintofourequivalentinplane 4valleysandtwooutofplane 2valleys,resultingin energyofconductionbandminimaof4inplanevalleyrelativeto 2valleysasshown infigure2.1.9[28] .

P a g e | 23 Chapter 2 : StrainedSi/SiGeTheory

Figure2.1.9BanddiagramofbiaxialtensilestrainedSibasedonsix 2k.p method.Adaptedfrom [28].

Thesplittingstrainenergyisgivenby [29]Estrain =0.67 xeVwhere xisthegermanium

/1 2 molefraction.IncaseofthevalencebandthestrainHamiltoniansplitstheLH( Γ8v,c )and

2/3 the HH ( Γ8v,c ). Also, due to the nondiagonal term of the above matrix, the wave functionsoftheLHandthesplitoff(SO)aremixed.Basedonthecrystalsymmetry, under the biaxial tensile stress the xy is still a square, but the x(yz) planes become rectangle. Therefore, the HH band is now composed of states polarized in the xy directionwhereas LHbandispolarizedinthe z direction.ThusHHand LHbands at valencebandedgearenotdegenerate.Forthetopmostvalencebandthisindicatesthat effectivemassinthe xyplaneisclosebeingisotropicinnature,andthisisundesirable.

Fig2.2.0 [34] showstheeffectofgermaniummolefractionontheCBandVBshifting.

2 SixreferstonumberofbandsofSiusedincalculationusingk.pmethod.

P a g e | 24 Chapter 2 : StrainedSi/SiGeTheory

Figure 2.2.0 CB and VB shifting of biaxial tensile strained Si as a function of germanium content calculated from 30 3 k.p method grown ona[001]buffer.Thevalue0indicatestheVB level.Adaptedfrom[34].

Band Structure: Uniaxial Strained Si

Incaseofuniaxialstresstransistorsstressedalong<110>axis,thecrystalsymmetry isdestroyedmore,asthe<110>axisisnotahighlysymmetricaxis.AsshowninFig

2.2.1[3] ,strainbreaksthesymmetryinthe xy planesuchthatthe xy planeissymmetric withrespecttotwodiagonals. Lesssymmetryleads to more band wrapping, which is beneficialfortheholeeffectivemass. Inthecaseofuniaxialcompressivestressinthe channeldirectiontheenergyofthe4valleyislesscomparedto 2,whichisundesirable forelectronsandhenceuniaxialtensilestrainisused.Figure2.2.2 [1]showstheband splitting in the case of uniaxial tensile strained silicon. Not much difference in the effectiveelectronmassisobservedbetweenuniaxialandbiaxialstrain.

3 30refertonumberofbandsofSiusedincalculationusingk.pmethod.

P a g e | 25 Chapter 2 : StrainedSi/SiGeTheory

Figure2.2.1BanddiagramofbiaxialtensilestrainedSibasedonsix k.p method.Adaptedfrom [3].

Figure2.2.2CBofuniaxialtensilestrainedSishowingsubbandquantizationandbandsplitting. Adaptedfrom[1]. Electron Transport in Strained Si

For the MOSFET under biaxial strain in the (001) axis, the strain removes the degeneracybetweenthefourin–planevalleysandtwooutofplanevalleysbysplitting theenergy.Itiswellknownthatintheinversionmodetheelectronicstatesarequantized into subbands, which in case of a (100) surface, are composed of two series of eigenstates: one arising from twofold valley with longitudinal mass ml, and second arisingfromfourfoldvalleywithtransversemass mt. Inthecaseofstrainedsilicon,the bandsplittingoftheconductionband E strain issuperimposedonthesubbandenergyof

P a g e | 26 Chapter 2 : StrainedSi/SiGeTheory unstrainedSi.Thetotalenergyofelectronsoccupyingthesubbandinthetwofold( Etot,

2 )andfourfoldvalley(Etot,4 )canberepresentedas [29]:

2 2 h k 2 Etot, 2 = + Ei + Ec Equation(8) 2md 2

2 2 2 2 h k 4 h k 2 Etot, 4 = + Ei + Ec = + Ei + Ec + Estrain Equation(9) 2md 4 2md 2

Thesplittingofenergylowerstheenergyofthe 2valleyasseenbyaboveequations, meaningthattheyarepreferentiallyoccupiedbytheelectrons.Theelectronmobilityis thus partly increased due to the reduction in inplane transverse effective mass

(mt=0.19 m0) and increased outofplane longitudinal mass ( ml=0.98 m0) with increased density of states. Figure 2.2.3 [34] shows effective mass variation with germanium content obtained by 30 k.p method. It can be seen that with increase in germanium contenttheeffectivemassdoesnotchangesignificantly.Foragivenamountofstrain, massreductionaloneexplainsapartoftheincreasedmobility;hencephononscattering and roughness scattering is also reduced. However, quantifying the reduced scattering mechanismhasbeendifficult,andthereappearstobenophysicaljustification [31],but reducedscatteringisstillbelievedtoaccountfortherestofmobilitymeasurements.

P a g e | 27 Chapter 2 : StrainedSi/SiGeTheory

Figure 2.2.3 Effective mass in strained Silicon grown on [001] SiGe buffer 4 as a function of germaniumcontent.Adaptedfrom[31].

Hole Transport in Strained Si

Forholes,complexvalencebandstructureandvalencebandwrappingunderstrain results in a much larger hole mobility enhancement. The band wrapping behaves differentlyfordifferenttypesofstrainandsodoesmobilityenhancement.Strainalters threeaspectsofthebandstructure:(1)theoutofplaneeffectivemass,whichdetermines themagnitudeofenergyshiftundertheappliedgatevoltageoftransistor;(2)conductive effectivemassalongchanneldirection[110];(3)theenergycontourin kxkyplanewhich determinesthedensityofstates(DOS).ForanunstrainedSitheupperbandortopband

u l Γ8v corresponds to HH and lower band Γ8v corresponds to LH. With the application of strain, the hole effective mass become a highly anisotropic and due to band wrapping energylevelsbecomesamixtureoftheheavy,lightandsplitoffbands.TheHHandLH bandlosetheirmeaningatahigherstrain.Toachievehighholemobility,lowinplane

4 SiGebufferscomprisesofrelaxedSiGeandgradedSiGestack.

P a g e | 28 Chapter 2 : StrainedSi/SiGeTheory conductivemassforupperortopbandandhighdensityofstatesarerequiredtopopulate

u thetopband.Withtheapplicationofthestrain(Gemolefraction>0)thetopband Γ8v is

l LH type and lower band Γ8v correspondstoHHtype.AsLHbandishigherinenergy compared to HH band, consequently the population of hole is increased in LH band whichexplainsthehigherholemobility.InthecaseofuniaxialcompressivestrainedSi channel,bothsmallerinplaneconductivemassand highdensityofstatesisachieved.

However,inthecaseofbiaxialtensilestrainedSiinthe<001>direction,smalleroutof plane mass is achieved compared to inplane mass in top or upper band at lower germaniumcontent.HighervaluesofGecontentarerequiredtoachievethelowinplane effective mass. This also explains the loss of mobility at high electric field. Figure

2.2.4 [28] andFigure2.2.5 [15]illustratesholetransportinbiaxialtensileand uniaxial compressivelystrainedSi.

Figure2.2.4DOSeffectivemasscomputedfromsix k. pmethodinabiaxialtensilestrainedSias afunctionofgermaniumcontent.Adaptedfrom[28].

P a g e | 29 Chapter 2 : StrainedSi/SiGeTheory

Figure 2.2.5 Simplified version of valence band splitting in case of uniaxial strained Si and biaxialtensilestrainedSi.Adaptedfrom[15].

B) EffectsofstrainonSiGeBandStructureandholetransport.

When a thin SiGe film is pseudomorphically grown on Si/relaxed SiGe, it experiencesabiaxialcompressivestrain.Asshowninfigure2.2.6[35] ,theHHandLHof the strained SiGe become nondegenerate at Γ point. In addition to that strained SiGe filmscouplestheHHandLHbandandintroducesthebandmixing.Thisleadstohole effective mass in the lower energy band (topmost HH band) being smaller and anisotropic.Duetothis,bothlowinplaneeffectivemassandhighdensityofstatesinthe topbandare achieved,resultinginhighholemobility [35][36]. Further, due to band alignmentandhighvalencebanddiscontinuitytheholeconcentrationremainsconfined inSiGelayer.

P a g e | 30 Chapter 2 : StrainedSi/SiGeTheory

Figure2.2.5Valencebandmixingandsplitting in case of biaxial compressive strained SiGe. Adaptedfrom[15].

P a g e | 31 Chapter 2 : StrainedSi/SiGeTheory Chapter2:References [1] Sun et al., " Physics of process Induced Uniaxially Strained Si", Material Science and Engineering, B135,pp179183,2006. [2] P.R. Chidambaram et al., “Fundamental of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing”, IEEE Trans Electron Devices, Vol53,No5,pp944964,May2006. [3]Scott E. Thompsons et al. , “Uniaxial processinduced strained Si: extending the CMOS roadmap”, IEEETransElectronDevices, Vol53,No5,May2006,pp10101020. [4]H.M.Manasevit etal. ,“ElectronmobilityenhancementinepitaxialmultilayerSi–Si1 −xGe x alloyfilmson(100)Si,” Appl.Phys.Lett. ,Vol.41,No.5,pp.464–466,Sep.1982. [5]S. Gannavaram et al , “Low temperature (800 ◦C) recessed junction selective silicon germaniumsource/draintechnologyforsub70nmCMOS,”in IEDMTech.Dig. ,2000,pp.437– 440. [6]LukeCollins,“Silicontakesthestrain”, IEEReview” ,Vol49Issue11,pp4649,Dec2003, Available:http://ieeexplore.ieee.org/iel5/2188/28227/01262450.pdf?arnumber=1262450. [7] S. E. Thompson et al , “Key differences forprocessinduced uniaxial vs. substrateinduced biaxialstressedSiandGechannelMOSFETs,”in IEDMTech.Dig. ,2004,pp.221–224. [8]ThomasHoffman,“StrainSiliconTechnology”, IMEC, StrainSiliconUpdate,Semiconductor International,March13,2007. [9]Y.C.Liuetal. ,“SinglestresslinerforbothNMOSandPMOScurrentenhancementbya novelultimatespacerprocess,”in IEDMTech.Dig. ,Washington,DC,2005. [10] S. E. Thompson et al. , logic nanotechnology featuring strained silicon,” IEEE Electron DeviceLett. ,vol.25,No.4,pp.191–193,Apr.2004. [11]R.Argahvani etal. ,"Areliableandmanufacturablemethodtoinduceastressof>1GPA onaPchannelMOSFETinhighvolumemanufacturing", IEEETransElectronDevices ,Vol27, No2,pp11411,Feb2006. [12] S. Thompson et al. ,“A90nmlogictechnologyfeaturing50nmstrainedsilicon channel transistors,7layersofCuinterconnects,lowκ ILD,and1 m2SRAMcell,”in IEDMTech.Dig. , SanFrancisco,CA,2002,pp.61–64. [13]PeterSinger(2005,Jan01), SemiconductorInternational, Available http://www.semiconductor.net/article/CA490112.html . [14]LauraPeters(2007,Jan03), SemiconductorInternational, Available: http://www.semiconductor.net/article/CA6418539.html.

P a g e | 32 Chapter 2 : StrainedSi/SiGeTheory

[15]N.Mohta etal .,“StrainedSiTheNextVectortoExtendMoore’sLaw,” IEEECircuitsand DevicesMagazine ,2005. [16]P.Bai etal. ,“A65nmlogictechnologyfeaturing35nmgatelengths,enhancedchannel strain, 8cuinterconnects layers,lowκ ILD and 0.57 m2 SRAM cell,” in IEDM Tech. Dig. , 2004,pp.657–660. [17] S. C. Jain et al. , “Stresses and Strains in Latticemismatched Stripes, Quantum Wires, QuantumDots,andSubstratesinSiTechnology,” J.Appl.Phys .,Vol.79,No.11,June1996. [18] Yasuhiro Shiraki et al. , “Fabrication Technology of SiGe heterostructure and their properties”,SurfaceScienceReport ,59,2006,pp153207. [19]NataliaF.Izyumskaya etal., “ControloverstrainrelaxationinSibasedheterostructures”, SolidStateElectronics ,48,pp12651278,2004.

[20]S.H.Olsen etal., “HighperformancenMOSFETsusinganovelstrainedSi/SiGeCMOS architecture.”IEEETransactionsonElectronDevices 2003, 50 (9),19611969.

[21] J. Jung et al. , “Implementation of both highhole and electron mobility in strained Si/strainedSi 1xGe xonrelaxedSi 1yGe y(x<y)virtualsubstrate,” IEEEElectronDeviceLett. , Vol.24,pp.460–462,July2003.

[22]S.H.Olsenetal., “ImpactofvirtualsubstrategrowthonhighperformancestrainedSi/SiGe double quantum well metaloxidesemiconductor fieldeffect transistors”, Journal Appl Phys , 94 (10),pp68556863,2003.

[23]MatthewErdmann," GrowthandcharacterizationofhighGeSiGevirtualsubstrates ",204th Meeting ECS ,October2003.

[24] Mayank Bulsara, Strained silicon technologykey elements of wafer fabrication ," SMG WorkshopSemicon, 2003.

[25]S. H. Olsen et al. , “StrainedSi/SiGe nchannel MOSFETs: Impact of crosshatching on deviceperformance,”Semicond.Sci.Technol. ,vol.17,pp.655–661,2002. [26]J.W.Matthewsetal. ,“Defectsinepitaxialmultilayer,”J.Cryst.Growth ,Vol.27,pp.118– 125,1974. [27]M.V.FischettiandS.E.Laux,“Bandstructure,deformationpotentials,andcarriermobility instrainedSi,Ge,andSiGealloys,” J.Appl.Phys. ,Vol.80,No.4,pp.2234–2252,1996. [28]SolineRichard etal., "StrainedsilicononGe:temperaturedependenceofcarriereffective masses", JournalofApplPhy ,Vol94,No8,pp50885094,Oct2003. [29]ShinichiTakagi etal., “Comparativestudyofphononlimitedmobilityoftwodimensional electroninstrainedandunstrainedSimetaloxidesemiconductorfieldeffecttransistor”, Journal ApplPhy ,Vol80,No3,pp15671577,Aug1996.

P a g e | 33 Chapter 2 : StrainedSi/SiGeTheory

[30]Th.Volesang etal., “ElectrontransportinstrainedSilayersonSi 1xGe x Substrate”, ApplPhy Lett ,Vol63,No2,pp186188,July1993. [31] M.V. Fischetti et al., “Ontheenhancedelectronmobilityinthestrainedsiliconinversion layers”,JournalofApplPhy ,Vol92,No12,pp73207324,Dec2002. [32]C.W.Leitzetal.,“HolemobilityenhancementsinstrainedSi–SiGeptypemetaloxide semiconductorfieldeffecttransistorsgrownonrelaxedSiGe(x<y)virtualsubstrates,”Appl. Phys.Lett.,vol.79,No.25,pp.4246–4284,2001. [33] M.V. Fischetti et al., "Sixband k.p calculation of the hole mobility in silicon inversion layers:dependenceonsurfaceorientation,strainandsiliconthickness", JournalApplPhy, Vol 94,No2,pp10791095,July2003. [34] D. Rideau et al. , "Strained Si, Ge and SiGe alloy modeling with fullzone k.p method optimized from first principle calculation", ST microelectronics CEDEX France, Vol 1, July 2006. [35]YeeChiaYeo etal., “Designandfabricationof50nmThinBodypMOSFETwithaSiGe HeterostructureChannel” IEEETransElectronDevices, Vol49,No2,pp279286,Feb2002. [36]MasashiShima,“<100>Strained–SiGechannelPMOSFETwithenhancedholemobility andlowerparasiticresistance” FujitsuSciTechJournal” ,39,pp7883,June2003.

P a g e | 34 Chapter 3: ProcessSimulation

Chapter 333: ProcessModelingAnalysis,SimulationandDeviceDesign 3. Introduction ...... 35 3.1. DualChannelSubstrateStackFormation ...... 37 3.2. STIandGateStackFormation ...... 39 3.3. SourceandDrainFormation ...... 41 3.4. Silicidation ...... 45 3.5. ThermalEffectsonDopantDiffusion...... 46 3.5.1. ArsenicDiffusionProfile ...... 46 3.5.2. Phosphorousdiffusionprofiles ...... 47

3. Introduction A dual channel strained Si/SiGe, dual spacer, oxynitride gate dielectric integration schemewasusedforthis65nmlogicprocesstechnology.Thenchannelandpchannel devicesweredesignedusinganovelCMOSprocesstechnique in SUPREM4 basedonthe

SilvacoAthena processsimulator[1] .ThestrainedSi/StrainedSiGechannellayerswere pseudomorphically grown on a relaxed Si 1xGe x, SiGe graded buffer layer and silicon substrate [23]. The process specifications for designing the flow were based on minimumcappinglayerthicknessforthestrainedsiliconlayer [48],themeltingpointof thesilicongermaniumlayers,anddiffusivityofthevariousdopantsinthelayers.The sectionsofthischapterwillfocusonprocessdevelopment,varioussplitsusedinprocess development,effectsofannealingtemperatureonthediffusivity,andprocesschallenges ateachstep.Table31givesthecompleteinformationonthevariousparametersusedin theprocessing.

P a g e | 35 Chapter 3: ProcessSimulation Table3.2Keyprocessparameterandprocessrecipe

P a g e | 36 Chapter 3: ProcessSimulation

3.1. DualChannelSubstrateStackFormation AdualchannelstrainedsiliconMOStechnologywasdesignedandsimulatedusing

SILVACO’s SUPREM 4based ATHENA simulator. Strained SistrainedSiGe channel layerswerepseudomorphicallygrownonrelaxedSiGe,gradedbufferlayerandsilicon substrate.Thevirtualsubstratestackconsistsof relaxed SiGe, graded buffer layer and silicon substrate. The virtual substrate (VS) was grown using the epitaxial deposition models.ModelSigec isinvokedinthe Method statementtosimulatedopantdiffusionin

SiGe.ThegermaniumpercentageinSiGewasdefinedas y.N Si where NSi istheatomic densityofundopedsilicon .

AlldevicesampleswerepseudomorphicallygrownusingSiH 4andGeH 4ona(100) orientedSisubstratethatwas~10 15 cm 3Bdoped.Growthbeginswithdepositionofa relaxed compositionally graded SiGe buffer layer, grown at 500°C, which forms the virtualsubstrateofdevicelayers.Allcompositionallygradedlayersweregradedat10%

Ge/m,cappedwith70nmofrelaxedSi 0.85 Ge 0.15 layer,epitaxiallygrownat500°Cin ordertominimizethemisfitdislocations[6].Followingvirtualsubstrategrowth~12nm compressivelystrainedSi 0.7 Ge 0.3 wasgrownandfinallyatensilestrainedSiwasgrown.

ThestrainedSilayersfornchannelandpchannelweretargetedtobe~5nmand3nm, respectively, to ensure that the primary inversion layer forms first in strained Si for

NMOS, and in strained SiGe for PMOS [34] [7 8]. The thin cap also minimizes electrostaticdegradationfromburiedchannelconduction [2].Thecontrolledremovalof

25nmSionthepchanneldevicerelativetonchannelstructurewasdonebycontrolled oxidizationofsiliconsurface,andetchingofsacrificialoxidefilm. Alllayerswere in

P a g e | 37 Chapter 3: ProcessSimulation situ dopedwithboron~10 17 cm 3witharetrogradewellfornMOS.ForpMOSthen wellwasformedby insitu dopingofrelaxedSiGelayer,strainedSiGeandSilayerwith phosphorous ~ 10 17 cm 3, with a retrograde well. During the entire simulations the structureconsideredforsilicongermaniumwassiliconwithhighlydopedgermaniumin ordertoproperlysimulatediffusionprofilesinsilicongermaniumlayers.Forthepresent workwehaveconsideredthedeviceswithgermaniumconcentrationschemeof15/30 5 withdifferentgatelengthsanddifferentannealtimes.Figure3.1.0showsthearchitecture ofthedualchannelheterostructuredevicegrownonbulkSiandFigure3.1.1showsthe simulateddualchannelstrainedsubstratewithdopantprofiles.

Figure3.1.0Schematicofdualchannelstrainedwafer

5 15/30referstoGecontentinRelaxedSiGeandStrainedSiGe,respectively.

P a g e | 38 Chapter 3: ProcessSimulation

(A) Si Ge=20nm Si Graded

=12nm 0.3 Ge

0.7 Si Si Si

Relaxed Si 0.85 Ge 0.15 Strained Strained Si =3nm Strained

(B) nm

20 =12nm =12nm 0.3 Si Ge= Si Ge 0.7 Graded Relaxed Si 0.85 Ge 0.15 Strained Si Si Strained

Strained Strained Si =5nm Si Figure3.1.1Simulatedwaferstructure(001)bufferSiGefor(A)PMOS(B)NMOS. 3.2. STIandGateStackFormation Forcreatingisolation,anovelCMOSSTIprocesswasincorporated.Thesubstrate wasmaskedand0.312mdeeptrencheswerecreatedinthewafer.Athinfilmofoxide wasdepositedpriortoSTIfilling.Toadjustthefieldthresholdvoltage,ablanketimplant

P a g e | 39 Chapter 3: ProcessSimulation was done through an oxide mask for pchannel (P, 4E13cm 2,10KeV), nchannel (B,

3E13cm 2,16KeV).The implantdosematrixwasdesignedsothat, for surface channel devices (nMOS), VTS (threshold voltage for strained silicon layer) is equal to VTH

(threshold voltage at strained siliconstrained silicongermanium heterojunction); for buried channel devices (pMOS), VTS is much larger than VTH . The implant was done through oxide in order to protect the wafers from any misfit dislocation and strain relaxation [6][9].TheremainingoxidewasthenetchedoffandCMPwasdone.

Anoxynitridefilmwasusedasagatedielectricstacktominimizegateleakageand borondiffusionthroughthegateoxide.A1.7nmthickfilmofoxynitridegatedielectric was deposited using montecarlo CVD method with deposition rate of 1nm/min. In absenceofunifiedmodelsfordualplasmanitrideRTAgrowthforoxynitride,aCVD scheme was adopted in the processing recipe. Following gate dielectric deposition,

1200 Å of polysilicon film was deposited using LPCVD with a deposition rate of

12 Å/min for 100 minutes. The polysilicon was insitu doped with phosphorous and boron~10 20cm 3fornandpchannel,respectively.Thepolysiliconandgateoxidewere finallypatternedforthesource/drainstructureformation.Figure3.1.2showstheresultant devicestructureaftergatepatterning.

P a g e | 40 Chapter 3: ProcessSimulation

(A)

Poly Gate = 1300Å

Poly Length = 65 nm

Strained SiGe STI = 0.312µ Relaxed SiGe

(B)

Poly Gate = 1300Å

STI = 0.312µm Poly Length = 65 nm

Strained Si Strained SiGe

Figure3.1.1simulated(A)PMOS(B)NMOSaftergatestackpatternwithfeaturesize. 3.3. SourceandDrainFormation An ultrashallow source drain scheme was integrated in this work, with a target junction depth of 34~40 nm. CMOS transistors with ultrashallow source and drain region,anabruptjunctionandLDDarchitectureareknowntohavebetteradrivecurrent andenhancedchannelstrain.Inaddition,ultrashallowjunctionsplayasignificantrolein

P a g e | 41 Chapter 3: ProcessSimulation controlling short channel effects and providing low external resistance ( Rext ) [10]. A

30nmthickoxidefilmwasdepositedpriortothefirstsource/drainimplant.Theoxide layeractedasaspacerandamasktopreventanymisfitdislocationsandstrainrelaxation due to implantrelated damage. Source/drain implant I was carried out with As

(5E16 cm 2/22 KeV) for nMOS and B (6E13 cm 2/12 KeV) for pMOS. Finally the oxidelayerwaspatternedtoformspacerI.A50nmthicknitridelayerwasdeposited prior to source/drain implant II. Source/drain implant II was carried out with P

(4E14cm 2/18KeV)fornMOSandB(6E15cm 2/16KeV).Finally,thenitridelayerwas etchedtoformspacerII,thusmakingthetotalspacerstack19nmthick.Figure3.1.3and figure3.1.4showthestructureaftersource/drainimplantIandII.Asseeninfigure3.1.4, germaniumoutdiffusionisobservedinthestrainedSilayer.

(A)

P a g e | 42 Chapter 3: ProcessSimulation

(B)

Figure3.1.3Source/DrainconcentrationforPMOS(a)afterImplantI(b)afterImplantII.The regionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,RelaxedandGradedSiGe (A) (B)

Figure 3.1.4 Source/Drainconcentration for NMOS (a)afterImplantI(b)afterImplantII.The regionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,RelaxedandGradedSiGe.

P a g e | 43 Chapter 3: ProcessSimulation

Source/drain dopant activation was achieved using rapid thermal anneal (RTA) at

900°C for 15 sec in nitrogen ambient. The final junction depth after anneal was calculatedtobe34nmfornMOSand76nmforpMOSwitheffectivegatelengthof54

~58nm.Figure3.1.5showsthedopingprofilesinthesource/drainregionfor(a)nMOS and(b)pMOSafterannealing.

Ge Composition

Figure 3.1.5 Source/Drain concentration after RTA (900C, 15 Sec) (Top) PMOS (bottom) NMOS.Theregionmarkedareinorderas(lefttoright)StrainedSi,StrainedSiGe,Relaxedand GradedSiGe.PhosphorousdiffusesmoreinSiGethanArsenic.Theplotalsoshowamountof germaniumoutdiffusion.

P a g e | 44 Chapter 3: ProcessSimulation

3.4. Silicidation Silicidation with ultrashallow junctions is a big process challenge, due to consumptionofsiliconduringthesilicideprocessintheactivesourceanddrainregions

[11].Oneoftheeffectivemethodsusedintheindustrytoaddressthisproblemistheuse ofelevatedsourceanddrainregions.Therearequitesignificantadvantagesofusingthis process, but incorporating it leads to an increase in process steps. Thus in order to developacosteffectiveprocessingtechnology,theselfalignednovelsilicidationprocess recipewasmodified.A100nmthickfilmofrefractorymaterial(TiorNi)wasdeposited followed by silicidation in nitrogen ambient at 450°C for 1 minute. Using a low temperatureannealreducedthereactionrate.However,thinsilicidesleadtoariseinthe parasitic capacitance and series resistance. Figure 3.1.6 shows the cross section of simulatedstructurefor(a)nchanneland(b)pchanneldeviceaftersilicidation.

Lgate = 55 nm

Figure3.1.6SimulatedNMOS(Left)andPMOS(Right)structureafterselfalignedsilicidation process.

P a g e | 45 Chapter 3: ProcessSimulation

3.5. ThermalEffectsonDopantDiffusion. The annealed structures were analyzed using secondary ion mass spectroscopy

(SIMS).ThedepthprofileswereextractedusingSIMSinATHENA.The SUPREM 4 modelinATHENAtreatssilicongermaniumlayerasagermaniumdopedsiliconregion.

The model considers two major factors – (a) diffusivity dependence on germanium concentration,and(b)intrinsiccarrierconcentrationwithgermaniumcontent.Equation

10[1]showsthediffusionmodelsforboroninthesilicongermanium.

x  DIX.E + x.EAFACT.SIGE  D BI = DIX 0. exp−  Equation(10)  kT 

Similarly, the linear variation of the intrinsic carrier concentration for silicon and

SiGecanbegivenas[1]

Si  NI.E  NI.POW n i= Ni 0. exp− .T  kT  Equation(11) SiGe Si ni = n i • 1( + x • NIFACT.SIGE)

Theabovemodelinthe SUPREM4 simulatestheborondiffusioneffectively,butis reasonablyvalidforotherdopant[1214].

3.5.1. ArsenicDiffusionProfile ArsenicprofilefromnMOSdeviceisshownintheFigure3.1.7,forsource/drain regions,forvariousannealtemperatureandtime.Fromthefigure,itisclearlyobserved thattheAsprofilelooksalikeinthestrainedsiliconregionforsplitswithoutannealand lowtemperatureanneal,whereasforhightemperatureanneal,Astendstodiffusemore intothesilicongermaniumlayer.Increasingannealtime(800°C30minsplit)atlower P a g e | 46 Chapter 3: ProcessSimulation temperaturealsoshowssimilardiffusionprofilesasseenwithhighertemperatureanneal and shows significant diffusion of As in the silicongermanium region. The results obtainedfromthesimulationmatchedtheexperimentalobservationreportedin [1214]

No Anneal 700C, 15s 900C, 15s

800C, 30min

Strained Strained Si

Strained SiGe Relaxed SiGe

Figure3.1.7SimulatedArsenicconcentrationinNMOSstructureasafunctionofannealtimeand temperature(NoAnneal,800C/30min,700C/15Sec,900C/15Sec). 3.5.2. Phosphorousdiffusionprofiles The phosphorus diffusion model in the silicon is assumed to be based on neutral, singleanddoublenegativelychargedinterstitials[13].Thedopantdiffusivityinstrained

SiGe/SiGe was simulated based on SUPREM4 ’s two dimensional and fully coupled models in conjunction with model SiGe , to activate diffusion profiles based on germaniumconcentration.Figure3.1.8showsthephosphorous profiles without anneal and with, 900ºC /15 sec, 800ºC /30 min, 700ºC/15 sec anneals. Phosphorous diffuses moreinSiGebothathigherannealtemperature,andlowtemperatureannealbuthigher annealtime.Theresultsreportedinthisworkareinagreementwithresultsreportedin

[12][14]. P a g e | 47 Chapter 3: ProcessSimulation

800C, 30min No Anneal 700C, 15s

Si SiGe 900C, 15s Strained Strained Si Figure3.1.8SimulatedphosphorousconcentrationsinNMOSstructureasafunctionofanneal timeandtemperature(NoAnneal;800C/30min;700C/15Sec;900C/15Sec).

P a g e | 48 Chapter 3: ProcessSimulation Chapter3References [1]SilvacoATHENAProcessSimulatorManualV5.10,SilvacoInternationalCA,Availableat www.silvaco.com . [2] Shaofeng Yu et al., “Strained –Sistrained SiGe dual channel layer structure as CMOS substrateforsingleworkfunctionmetalgatetechnology” IEEEElectronDeviceLett., Vol25,No 6,pp402405,June2004.

[3] S. H. Olsen et al., “Highperformance nMOSFETs using a novel strainedSi/SiGe CMOS architecture.” IEEETransactionsonElectronDevices 2003, 50 (9),19611969.

[4] JongwanJung etal., “MobilityenhancementindualchannelPMOSFETs.”, IEEETrans ElectronDevices, Vol.51,No9,pp14241431,Sep2004. [5] K.Rimetal ,“FabricationandanalysisofdeepsubmicronstrainedSiNMOSFET’s,” IEEE TransElectronDevices, Vol.47,No.7,pp.14061415,July2000.

[6] Yasuhiro Shiraki et al. , “Fabrication Technology of SiGe heterostructure and their properties”, SurfaceScienceReport ,59,pp153207,2006.

[7]YeeChiaYeo etal., “Designandfabricationof50nmThinBodypMOSFETwithaSiGe HeterostructureChannel” IEEETransElectronDevices, Vol49,No2,pp279286,Feb2002.

[8]D.A.Antoniadisetal.,“ContinuousMOSFETperformancewithdevicescaling:Theroleof strainandchannelmaterialinnovations”,IBMJRES&DEV,Vol50,No4/5,pp114,July/Sep 2006.

[9]J.W.Matthews etal. ,“Defectsinepitaxialmultilayer,” J.Cryst.Growth ,Vol.27,pp.118– 125,1974. [10]P.Bai etal. ,“A65nmlogictechnologyfeaturing35nmgatelengths,enhancedchannel strain, 8cuinterconnects layers,lowκ ILD and 0.57 m2 SRAM cell,” in IEDM Tech. Dig. , 2004,pp.657–660. [11] Lance Scudder et al., “Selective silicon processing for advance ultra shallow junction engineering”, AppliedMaterial, pp9295,2002. [12] S. Eguchi et al. , “Comparison of arsenic and phosphorous diffusion behavior in silicon germaniumalloy”, ApplPhyLett ,Vol.80,No.10,pp17431745,March2002. [13] S. Eguchi et al. , “Germanium concentration dependence of arsenic diffusion in silicon germaniumalloys”, ApplPhyLett ,Vol.84,No.3,pp368370,Jan2004. [14] Erika Duda et al, “Secondary ion mass spectrometer characterization of source/drain junctionforstrainedsiliconchannelmetaloxidesemiconductorfieldeffecttransistor,”J. Vac. Sci.Technol.B, Vol.22,No.1,pp.327331,Jan./Feb.2004

P a g e | 49

Chapter 4 –DeviceModelingAnalysis

Chapter 444: DeviceModelingAnalysisandQuantumMechanicalModeling 4. Introduction ...... 50 4.1. DeviceSimulation ...... 50 4.1.1. NumericalSolutionTechniques ...... 50 4.1.2. Models ...... 51 4.2. OperationofStrainedSi/strainedSiGeMOS ...... 54 4.3. QuantumMechanicalEffectsinStrainedSiGePMOS ...... 57 4. Introduction ThedevicesdesignedinSilvacoAthena ™ [1]wereexportedtotheATLAS ™ device simulatorforparametricanalysis.ThedevicebehaviorandDCparametersareextracted bynumericalsolutionofphysicsbasedsemiconductormodels.Variousspecificationand adjustmentparametersdefinedinBISM3V3.3[2]andATLAS aretakenasdefault.This chapterfocusesondevicesimulation,variousphysicsbasedmodels,anddiscussionof quantummechanicaleffects.

4.1. DeviceSimulation All the DC parameter and device behavior analyses were performed in ATLAS.

ATLASisaphysicsbased2Dand3Ddevicesimulator.Forthiswork,allthesimulations performedwerebasedon2Dnumericalsolutionsofphysicsbased equations. ATLAS hasadirectinterfacewiththeprocesssimulatorandtheentiredevicestructuredatawas directlyexportedtothedevicesimulator.

4.1.1. NumericalSolutionTechniques DifferentcombinationofmodelswillrequireATLAStosolveuptosixequations.

Thetypesofsolutiontechniquesusedinthisworkare(a)fullycoupledNewtonand(b)

P a g e | 50

Chapter 4 –DeviceModelingAnalysis decoupledGummel.TheGummelmethodwillsolveforeachunknowninturnkeeping theothervariablesconstant,whilerepeatingtheprocessuntilconvergenceisachieved.

TheNewtonmethodsolvesthetotalsystemofunknownssimultaneously.

4.1.2. Models Compact models have been the heart of CAD tools in order to predict the device behaviorbyextractingthedeviceparameters.Itisthusimportanttochoosethecorrect modelsinordertopreciselypredictthedevicebehaviorinthevariousrangesofoperating voltages.

ATLAS provides various physicsbased device models based on classical semiconductor physics and BSIM models. For this work 2D SPICES, BLAZE and

Quantum simulators have been used from the ATLAS framework. 2D SPICES is a siliconbasedsimulatorsupportingawiderangeofphysicsbasedmodelsfortheMOS deviceswhichincludesfieldandconcentrationbasedmobilitymodels,densityofstates, energy balance transport models, drift–diffusion transport models, FermiDirac and

Boltzmann statistics and recombination models. Blaze is a 2D based compound semiconductordevicesimulatorforIIIV,IIVI,IVIVmaterials,andsimulatesdevices withpositiondependentbandstructure [1]bymodificationofchargetransportequations.

Thethirdsimulatorusedforthisworkisaquantumsimulator.Asthedevicesscaledown tosubmicronlevel,theclassicalphysicsequationsunderestimatetheeffectsofquantum confinement and quantum potential well formed in the devices. Various models from thesesimulatorshavebeeninvokedduringthe2Dsimulation.

P a g e | 51

Chapter 4 –DeviceModelingAnalysis a) Energy Balance Transport and Drift Diffusion Model

Impact of field based transport mechanism, velocity saturation, and velocity overshoot on device behavior were accounted for by numerical solution of energy balancetransportmodels [1][3][4]anddriftdiffusionmodels.Theconventionaldrift– diffusionmodelsneglectnonlocaltransporteffectssuchasvelocityovershoot,diffusion associatedwithcarriertemperatureanddependenceofimpactionizationratesoncarrier energydistribution.TheenergybalancetransportmodelisderivedfromtheBoltzmann transport equation and incorporates the relationship of current density to carrier temperature,orenergy.Thus,usingthedriftdiffusionmodelinconjunctionwithenergy balance transport model modifies the current density obtained from classical drift diffusionmodels. b) Band Gap Narrowing

A bandgap narrowing model incorporates the effects of doping level on the conductionbandandvalenceband.Thebandgapnarrowingeffectsareenabledby BGN parameterofthe Model statement.AsthestrainedSistrainedSiGedeviceisabandgap engineereddevice,properinvocationofthismodelisextremelyimportant[1][4]. c) Carrier-Carrier Scattering Model

The carriercarrier scattering model includes the dependence on temperature doping, and carriercarrier scattering. This model also includes the effect of lattice scattering,ionizedimpurityscattering(withscreeningofchargedcarriers)andimpurity clusteringeffectsoneffectivemobility[1] [5][6][7] .

P a g e | 52

Chapter 4 –DeviceModelingAnalysis d) Shockley-Read-Hall Concentration –Dependent Lifetime Model.

The ShockleyReadHall (SRH) model incorporates the effects of six carrier recombination generation mechanisms viz, phonon transition, photon transition, auger transition, surface recombination, impact ionization and tunneling. The concentration dependent model incorporates the dependence of impurity concentration on carrier recombination [1] [5][6] . e) Density Gradient Quantum Mechanical Model

Withshrinkinggeometries,quantumconfinementeffects associated with carriers becomedominantandcannolongerbesimplymodeledbyclassicalphysics.Theeffects due to quantum confinement of carriers associated withvariationoflocalpotentialare predictedandsolvedusingthedensitygradientmodel.Thedensitygradient(DG)method calculates a positiondependent potential energy according to higher derivatives of the carrierdensities.ThismodelisbasedontheWignerfunctionequationofmotion,which consists of quantum corrections to the carrier temperature in the carrier conduction currentandenergyequation [1][4].Inadditiontothat,themodelhasthecapabilityto reproducethecarrierconcentrationpredictedbySchrodingerPoissonmodelbuttoalso predicttransportproperties.However,thismodelcannotpredicttheboundstateenergyor wavefunctiongivenbySchrodingerPoissonmodel.Inthedensity gradientmodelthe expressionforelectronandholecurrentisgivenas:

Jn = qDn∇n − qnn∇(ψ − ∧)− nn(kTL∇(ln nie))Equation (12)

Jp = −qDp∇p − qpp∇(ψ − ∧)− pp(kTL∇(ln nie)) Equation(13)

γh 2 1  2 2  Equation(14) where∧ = ∇ log n + ()∇ log n  12m  2 

P a g e | 53

Chapter 4 –DeviceModelingAnalysis 4.2. OperationofStrainedSi/strainedSiGeMOS As shown in Figure 4.1.0, strainedSi/strainedSiGe dual channel layer substrate

consists of a stack of tensile strained silicon layer and compressively strained silicon

germaniumlayer,onrelaxedSiGelayer,gradedbufferSiGelayerandbulksiliconlayer.

Figure 4.1.1 shows the corresponding band diagram under positive and negative gate

bias.

Figure4.1.0SchematicdiagramofastrainedSi/StrainedSiGeMOSFET [8].

Figure4.1.1EnergybanddiagramofstrainedSi/StrainedSiGePMOS (Top), NMOS (Bottom). Simulatedbanddiagram (Left) andschematicshowingholeandelectronconcentration (right) P a g e | 54

Chapter 4 –DeviceModelingAnalysis For NMOS, in accumulation (VG < VFBS (flat band voltage at surface)), the holes are

accumulated at the Si/SiON interface. In the depletion mode (VG

regionisformedinthe siliconcaplayer.Withincrease in gate voltage, the depletion

regionwidth W=WDat VG=V TsnandinversionoccursatSiON/Siinterface.Thedepletion

width WDisgiven [89]

2 2εSiGe(φTH − VB)  εsi εsi   εsi εsi  WD = +  tSiGe + tbuff + tcap  −  tSiGe + tbuff + tcap  qNa  εSiyGey εSixGex   εSiyGey εSixGex 

Equation(15)

where ΦTH isthepotentialatthetopoftheSi/SiGeheterointerface, tcap issiliconcapping

layerthicknessand VBissubstratebias.Withfurtherincreaseingatevoltage,theelectron

sheetconcentrationincreases,resultinginincreaseddrivecurrent.However,ifthegate

voltagereachestheflatbandvoltageoftheheterojunction(VG=V FBHS),theentiresilicon

caplayerisdepletedandeventuallytheregionextendstotheSiGelayer[89].Thus,in

thecaseofNMOS,theinversionlayerformsinthe strained silicon layer initially and

draincurrentismainlyduetoelectronsinthestrainedSilayerasshowninFigure4.1.2.

Strained Si Strained Si

Strained SiGe Strained SiGe

Figure 4.1.2 Conduction Current Density in strained Si in NMOS (Left) at VG=0.2V ( VTns ), (Right) at VG=1.2V(| VG|>> |VTns |),theelectronsheetconcentrationremainsinstrainedSi. P a g e | 55

Chapter 4 –DeviceModelingAnalysis InthecaseofPMOS,withincreaseinnegativegatebiasthedepletionlayerwidth widensinSiGelayerandequalsto WDasgivenby:

2 2εSiGe(VB − φTH )  εsi εsi   εsi εsi  WD = +  tSiGe + tbuff  −  tSiGe + tbuff  qND  εSiyGey εSixGex   εSiyGey εSixGex  Equation(16) at VG=V THP (thresholdvoltageatSi/SiGeheterojunction),aninversionlayerformsin thestrainedSiGelayer asshowninFigure4.1.3(a) (left). Two factors play important rolesincreatinginversionlayerinsilicongermanium:(1) TSiPMOS <T SiNMOS and(2)the

VTH (thresholdvoltageatheterojunction)ismuchless than VTSp (threshold voltage of silicon). Also with high valence band discontinuity the inversion layer is confined to strainedsilicongermaniumregiononly.However,withcontinuousincreaseinthegate voltage,at VG=V TSp ,thebandbendssufficientlytocreateaparasiticparallelconductive channelintheSicapneartheinterface[5] as shown in Figure 4.1.3(a) (right). Figure

4.13(b)showstheinversionlayerdensityinthetoptwolayersasafunctionofhole density.

Figure 4.1.3 Conduction Current Density in strained Si/strained SiGe in PMOS (Left) at V =0.22V G (VTns ),inversiontakesplaceinstrainedSiGelayer , (Right) at VG=1.2V(| VG|>> |VTns |),thehol esheet concentrationisstillinstrainedSiGe,howeverasmallparasiticconductionchannelformsinstrainedSi. P a g e | 56

Chapter 4 –DeviceModelingAnalysis

Vg = -0.22 V Vg = 1.2 V

Figure4.1.3ConductionCurrentDensityasafunctionofholedensityinstrainedSi/strainedSiGe inPMOS.

4.3. QuantumMechanicalEffectsinStrainedSiGePMOS .

Intheclassicalmodel,theelectronsattheSi/SiO2 interface of a typical MOSFET formaclassicalelectrongasandbehaveinthesamemannerasanelectroninthebulk.

Thisassumptionisonlyvalidifthethicknessoftheinversionlayerismuchlargerthan thedeBrogliewavelength.Inasubmicrondevice,withoxidethicknessassmallas3nm, theinversionlayerthicknessbecomessmallerthan the de Broglie wavelength and the inversionlayerisconfinedinthepotentialwellclosetothesiliconsurface,withenergy levels being quantized. The inversion layer behaves as a 2D electron gas. Classical physicsfailstotakeaccountofquantizationofenergylevelsinthepotentialwellatthe interfaceanddoesnotyieldanaccuratemagnitudeofinversionlayer.Figure4.1.4shows theelectrondistributionusingtheclassicalandquantummechanicalmodels.

P a g e | 57

Chapter 4 –DeviceModelingAnalysis

Figure4.1.4ClassicalandQuantumMechanicalElectron Density versus De pth for a NMOSdevicewith2nmofthickgateoxide.Adaptedfrom[10]

Inthiswork,theinversionchargelayerinthechanneliscalculatedbysolvingFermi

Diracstatistics,inconjunctionwithdensitygradientquantummechanicalmodelandself

consistentPoissonSchrödingerequation.

Consideringthequantummechanicaleffects(QME)ofMOS,inversionmainlytakes placeindeepsubmicrondevices,withthingateoxidesandhighsubstrateconcentration.

InordertosimulateQME,aPMOSdevicestructurewith1.7nmgateoxide, Leff =58nm,

3nmstrainedSicaplayerwithsubstratedopingof10 17 cm 3 wasadopted.

Figure4.1.5illustratestheeffectoftheQMEontheIVcharacteristicsofPMOS.The shiftinthecurrentisby3.7%relativetothecasewithoutQME. Incorporating QME results in the decrease of the hole sheet concentration in the Si channel but gives an increaseintheSiGechannel,thusdecreasingthethresholdvoltageofsurfaceparasitic channelinthestrainedsiliconsurface.Further,withincreaseingatebiastheholesheet

P a g e | 58

Chapter 4 –DeviceModelingAnalysis concentrationincreasesfurtherinSiGewhichisbeneficialforhighmobility.However, bothsurfacepotentialandnormalfieldincreasewhenQMEistakenintoconsideration.

Theincreaseinthechannelfieldwillaggregatethescatteringmechanismsanddepress the carrier mobility [5]. However,thisphenomenonislesspronouncedinthe strained

SiGePMOSascomparedtostrainedSiPMOSshownbyYangetal. [5].

Figure4.1.5PMOSI DVD curveswithandwithoutQME.

P a g e | 59

Chapter 4 –DeviceModelingAnalysis Chapter4:Reference [1] Silvaco ATLAS Device Simulator Manual V5.10, Silvaco International CA, Available at www.silvaco.com . [2]BSIM3V3.3UserManual,DepartmentofElectricalEngineeringandComputerSciences, UniversityofCaliforniaBerkley.Availableat http://wwwdevice.eecs.berkeley.edu/~bsim3 . [3] Th.Volesang etal., "ElectrontransportinstrainedSilayersonSi 1xGe x Substrate", ApplPhy Lett ,Vol63,No2,pp186188,July1993. [4] Shaofeng Yu et al., “Strained –Sistrained SiGe dual channel layer structure as CMOS substrateforsingleworkfunctionmetalgatetechnology” IEEEElectronDeviceLett., Vol25,No 6,pp186188,June2004. [5]RongYang etal. ,“SimulationandcomparisonofMOSinversionlayerquantummechanics effectsinSiGePMOSFETandSiPMOSFET”, MicroelectronicsJournal ,Vol.35,pp145149, 2004. [6]ShinichiTakagi etal., “Comparativestudyofphononlimitedmobilityoftwodimensional electroninstrainedandunstrainedSimetaloxidesemiconductorfieldeffecttransistor”, Journal ApplPhy ,Vol80,No3,pp15671577,Aug1996. [7] M.V. Fischetti et al., “On theenhanced electron mobility in the strainedsilicon inversion layers”,JournalofApplPhy ,Vol92,No12,pp73207324,Dec2002. [8]B.Bindu etal., “AnalyticalmodelofdraincurrentofstrainedSi/strainedSi 1YGe Y/relaxed Si 1xGe xNMOSFETandPMOSFETforcircuitsimulation”, SolidStateElectron, 50,pp448455, March2006. [9]B.Bindu etal., “Aunifiedmodelforgatecapacitance–voltagecharacteristicsandextraction ofparametersofSi/SiGeheterostructurepMOSFET”, IEEETransElectronDevices, Vol54, No8,pp18891896Aug2007.

P a g e | 60

Chapter 5 –ElectricalCharacterization

Chapter 5: ElectricalCharacterization:PerformanceAnalysisofDCHMOS 5. Introduction ...... 61

5.1. DrainCurrentCharacteristics(I DVD,V GS )...... 61 5.2. ThresholdVoltage ...... 66 5.3. ShortChannelEffects ...... 68 5.3.1.SubthresholdConduction ...... 69 5.3.2.DIBL ...... 71 5.3.3.Leakage ...... 73 5.4. Mobility ...... 75 5.5. CapacitanceVoltageCurveAnalysis....... 81

5. Introduction Based on device models explained in Chapter 4, electrical characterization was performedonthesimulateddevices.Allthedevicecharacterizationwasperformedinthe

ATLASframework[1].Intheabsenceofaccesstoexperimentalresults,thisworkhas beenbenchmarkedwithIntel’spublished65nmwork[2].Inadditiontothat,simulated results have also been validated with published [3] compact SPICE model for dual channelheterostructuredevices.

5.1. DrainCurrentCharacteristics(I DVD,V GS )

BasedontwodimensionalnumericaldevicesolutiondonewithATLAS,the IDVDS (VGS ) characteristicsofnMOSandpMOSdeviceswereobtained.ThedraincurrentofpMOS andnMOScanbemodeledandunderstoodbasedontheregionofoperationanddevice design.ForthepMOS,basedonthedeviceoperationaltheoryexplainedintheprevious

Page | 61

Chapter 5 –ElectricalCharacterization chapter,thetotalcurrentisgivenbysumofthecurrentsattheheterointerfaceandSi/SiO 2 interfaceas [4]:

SiGe 2  H − z p vt CDp   |VG −VTHP |   | −VD |   I Dsub = exp 1− exp |VG <|| VTHP |   L   mpvt   vt    H H H  ID = I D = I Dsat {}1 + λp |VD −VDsat | |VTHP ≤ || VG <|| VTSP |  H S s  I | VG = VTSP + I 1 + λp |VD −V | | VG ≥|| VTSP |  D Dsatp {}Dsatp     

Equation(17) FornMOSthetotaldevicecurrentcanbeexpressedas:

Si 2  s − zn vt CDn   |VG −VTsn |   | −VD |   I Dsub = exp 1− exp |VG >|| VTsn |   L   mnvt   vt    Si s   s − zn maxCox  αnVD  s  ID = I Dlin = VG −VTsn − VD|VD <|| VDsatn |   VD  s  2   L1+ []1+θ ()VG −VTsn   s  n   2VLn    s S s s I Dn = I Dsatn {}1 + λp |VD −VDsatn | |VD ≥|| VDsatn | 

Equation(18)

ThegeneralparameterevaluationfolloweddirectlyfromtheATHENAdevicestructure with Lgate =65nm(Leff =55nm)witharetrogradechannel,physicaloxidethicknessof

1.7nmanddopingconcentrationof~10 20 cm 3.ForsimulatingtheIVcurves,allthe above models described in Chapter 4 were incorporated. To incorporate the quantum correction potential, a damping factor is specified by the QFACTOR parameter in the solvestatement.ThesourceandbodyoftheFETwereconnectedtoground.Thegate voltage| VG|wassteppedupfrom0.6Vto1.2Vinstepsof0.2V.Foreachgatevoltage

Page | 62

Chapter 5 –ElectricalCharacterization thedrainvoltage| VDS |wassweptfrom0to2Vinstepof0.1V.Figure5.1.0showsthe simulatedoutputcurvesfornMOSandpMOS.Thepeakdraincurrentat|VG|of1.2V wasobtainedtobe0.92mA/mand0.43mA/mforthenMOSandpMOSdevices, respectively.FromthefigureitcanbeclearlyseenthatnMOSdevicedoesnotshowany channel length modulation behavior, typically seen in all submicron devices. The possiblecauseforthediscrepancycanbeattributedtofailureofthevelocitysaturation model.

Figure5.1.0 IDVD|VGcurvesfornMOSandpMOSdevices.

Intheabsenceofaccesstoexperimentalresults,ATLASpredicted IDS VDS characteristics of the strained Si/Strained SiGe channel devices were benchmarked with Intel’s published65nmultralowpowerstateoftheartlogictransistorwithdevicespecification of Vnom =1.2V,T ox (physical)=1.7nm, Leff =55nm)[2] .Thecomparisonalsoshowsthe

Page | 63

Chapter 5 –ElectricalCharacterization performance of biaxial strained device with uniaxial device. Figure 5.1.1 shows the comparison of this work benchmarked with Intel’s work. It can be analyzed from the figurethatthereis15%improvementindraincurrentforbiaxialtensilestrainednMOS oncompressivelystrainedSiGecomparedtouniaxialstrainednMOS.ForpMOSthe drain current shows an improvement of 38% at lower value of VG; however, at

VG=1.2V,thepeakdraincurrentisnearlythesame.

Figure5.1.1 IDVD|VGcurvesfornMOSandpMOSdevicescomparedtoresultspublishedin [2] foruniaxialstrainedSi.

Figure5.1.2showsthecomparisonofdraincurrentcharacteristicsofadualchannel device(Vnom =1.0V,T ox (physical)=1.7nm, Leff =55nm)withabiaxialstrainedsingle channel device [3]withadevicespecificationof(Vnom =1.0V, T ox (physical) =1.3 nm,

Leff =50nm).Itisclearlyevidentfromthefigurethatthedualchanneldeviceenhances pMOScurrentby25%.Takingintotheconsiderationthedifferenceinphysicaloxide thicknessandeffectivegatelength,theenhancementwouldbemuchhigher.

Page | 64

Chapter 5 –ElectricalCharacterization

Figure 5.1.2 Comparison of simulated dual channel IDVD|VG curves for nMOS and pMOS devicestosinglechannelbiaxialtensilestraineddevice [3].

Figure5.1.3showsthecomparisonoftheunifiedmodelingapproachdevelopedinthis workforstrainedSiversustheconventionalMOSmodels.Itisclearlyevidentfromthe figurethattheconventionalMOSmodelfailstotakeintoaccounttheeffectsofstrain, bandgapdependentstatisticsandmobilityenhancementduetostrain.

5.0E04 1.2V 4.5E04 Unified Models 4.0E04 1.0V Conventional MOS Model 3.5E04

3.0E04

2.5E04

2.0E04 Figure5.1.3Comparisonof IDVD|VG 1.5E04 CurrentDrain in A/µm curvesobtainedfromunifiedmodels 1.0E04 vs.conventionalMOSmodel. 5.0E05

0.0E+00 2 1.5 1 0.5 0 Drain Voltage

Page | 65

Chapter 5 –ElectricalCharacterization 5.2. ThresholdVoltage

Figure 5.1.4 shows the IDVG characteristics of the simulated device. The IDVG characteristicswereobtainedatconstant VDS =0.1V,1V.Thesourceandthebodyofthe deviceareassumedtobeconnectedtoground.Thegatevoltage| VG|wassweptfrom0to

1.2V.Thisbiasingschemeensuresthattransistorsareinthelinearregimeofoperation forextractionofthethresholdvoltage.Thresholdvoltagewasdefinedasthegatevoltage

(VG)where ID=100nA/mat VDS =0.1V. Thedraincurrentvaluewaschosenbasedon extrapolation of the IDVG. The threshold voltages of the pMOS and nMOS devices wereobtainedtobe0.2Vand0.22V,respectively.Basedonthedraincurrentmodelin

[45],thethresholdvoltageofthepMOScanbedefinedas[5] :

VTH = φm − χs − (Eg − EV /) q − Qd / CT − k1 Equation(19)

where Φmisthemetalworkfunction,χsand Egaretheelectronaffinityandbandgapof theSi. Qdisthedepletionchargegivenby qN DWDand k1isthefittingparameter.Forthis device k1 isin0.227andisconsistentwiththevaluepublished in [5]. CT is the total capacitance given by 1/C T=1/C ox +1/C cap where Ccap is defined as є si /tcap . Based on the

8 2 6 2 abovemodel,with Qdp =6.9x10 C/cm , CT=1.749x10 F/cm thethresholdvoltage reportedis0.22V.FornMOSthethresholdmodelisgivenby [4]:

VTH = VFB + 2φFn + Qd / CT Equation(20)

Page | 66

Chapter 5 –ElectricalCharacterization whereVFB isflatbandvoltage,inthiscasetakentobe1.1V, ΦFn istheFermipotential and Qdn isthedepletioncharge,givenas qN AWD.SubstitutingtheparametersofnMOS

8 2 6 2 in the above equation with Qdn and CT to be 6.98x10 C/cm , 1.31 x10 F/cm , the estimatedthresholdvoltagecomesouttobe+0.24V.Thus,theabovepublishedcircuit modelverifiesthethresholdvoltageextractedfromsimulation .

1.E02 1.E02

1.E03 1.E03

1.E04 1.E04

1.E05 0.1V 1.E05 1.E06

1.E06 LogDrainCurrent (A/m) 1.E07

1.E07 1.E08

1.E09 1.E08 1.5 1 0.5 0 0.5 1 1.5 GateVoltage

Figure5.1.4Simulateddualchannel IDVG|VDcurvesfornMOSandpMOSdevices.

Figure 5.1.5 shows the threshold voltage of a single channel device [3] with a dual channeldevice.Asexpected,dualchanneldevicesexhibitlowerthresholdvoltagethan the single channel devices, due to band alignment, different electron affinities and increased oxide trap density [6].Thevariationinthethresholdvoltagebetweensingle channelanddualchanneldevicesis10%.

Page | 67

Chapter 5 –ElectricalCharacterization

Figure 5.1.5 Comparison of simulated dual channel IDVG|VD curves for nMOS and pMOS devicestosinglechannelbiaxialtensilestraineddevice [3].

5.3. ShortChannelEffects Toachievehighercircuitdensityandperformanceperwatt,CMOStechnologyhas beenscaledformorethan30years.Withcontinuousscalingthesupplyvoltage( VDD )has tobescaledinordertomeetpowerconstraints.Hence,thresholdvoltageofthedevice has to be commensurately scaled to maintain a high drive current and achieve performanceimprovement.However,thethresholdvoltagescalingresultsinsubstantial increaseinleakagecurrent [7].

Figure 5.1.6 shows typical IDVG curves in logarithmic scale. The curve allows measurement of several device parameters such as offstate leakage current IOFF , threshold voltage, and subthreshold slope. These parameters are indicative of device

Page | 68

Chapter 5 –ElectricalCharacterization performance and modulate with decrease in channel width, giving significance rise in narrowwidtheffects,andincreaseinoffstatecurrentwithincreaseindrainbias.Allthe adverse effects which cause increase in leakage and reduction in threshold voltage in shortdevicesarecalledshortchanneleffects.Duetoadverseshortchanneleffects,the channellengthcannotbearbitrarilyscaled.Therefore,inordertotakebestadvantageof scalingnewdesignstructuresmustbedesignedandvariousprocessoptimizationsneedto takeplace.Thekeyistooptimizethechannelprofileandmitigateleakagecurrentswhile maximizingdraincurrent.Inthissectionweanalyzesignificantshortchanneleffectson thedeviceandtheirimplicationonthedeviceperformance.

Figure5.1.6Typicalsubthresholdcurvesshowingvariousleakagecurrent.Adaptedfrom [7]

5.3.1. SubthresholdConduction

Subthreshold or weak inversion conduction current occurs when | VG| < | VT|. In weak inversion,asmallamountofinversionchargeisalwayspresentinthechannel.Foracase when| VDS |≥0.1V,ordrainbiasisverysmall,thepotentialacrossthereversebiasedpn junctiondiminishes,thusloweringtheelectrostaticpotential Φsandverticalelectricfield. Page | 69

Chapter 5 –ElectricalCharacterization Insuchascenario,the majorityofthedraincurrentisdominatedbydiffusioncurrent.

Theweakinversioncurrentisgivenas:

W 2 (Vg −Vth)/mvT −VDS /vT Ids = 0Cox (m −1 )(vT ) × e × (1− e ) Equation(21) L where Cdm 3tox m =1+ =1+ Equation(22) Cox Wdm misreferredtothesubthresholdswingcoefficientandν Tisthermalvoltage.Theinverse oftheslopeof log 10 (Ids )versus Vgs characteristicisreferredassubthresholdswing(St) givenby

−1  d(log 10Ids) mkT St =   = 3.2 Equation(23)  dVgs  q

Subthresholdslopeisafigureofmeritoftransistorperformanceandindicatestherateof decrease of IOFF .Figure5.1.7showsthesubthresholdcharacteristicsofnMOSandp

MOSdevices.

A

Page | 70

Chapter 5 –ElectricalCharacterization

B

Figure5.1.7Subthresholdcurves(logarithmicplotof ID Vs V G)(A)forpMOSand(b)forn MOS.

The subthreshold swing of both pMOS and nMOS was found to be 88mV/dec and

78 mV/dec, respectively, at drain voltage ( Vds ) of 0.1 V. Comparing subthreshold conductionofdualchanneldevicewithsinglechanneldevicebiaxialstrained,bothp

MOS and nMOS subthreshold slope for the dualchannel device shows slight degradation. However, compared to uniaxial strain published in [2], the subthreshold slopelooksmuchbetter.

5.3.2. DIBL Theelectrostaticintegrityofthedeviceswasassessedintermsofdraininducedbarrier lowering (DIBL). In short channel devices, with the decrease in gate length, the source/draindepletionwidthintheverticaldirectionandpotentialhaveastrongeffecton the band bending over a significant portion of the device, resulting in energy barrier

Page | 71

Chapter 5 –ElectricalCharacterization lowering.DIBLoccurswhenthedepletionregionsofthedrainandsourceinteractwith eachothernearthe channelsurfacetolowerthepotential. When a high drain bias is applied,itlowersthebarrierheightfurther,resultingindecreaseofthresholdvoltage,and injectionofcarriersintothechannelatthesurface,independentofgatevoltage.

FromtheFigure5.1.7,itcanbeclearlyseenthatwithincreaseindrainvoltagethe thresholdvoltagesrollsdown,showingDIBLeffectinthedevices.DIBLforpMOSand nMOSwasfoundtobe26mV/Vand12mV/V,respectively,showingmorepronounced

DIBL effect and degraded electrostatics in pMOS due to buried conducting channel.

However, for the nMOS devices with increase in drain voltage an initial increase in thresholdvoltagewasobserved,showingdraininducedbarrierincrease(DIBI)asshown inFigure5.1.8.Thereasonforinitialincreaseinthethresholdvoltageorreverseshort channeleffectwasfoundtobetransientenhanceddiffusionduetothreadeddislocations and{311}clusterswhichenhancedborondiffusionandboronpileupnearthesourceand drain

Page | 72

Chapter 5 –ElectricalCharacterization RSCE and DIBL in NMOS 0.36 0.03 0.025 0.35 0.345 Threshold Voltage 0.02 DIBL 0.015 0.34 0.335 0.01 0.33 0.325 0.005 0 0.32 in DIBLmv/V -0.005 ThresholdVolatge (V) in 0.312 -0.01 0.31 -0.015 0.3 -0.02 0 0.5 1 1.5 2 2.5 Vds in V

Figure5.1.8ReversechanneleffectandDIBLinNMOSwithinitialDIBI.

5.3.3. Leakage Atransistorcanhavesixbasictypesofleakagemechanismsasshowninfigure5.1.9: leakage due to reversebiased pn junction, subthreshold leakage, oxide tunneling, hot carrierinjection,gateinduceddrainleakage(GIDL),andchannelpunchthroughcurrent.

The offstate current is comprised of channel punchthrough current, GIDL and subthresholdleakage;however,currentduetohotcarrierinjectionandreversebiasedpn junctionconsistofbothonstateandoffstatecurrent.

Figure5.1.9showsthedifferentoffstatecurrentinthe(a)pMOSand(b)inthen

MOS.ForpMOStheoffstatecurrentwasfoundtobe80nA/mat Vds of1V.Forn

MOSdevicetheoffstateleakagecurrentwasfoundtobe10nA/matdrainbiasof1V.

Theoffstateleakagecurrentisconsistentwiththeresultpublishedin [89];however,for this work both nMOS and pMOS leakage is less than reported in the literature [3].

Interestingly, it can be observed from the graph that both subthreshold and junction

Page | 73

Chapter 5 –ElectricalCharacterization leakagehasincreasedwithdrainbiasinpMOSwhereasitisalmostthesameinthecase ofnMOS.The ION /IOff ratioexceedstenordersofmagnitude.Comparedtothepublished literature [2],theleakageinpMOSandnMOSdeviceshasincreasedby10xand4x, respectivelyat|VG|of1.2V.

A

B

Junction Leakage

Figure5.1.9Subthresholdplotsof(a)pMOS(b)nMOSshowingvariousleakagecurrents. Page | 74

Chapter 5 –ElectricalCharacterization Figure5.2.0showstheoffstatecurrentinpMOSasafunctionofgatelengthata drainbiasof0.1V.Itcanbeseenfromthefigurethattheincreaseinleakageisabout

10xtimesfrom90nmto65nm.Lookingdownat50 nm, pMOS performance has degradedbyalmost100xcomparedtoitsperformanceat90nm.Thusfurtherleakage optimizationtechniquesneedtobeincorporatedforpMOS.

Figure5.2.0Subthresholdplotsof(a)pMOSshowingvariousoffstateleakagecurrentasa functionofgatelength. 5.4. MobilityExtraction ThemobilityextractionfornMOSandpMOSwasdoneusingthesplitCVmethod.

Effectivemobilitywasdeterminedatlowdrainbiasof100mV.Fromthedraincurrent equationoftheMOS,theeffectivemobilityatlowdrainbiascanbewrittenasafunction ofthechargeassumingthatchannelchargeisuniformfromsourcetodrain.

Page | 75

Chapter 5 –ElectricalCharacterization L ID 1 eff = Equation(24) W VDS Qi

L gD eff = Equation(25) W Qi

∂ID gD = |VGS = cons Equation(26) ∂VDS

Intheaboveequationthe Qiistheinversionchargedensity.Inordertodeterminethe effectivemobilityweneedtodeterminetheinversioncharge.Therearetwomethodsfor obtainingtheinversionchargedensity.Thefirstwayistheapproximationofinversion chargeintermsofgatevoltagei.e.,

Qi = Cox(VG −VT ) Equation(27)

Thisapproximationfailsclosetothresholdvoltageandinthesubthresholdregionowing to the fact that accurate threshold voltage cannot be easily determined, and variation betweenthedifferentmethodscanleadtolargeerrorinmobilitydetermination.Theother waytodeterminethechannelinversioncharge densityisbyrelatingittothechannel capacitance between gate and source/drain. Figure 5.2.1 shows the schematic representationofsplit–currentmeasurement.Asthetimevaryinggatevoltageisapplied to the device two types of current flow in the device. With substrate grounded we measurethecurrent I1:

dQi dVGC I 1 = = Cgc Equation(28) dt dt

Page | 76

Chapter 5 –ElectricalCharacterization Thisrelatestheinversionchargelayerdensityas:

VGS Qi = CgcdVgs Equation(29) ∫−∞

Similarlythebulkchargedensitycanbecalculatedas:

VGS QB = CgbdVgs Equation(30) ∫−∞

Figure 5.2.1. (a)Schematicrepresentationofthesplitcurrentmeasurement.(b)TomeasureI1,the substrate is grounded and the capacitance between the sourcedrain contacts and the gate electrodeismeasuredasafunctionofgatebias.(c)TomeasureI2,thesourcedraincontactsare grounded and the capacitance is measured between the substrate and the gate electrode as a functionofgatebiasAdaptedfrom [10] . Now in order to calculate the transconductance, the slope of drain current was determined.Thedraincurrentwasobtainedinthelinearregionforvariousgatebiases, withadrainbiasvaryingfrom0to0.1V.Sincemobilityisafunctionofverticalelectric field,theverticalelectricfieldwasdeterminedby:

ηQi + Qd ξeff = Equation(31) εs

Page | 77

Chapter 5 –ElectricalCharacterization Thevalueofηwastakentobe½inthiscase.Basedontheabovesetup,theeffective mobility was determined. The CV analysis was performed in the Silvaco ATLAS simulatorusingthedensity gradientquantumsimulatortoaccountfor abruptpotential variationandquantumconfinementofcharges.Default values for the density gradient modelweretakenastherearenoaccurateavailabledata.Theinversionchargeandbulk charge was determined by integrating the CV curve. Figure 5.2.2 shows the drain currentofnMOSandpMOS.

A

B

Figure5.2.2Draincurrentinlinearregionfor(a)pMOSand(b)nMOS.

Page | 78

Chapter 5 –ElectricalCharacterization Figure 5.2.3 (a) shows the effective mobility of pMOS and Figure 5.2.3 (b) shows nMOSforashortchanneldeviceasafunctionofvarying electric field. The pMOS mobilitywascomparedtothepublishedresultin [2].Thepeakmobilityobtainedfrom thisworkwas160cm 2/V.s.Theenhancementinmobilityisaround12%comparedtothe publishedresult.ThemobilityinthepMOSisaweightedfunctionofmobilityinthe surfacechannelandburiedchannellayersandisastrongfunctionofthethicknessofthe cappinglayer.Forthisworkwehavedeterminedonlytheneteffectivemobilityofthe device,asdeterminingmobilityforeachlayerandmodelingitwasbeyondthescopeof this work. The results obtained for pMOS mobility are also in agreement with data published in the literature [9]. However, some deviations are bound to happen due to lackingofaproperfieldbasedmodelforSiGeandduetounavailabilityofpropervalues forthequantummodeltodeterminetheexactamountofcharge.

/V.s

2 cm

Figure5.2.3(a)EffectiveHolemobilityvsverticalelectricfield,comparedtovariouspublished work [2].

Page | 79

Chapter 5 –ElectricalCharacterization FornMOSthepeakmobilitywasdeterminedtobe273cm 2/V.s.Thepropervalidation of nMOS mobility could not be determined due to unavailability of data for short channeltransistors.However,basedontheworkpublishedintheliterature [9]fordual– channelMOSwith100nmofgatelength,theenhancementintheelectronmobilityis around ~ 45%. As the mobility is known to degrade with decreasing gate length, the apparentenhancementintheelectronmobility,obtainedforthisworkat65nmcanbe accountedfor(a)theexcessivelydegradedmobilityinthepublishedliterature[9]result and (b) due to unavailability of proper simulation values of density gradient quantum model,whichcanresultineitherunderestimationoroverestimationofinversioncharge.

Also,asperthepublishedresult,slightdegradationinelectronmobilityisobservedforn

MOSduetohighsurfaceroughnessandsignificantinterfacechargedensity.

/V.s 2 cm

Figure5.2.3(b)EffectiveElectronmobilityvs.verticalelectricfieldfordualchannelnMOS.

Page | 80

Chapter 5 –ElectricalCharacterization 5.5. CapacitanceVoltageCurveAnalysis. A) Gate overlap Capacitance

Lowfrequency CVanalysiswasperformedonbothnMOSandpMOSdevicesto extract gate overlap capacitance to source and drain and total gate capacitance. The simulation was performed in the ATLAS framework. To measure the overlap capacitance,thegateofthedevicewasbiasedinitiallytohighvoltageat VG=2Vwith sourceanddrainshortedandgrounded.Thegatevoltagewasthensweptfrom2Vto

2Vwithastepof0.2atfrequencyof1MHz.Themeasuredcapacitanceincludesfour capacitancesinadditiontodesiredgatetochannelcapacitance Cgsd,

CGS (measured ) = Cgsd + CS + Ctop + Cof + Cif Equation(32)

Cs is a parasitic capacitance arising from equipment and test structures; Ctop isdueto electricfieldemergingfromtopsurfaceofgateelectrodeendingatdrain;Cof and Cif are outerandinnerfringingfieldcapacitanceassociatedwiththesidewallofthegateandthe bottomofthegatetotheinnersidesofthesourceanddrainregions.Insimulation,the effectofparasiticcapacitanceduetoequipmentandelectrodesarenotpresent,hencethe major parasitic capacitance coupled with gatetosource/drain capacitance is fringing fieldcapacitance.

The extrinsic capacitance or the fringing field capacitance consists of bias independentouterfringingcapacitanceandabiasdependentinnerfringingcapacitance.

The fringing field capacitance is determined basedoncompactBSIM3.33model [11]

Page | 81

Chapter 5 –ElectricalCharacterization and only outer fringing field capacitance is implemented. It is virtually impossible to separatefringingfieldcapacitancefromoverlapcapacitance.Howeverthefringingfield capacitancecanbetheoreticallycalculatedby[11] :

2εox  tpoly  CF = ln1+  Equation(33) π  Tox  where tpoly isthepolythickness.Thegatetosourceandgatetodraincapacitancecanthus becalculatedas [11] :

CGSO/CGDO=0.6Xj*C ox Equation(34)

Basedontheabovetheoreticalmodelwith tpoly =1100Åand Xjas58nmand70nm theoverlapcapacitanceisobtainedas9.37E10F/m2and1.639E09F/m 2fornMOSand pMOS, respectively. The fringing field capacitance is obtained as 1.59E10 F/m 2 for both nMOS and pMOS as poly thickness was the same for both. The overall capacitancewastheoreticallyfoundas1.59E15F/m2and1.79E15F/m2fornMOS andpMOS,respectively.Figure5.2.4shows Cgdo for(a)nMOSand(b)pMOS.The simulatedresultsare consistentwiththeoreticallycalculatedvaluebasedontheBSIM

3.33model[11] .

Page | 82

Chapter 5 –ElectricalCharacterization

A

B

Figure 5.2.4 Gate to drain overlap capacitance obtained from split CV method (a) nMOS (b)pMOS.

InthecaseofpMOS CVcurvesakinkoraflatplateauisobservedintheonsetof weakinversionandendofdepletionmode.Thekinkarisesfromconfinementofholesat the strainedSi/Strained SiGe heterointerface. Also in the strong inversion region the kink refers to formation of a parasitic conducting channelinthestrainedSicaplayer.

TheCVcurveresultsarealsoingoodagreementwithresultspublishedin [9][12][13] .

Page | 83

Chapter 5 –ElectricalCharacterization B) TotalGateCapacitance ThetotalgatecapacitanceofthestrainedSi/SiGeMOSFETcanbegivenbytheseries combination of oxide capacitance and semiconductor capacitance based on a charge thicknesscapacitancemodel.Thechargethicknessmodelisachargebasedmodelbased onDCchargethickness.Figure5.2.5[11]describesthechargethicknessconcept.

Figure5.2.5Schematicrepresentationofchargethicknessmodelfortotalgatecapacitance [11].

Based on the charge thickness model, Figure 5.2.6 shows (a) the equivalent capacitance circuit model for strained Si/SiGe device, and (b) for a pMOS strained

Si/strainedSiGedevice.

Figure5.2.6Equivalentgatecapacitancemodelbasedonchargethicknessmodelfor(a)Strained Si/SiGedevice(b)StrainedSi/SiGe [12].

Page | 84

Chapter 5 –ElectricalCharacterization Assumingnegligibleinterfacechargesandcapacitanceduetointerfacecharges,the netgatecapacitancecanbeexpressedas [12] :

1 1 CG = + Equation(35) Cox CS where CS can be represented as parallel combination of depletion capacitance (CD), inversionlayercapacitanceattheheterointerface( CTH )andinversionlayercapacitance

(CTs ) at the Si/SiO 2interface. FornMOSthecapacitance cansimplybe taken as the parallelcombinationof CDand CTs .Asthedepletionchargeandtheinversionchargeare function of varying gate voltage, the semiconductor capacitance varies for different regionsofoperation.

Forthesubthresholdregion,thechargeandthenet capacitance can be treated for two differentcasesofgatevoltage:(a)accumulationregion( VG≥VFBS );(b)depletionregion

(VTHS < VG< VFBS ). In case of accumulation region, the net capacitance is a series combinationofoxidecapacitanceandaccumulationcapacitance(CA)givenas [12]:

dQs  ψs  CA = = CLD 1+  , Equation(36) dψs  2vt  where

CLD = εs / εsvt / qND / A Equation(37)

Cox ψs = (VG −VFBS ) Equation(38) CLD

Page | 85

Chapter 5 –ElectricalCharacterization Incaseofdepletionmode,thebulksemiconductorcapacitanceisaparallelcombination of CD, CLD and Cox ,wheredepletioncapacitanceisgivenby[12] :

2 1  (2C ox(VG −VFBS)))  CD =  1+ −1 Equation(39) Cox  qεsiNa / d 

However, in the case of highly doped epitaxial layers, due to band confinement and presenceofelectronsneartheheterointerfaceincaseofpMOSthenetcapacitanceisa seriescombinationof CLD and Cox .Thusthisresultsinakinkinthe CVcharacteristics.

The CV characteristicfortheabovethresholdregioncanbedividedintotworegionsof operationforpMOS:(a) VG≤VTH ;(b) VTS ≥VG.Forcase(a)thechargeattheSi/SiGe interface is an increasing function of gate voltage, hence the capacitance (CTH ) at the onsetofinversioninthestrainedSiGelayerisafunctionofgatevoltage.Henceinthis case the total capacitance is a series combination of CTH and Cox , where CTH can be expressedas [12]:

H CTH = −q(dρs / dψs) Equation(40)

For case (b) when the gate voltage is equal to the thresholdvoltageof thestrainedSi layer,thesheetchargedensityatSi/SiO 2interfaceincreases;however,thesheetcharge densitynowintheheterostructureisconstantandnolongervarieswithincreaseingate voltage.Henceinthiscasethenetcapacitanceis a series combination of Cox and CTS where CTS isrepresentedas [12]:

Page | 86

Chapter 5 –ElectricalCharacterization S S CTS = −q(dρs / dψs) = −q(dρs / dVG)(dVG / dψs) Equation(41)

Sinceholeconcentrationintheburiedchannelisfixed, dVG /dψs =0,thuscapacitancein thisregionissameasoxidecapacitance.

IncaseofnMOSthecapacitancemodelremainsthesameasdeterminedforbulk silicon.Figure5.2.7showsthetotalgatecapacitancefor(a)buriedchannelstrainedSiGe pMOSand(b)surfacechannelnMOS.Tovalidatethe CV curveanalysis,calculations weremadebasedonthe CV modelpublishedin [12].Theobtained CV curve shows reasonableagreementwithcalculatedvaluesofcapacitanceinaccumulation(2.4fF/m 2,

2 CA=2.5fF /m ).Instronginversiontheobtainedgatecapacitanceislessthantheoxide capacitance as theoretically predicted, since thereisalwayssomeparasiticcapacitance presentthere.However,thethresholdvalueobtainedfromthe CV curveislessthanthe calculated value obtained from the IDVG curve. At present there seems to be no valid reasonforthisdiscrepancyotherthansomesimulationartifacts.Also,aspredictedinthe model,akinkisobservedintheaccumulationregionandinstronginversionforpMOS duetoheavilydopedepitaxiallayersandshifting oftheholesfromburiedchannelto surfacechannel.

Page | 87

Chapter 5 –ElectricalCharacterization B Figure 5.2.7 Total gate capacitance curves based on charge thickness model obtained from simulation(a)pMOSand(b)nMOS.

Page | 88

Chapter 5 –ElectricalCharacterization Chapter5:References [1] Silvaco ATLAS Device Simulator Manual V5.10, Silvaco International CA, Available at www.silvaco.com . [2]Jan etal ."A65nmultralowpowerlogicplatformtechnologyusinguniaxialstrainedsilicon transistor," IDEMTechDigest ,Oct2005

[3]JerryG.Fossum etal.," PerformanceProjectionofscaledCMOSdevicesandcircuitswith strainedSionSiGechannels", IEEETransElectronDevices, Vol50,No4,pp10421050,April 2003.

[4]B.Bindu etal., “AnalyticalmodelofdraincurrentofstrainedSi/strainedSi 1YGe Y/relaxed Si 1xGe xNMOSFETandPMOSFETforcircuitsimulation”, SolidStateElectron, 50,pp448455, March2006.

[5] B. Bindu et al. , “Analytical model of drain–current of Si/SiGe heterostructure pchannel MOSFETsforcircuitsimulation,” IEEETrans.ElectronDevices ,vol.53,No.6,pp1411–1419, Jun.2006. [6] S. H. Olsen et al. ,“StudyofstrainrelaxationinSi/SiGemetaloxidesemiconductorfield effecttransistors,”JournalofAppliedPhysics 2005, 97 (11),114504.

[7] K. Roy et al. , “Leakage current mechanisms and leakage reduction techniques in deep submicrometerCMOScircuits,” ProceedingsoftheIEEE, Vol.91,No.2,pp.305327February 2003.

[8] Shaofeng Yu et al., “Strained –Sistrained SiGe dual channel layer structure as CMOS substrateforsingleworkfunctionmetalgatetechnology” IEEEElectronDeviceLett., Vol25,No 6,June2004,pp402405 [9]YeeChiaYeo etal. ,"EnhancedperformanceinSub100CMOSFETsusingstrainedepitaxial silicongermanium," DepartmentofElectricalEngineeringandComputerSciences,Universityof CaliforniaatBerkley, 2000Availableat: http://www.eecs.berkeley.edu/~hu/PUBLICATIONS/Hu_papers/Hu_IEDM/Hu_IEDM00_05.pdf [10] http://courses.ece.uiuc.edu/ece598/gt/Lab%20Practicals/Lab1.pdf [11]BSIM3V3.3UserManual,DepartmentofElectricalEngineeringandComputerSciences, UniversityofCaliforniaBerkley.Availableat:http://wwwdevice.eecs.berkeley.edu/~bsim3 . [12]B.Bindu etal., “Aunifiedmodelforgatecapacitance–voltagecharacteristicsandextraction ofparametersofSi/SiGeheterostructurepMOSFET”, IEEETransElectronDevices, Vol54,No 8,pp18891896,Aug2007. Page | 89

Chapter 5 –ElectricalCharacterization [13] Sarah H. Olsen et al., “Study of single and dualchannel designs for high performance strained–SiSiGenMOSFETs”, IEEETransElectronDevices, Vol51,No7,July2004.

Page | 90

Chapter 6 –ConclusionandFutureWork

Chapter 6: ConclusionandFutureWork .

6.1 Summary For more than 30 years, innovative methods in semiconductor engineering and designshavebeenleadingthesiliconrevolutionbydoublingthetransistorcounttobeat

Moore’s law, while advancing logic technology process, performance per watt, high efficiency and speed. As feature size becomes smaller and smaller, circuits operate at higherspeeds,thusincreasingchallengestodelivermorepowerfuland powerefficient devices. Active power, low offstate leakage, concurrent processcircuit variability, fundamentallimitsofmaterials,andshortchanneleffectsmustbeaddressedinorderto continuedeliveringsmaller,morepowerfulandpowerefficientdevices.However,there isnoviablealternativeforsilicontechnologytoaddressalltheseissues.Henceinorder to continue leveraging performance out of silicon, capabilities of various innovative materialsandcircuitdesignneedtobeinvestigated.Atpresenttherearealotofsuch technologiesunderresearchsuchassilicononinsulator,finfets,strainedsilicon,highK dielectrics,3Dtransistors,IIIVmaterialsandnanowires.Strainedsiliconatpresentwith highK dielectrics has appeared to be a solid candidate for all future submicron technology andhasbeensuccessfullyintegratedwithsilicontechnologyinthe90nm node.However,thecurrentstrainedsiliconprocesstechnologysuffersfromissueslike conformality of nitride stress layer, stress variation in channel and optical proximity issues. In addition to that, there are no known proper compact models at present for P a g e | 91

Chapter 6 –ConclusionandFutureWork strained silicon technology. A lot of other alternative designs have been reported by various research groups and one such alternative design is a dual channel strained

Si/strainedSiGearchitecture.

Double channel heterojunction strained Si/strainedSi 0.7 Ge 0.30 /relaxed Si 0.85 Ge 0.15 n

MOSFETandpMOSFETdevicesweredesigned,optimizedandsimulatedfor65nm logic technology node. IV and CV measurement with quantum effects showed two conductingchannelsforpMOS:firstattheSi/Si 0.7 Ge 0.30 interfaceinthecompressively strained Si 0.7 Ge 0.30 , then at the Si/ONO interface. The devices were designed with differential silicon cap layer for nMOS and pMOS to obtain inversion levels in the desiredstrainlayerswithhighlevelsofstrain,lowelectrostaticdegradation,andbetter film conformality. Quantitative simulations were performed to develop and optimize processingtechnologyandtopredictdevicebehavior.Lowthermalprocessing,withlow time RTA was developed and optimized to maintain a high level of strain and film conformality. Thermal effects on phosphorus and arsenic diffusion profile in strained

Si/StrainedSiGelayerswereinvestigatedanditwasobservedthatphosphorousdiffuses more in silicongermanium compared to arsenic. Based on the analysis, source/drain doping and annealing was optimizedto yield shallow source/drain junction. Poly gate lengthandgateoxidethicknesswererelaxedto~55nmand1.7nmwithultrashallow junctiondepthof38and40nmfornandpchanneldevices,respectively,with10 20 cm 3 concentrationtomitigatesubthresholdand gateleakages . A unified modeling scheme was formulated based on different physicsbased model. Device simulations, based on

P a g e | 92

Chapter 6 –ConclusionandFutureWork selfconsistent solution of the SchrödingerPoisson equation in addition to a density gradientquantummodelandbandgapnarrowing,wereperformedtoanalyzetheimpact of fieldbased transport mechanisms, and overall performance of the devices. The extracted IV measurement showed an improved nMOS and pMOS current of 0.94 mA/mand0.45mA/mwithanoverallimprovementinperformanceby25~30%over published results from Intel’s 65 nm work and other research groups. However, the variance in the simulated results (this work) and Intel’s work can be reduced by effectivelytuningtheelectricfieldmodel,properoptimizingthedopinglevels,andthe adjusting the simulation parameters and assumptions. Short channel effects were also investigatedandwereobservedtobecontrolledwithsubthresholdswingof88mV/dec and78mv/decforpMOSandnMOS.AlowDIBLwasalsoobservedwith12mV/V and 26mV/V for nMOS and pMOS, respectively. The offstate leakage current was higherforthisworkcomparedtopublishedworkonuniaxialstrainsiliconbyafactorof

10X.TheextractedmobilityexhibitsanincreaseinbothnMOSandpMOSmobility.

Quantitativesimulationfromthisworkrevealedmuchhighermobilitythanobtainedby experimentalwork.Thevarianceintheresults owedtothefactorofunavailabilityof properdataandfittingforthemobilitymodelsinthepresentwork.Further,theresultsof thisworkareinaccordancewithresultsobtainedfromthepublishedcompactmodeland slightvarianceisobservedduetodifferentassumptionsandfittingparameterused.Thus thekeymessagesfromthisworkcanbesummarizedas

P a g e | 93

Chapter 6 –ConclusionandFutureWork 1) Process induced strain is the most significant innovation in submicron MOS

transistortechnology,butscalabilityisamajorbottleneckindrivingperformance

forsub65nmtechnologies.

2) Compound semiconductor material such as SiGe, a promising solution for

foreseeablefutureofMOStransistortechnology.

3) DualchannelCMOStransistortechnologywithabiaxialtensilestrainedSiand

biaxialcompressivestrainedSiGechannelisapromisingsolutiontosustainthe

scalingchallenges.

6.2 RecommendationsforFutureWork Theworkdoneinthisinvestigationhasprovidedsomeinsightintoprocessing,design and working of strained silicon/strain silicongermanium heterostructures. However, several issues were encountered during the investigations which need to be solved in order to continue better development of strained silicon technology. The recommendationsforfutureworkarelistedbelow.

(A) Effectsofstrainonlatticeandstressrelaxation

Anattemptwasmadeinthisworktoincludetheeffectsofstrainusingbandgap

narrowinganddensity gradientquantummodel;however, these models are not

sufficienttodeterminetheexactamountofstressinthefilm.Further,SUPREM4

doesnothaveanyfeaturetoincorporateeffectsofprocessingonstressrelaxation

andmisfitdislocationwhichcanleadtoerrorinpredictionofdevicebehavior.

P a g e | 94

Chapter 6 –ConclusionandFutureWork (B) Effectsofgermaniumout–diffusion

Germanium outdiffusion is a well known issue in silicongermanium process

technology. The present model, though, shows some amount of germanium

diffusionbutduetolackofpropersilicongermaniumdiffusionmodelandfitting

parameters several discrepancies were observed between this work and other

simulationworkreported.Thiscanhaveseriousimplicationsinpredictingdevice

behaviorasstresslevelvariesduetoimpurity.Further,there,isnowaywecan

determinetheamountofsurfaceroughnessandcrosshatchinginthedevice.

(C) Fieldbasedmobilitymodel

The present model for SiGe in ATLAS does not have any unified method for

mobility determination. Also the model ignores the effect of germanium

concentration and stress dependence of electric field.Bothgermaniumcontent

andelectricfieldlevelsplaysignificantrolesinmobilitystatistics,hencethereis

needtodevelopthosemodels.

(D) ReductionofdislocationandissuesrelatingtoepigrowthofSiGe.

Thisissueneedstobeaddressedinordertofacilitatethesuccessofthesedevices.

Epitaxialgrowthofsilicongermaniumisaprocesschallengeandissuesrelating

to stress relaxation, threaded dislocations, and critical thickness of strain cap

layersneedtobesolvedbyeitherprocessoptimizationorintegratingthepresent

technologywithSOI.

P a g e | 95

Chapter 6 –ConclusionandFutureWork (E) OptimizationofpMOSsiliconcapandhighKintegration

Aswehaveseen,buriedchannelinpMOSleadstoelectrostaticdegradationand

highoffstateleakagecurrent.Processoptimizationneedstobemadetointegrate

SiGe channel directly with gate dielectric such as incorporation of highk

dielectric.

P a g e | 96

Appendix A –SimulationCodes APPENDIXA: SIMULATIONCODES

Process Simulation ################################################################################################ ######################### STRAINED SILICON PMOS PROCESS SIMULATION###### ################ goathena # Mesh Define linexloc=0.00spac=0.20 linexloc=0.1spac=0.3 linexloc=0.2spac=0.30 linexloc=0.30spac=0.30 linexloc=0.6spac=0.02 linexloc=0.7spac=0.02 linexloc=0.8spac=0.30 linexloc=1.0spac=0.30 linexloc=1.1spac=0.20 lineyloc=0.00spac=0.05 lineyloc=1.00spac=1.0 # Mesh Intialize initsiliconc.boron=1.0e15orientation=100 # Strained Si/Strained SiGe Epitaxial Growth Method MODEL.SIGE Method STRESS.HIST

# Graded SiGe depositsiliconthick=0.02div=10c.phosphor=1.0e17c.germanium=1E20f.germanium=10E21 # Relaxed SiGe depositsiliconthick=0.07div=10c.phosphor=4e17c.germanium=7.5E21 # Strained SiGe depositsiliconthick=0.012div=10c.phosphor=4e17c.germanium=15E21 # Strained Si epitaxytime=10temp=500thickness=0.012c.phosphor=4e17division=10dy=0.1ydy=0.1 # STI Formation and Controlled Removal of Strained Si layer. diffustime=20temp=980dryo2press=1.00hcl.pc=0 depositnitridethick=0.05divisions=5 etchnitridestartx=0.2y=0.21 etchcontx=0.2y=0.12639 etchcontx=0.3y=0.126391 etchdonex=0.3y=0.21 etchnitridestartx=1.0y=0.21 etchcontx=1.0y=0.12639 contx=1.1y=0.12639 etchdonex=1.1y=0.21 etchoxidestartx=0.2y=0.13 etchcontx=0.2y=0.10534 etchcontx=0.3y=0.10534 etchdonex=0.3y=0.13 etchoxidestartx=1.0y=0.13 etchcontx=1.0y=0.10534 etchcontx=1.1y=0.10534 etchdonex=1.1y=0.13 etchsiliconstartx=0.2y=0.10534 P a g e | 97

Appendix A –SimulationCodes etchcontx=0.2y=0.03 etchcontx=0.3y=0.03 etchdonex=0.3y=0.10534 etchsiliconstartx=1.0y=0.10534 etchcontx=1.0y=0.03 etchcontx=1.1y=0.03 etchdonex=1.1y=0.10534 depositoxidethick=0.20divisions=8 etchmaterial=oxideabovep1.y=0.10534 etchnitrideall # PMOS V T Implant Adjust depositoxidethick=0.003 implantphosphordose=4e12energy=10tilt=0rotation=0amorph etchmaterial=oxideabovep1.y=0.10534 # Gate Oxide Deposition OxyNitride methodGRID.OXIDE=0.05GRIDINIT.OX=0.01 rate.depomachine=CVDOXIDEoxynitriden.msigma.dep=0.20smooth.win=0.1\ smooth.step=1monte1dep.rate=1 depositmachine=CVDOXIDETIME=2MINUTES structoutfile=GOX.str # Poly Deposition rate.depomachine=LPCVDPOLYpolysilicona.msigma.dep=0.80smooth.win=0.1\ smooth.step=4monte1dep.rate=12 depositmachine=LPCVDPOLYtime=100minutesc.boron=4.0e21divisions=8dy=0.1 # Gate Stack Pattern depositphotoresistthick=0.040divisions=8 etchphotoresistleftp1.x=0.610 etchphotoresistrightp1.x=0.675 etchpolysiliconleftp1.x=0.61 etchpolysiliconrightp1.x=0.675 etchoxynitrideleftp1.x=0.610 etchoxynitriderightp1.x=0.675 etchphotoresistall # Oxide Spacer depositoxidethick=0.030division=10dy=0.1 depositphotoresistthick=1 etchphotoresiststartx=0.30y=1.4 etchcontx=0.3y=0.18 etchcontx=0.60y=0.18 etchdonex=0.60y=1.4 etchphotoresiststartx=0.69y=1.4 etchcontx=0.69y=0.18 etchcontx=1.02y=0.18 etchdonex=1.02y=1.4 # Source Drain Impant I implantborondose=6e13energy=12tilt=0rotation=0amorph etchphotoresistall # Spacer I pattern etchoxidestartx=0.0y=0.3 etchcontx=0.0y=0.10526 etchcontx=0.59y=0.10526 etchdonex=0.59y=0.3

P a g e | 98

Appendix A –SimulationCodes etchoxidestartx=0.70y=0.3 etchcontx=0.70y=0.10526 etchcontx=1.2y=0.1026 etchdonex=1.2y=0.3 # Spacer II Nitride depositnitridethick=0.050divisions=10 #S/D II Mask depositphotoresistthick=1 etchphotoresiststartx=0.30y=1.4 etchcontx=0.3y=0.2 etchcontx=0.60y=0.2 etchdonex=0.60y=1.4 etchphotoresiststartx=0.69y=1.4 etchcontx=0.69y=0.2 etchcontx=1.02y=0.2 etchdonex=1.02y=1.4 # S/D II Implant implantborondose=6e15energy=16tilt=0rotation=0amorph etchphotoresistall etchnitrideabovep1.y=0.23472 etchnitrideleftp1.x=0.56 etchnitriderightp1.x=0.72 etchoxideabovep1.y=0.23472 # Anneal diffustime=0.20temp=900nitropress=1.00 # Silicidation deposittitaniumthick=0.1divisions=9dy=0.10ydy=0.10 diffustime=1temp=450nitropress=1.00 etchtitaniumall structoutfile=PMOS_L65.str quit ############################### STRAINED SILICON NMOS PROCESS SIMULATION############### goathena linexloc=0.00spac=0.2 linexloc=0.1spac=0.2 linexloc=0.2spac=0.2 linexloc=0.30spac=0.2 linexloc=0.6spac=0.02 linexloc=0.7spac=0.02 linexloc=0.8spac=0.2 linexloc=1.0spac=0.2 linexloc=1.1spac=0.2 lineyloc=0.00spac=0.1 lineyloc=1.00spac=1.0 # Mesh Intialize initsiliconc.boron=1.0e15orientation=100 MethodMODEL.SIGE MethodSTRESS.HIST

P a g e | 99

Appendix A –SimulationCodes # Strained Si/Strained SiGe Epitaxy depositsiliconthick=0.02div=10c.boron=1.0e17c.germanium=1E20f.germanium=7.5E21 depositsiliconthick=0.07div=10c.boron=1.0e17c.germanium=7.5E21 depositsiliconthick=0.012div=10c.boron=1.0e17c.germanium=15E21 epitaxytime=10temp=500thickness=0.025c.boron=1.0e15division=10dy=0.1ydy=0.1 # STI Formation diffustime=20temp=1000dryo2press=1.00hcl.pc=0 depositnitridethick=0.05divisions=5 structoutfile=nitride_depo_15_30.str etchnitridestartx=0.2y=0.21 etchcontx=0.2y=0.14 etchcontx=0.3y=0.14 etchdonex=0.3y=0.21 etchnitridestartx=1.0y=0.21 etchcontx=1.0y=0.14 etchcontx=1.1y=0.14 etchdonex=1.1y=0.21 etchoxidestartx=0.2y=0.15 etchcontx=0.2y=0.116 etchcontx=0.3y=0.116 etchdonex=0.3y=0.15 etchoxidestartx=1.0y=0.15 etchcontx=1.0y=0.116 etchcontx=1.1y=0.116 etchdonex=1.1y=0.15 etchsiliconstartx=0.2y=0.1164 etchcontx=0.2y=0.07 etchcontx=0.3y=0.07 etchdonex=0.3y=0.1164 etchsiliconstartx=1.0y=0.1164 etchcontx=1.0y=0.07 etchcontx=1.1y=0.07 etchdonex=1.1y=0.1164 depositoxidethick=2divisions=10 etchmaterial=oxideabovep1.y=0.11614 etchnitrideall # NMOS V T Adjustment depositoxidethick=0.01divisions=8 implantborondose=3.0e13energy=16tilt=0rotation=0amorph etchmaterial=oxideabovep1.y=0.11614 # Gate Oxide Deposition OxyNitride methodGRID.OXIDE=0.05GRIDINIT.OX=0.01 rate.depomachine=CVDOXIDEoxynitriden.msigma.dep=0.20smooth.win=0.1\ smooth.step=1monte1dep.rate=1.0 depositmachine=CVDOXIDETIME=2

# Poly Deposition rate.depomachine=LPCVDPOLYpolysilicona.msigma.dep=0.80smooth.win=0.1\ smooth.step=4monte1dep.rate=12 depositmachine=LPCVDPOLYTIME=100MINUTESc.phosphor=1E20divisions=8 # Gate Stack Pattern depositphotoresistthick=0.040divisions=8

P a g e | 100

Appendix A –SimulationCodes etchphotoresistleftp1.x=0.610 etchphotoresistrightp1.x=0.680 etchpolysiliconleftp1.x=0.610 etchpolysiliconrightp1.x=0.680 etchoxynitriderightp1.x=0.680 etchoxynitrideleftp1.x=0.610 etchphotoresistall # Oxide Spacer depositoxidethick=0.028divisions=5 # S/D1 Mask depositphotoresistthick=1 etchphotoresiststartx=0.30y=1.4 etchcontx=0.3y=0.146 etchcontx=0.60y=0.146 etchdonex=0.60y=1.4 etchphotoresiststartx=0.69y=1.4 etchcontx=0.69y=0.146 etchcontx=1.0y=0.146 etchdonex=1.0y=1.4 # S/D Implant I implantarsenicdose=5e16energy=22tilt=0rotation=0amorph # Oxide Spacer Pattern etchphotoresistall etchoxidestartx=0.0y=0.28 etchcontx=0.0y=0.1162 etchcontx=0.59y=0.1162 etchdonex=0.59y=0.28 etchoxidestartx=0.70y=0.28 etchcontx=0.70y=0.1162 etchcontx=1.2y=0.1162 etchdonex=1.2y=0.28 # Spacer II Nitride depositnitridethick=0.040divisions=8 # S/DII Mask depositphotoresistthick=1 etchphotoresiststartx=0.30y=1.4 etchcontx=0.3y=0.156 etchcontx=0.59y=0.156 etchdonex=0.59y=1.4 etchphotoresiststartx=0.68y=1.4 etchcontx=0.68y=0.156 etchcontx=1.0y=0.156 etchdonex=1.0y=1.4 #S/D Implant II implantphosphordose=3e14energy=18tilt=0rotation=0amorph # Spacer II Pattern etchphotoresistall etchnitrideabovep1.y=0.2458 etchoxideabovep1.y=0.2458 etchnitrideleftp1.x=0.57 etchnitriderightp1.x=0.72

P a g e | 101

Appendix A –SimulationCodes # Anneal diffustime=0.25temp=900nitropress=1.00 # Silicidation deposittitaniumthick=0.007divisions=10dy=0.10ydy=0.10 diffustime=0.40temp=450nitropress=1.00 etchtitaniumall structoutfile=Titanium_silicidation_15_30.str quit

Device Simulations

############################################ NMOS IDS- VD CURVE ############################ # DEFINE ELECTRODE goathena initinfile=Titanium_silicidation_15_30.str electrodename=Sourcex=0.42y=0.1164 electrodename=Gatex=0.647y=0.2496 electrodename=Drainx=0.84y=0.1146 electrodename=Substratex=0.04y=0.1164 structoutfile=NMOS_DEVICE_15_30.str #### DEVICE SIMULATOR BEGINS goatlas initinfile=NMOS_DEVICE_15_30.str

# SET FLAGS FOR MOBILITY MODELS modelsboltzmanbgnccsmobconsrhfldmobDGLOGprinttemperature=300 # METHOD OF SOLUTION methodnewtongummelclimit=60 # define the Gate workfunction contactname=gaten.poly SolveQFACTOR=0.0 SolveQFACTOR=0.0001 SolveQFACTOR=0.001 SolveQFACTOR=0.01 SolveQFACTOR=0.1 SolveQFACTOR=1.0 # set gate biases with Vds=0.0 solveinit solvevgate=0.0outf=solve_ntmp0 solvevgate=0.2outf=solve_ntmp2 solvevgate=0.4outf=solve_ntmp4 solvevgate=0.6outf=solve_ntmp6 solvevgate=0.8outf=solve_ntmp8 solvevgate=1.0outf=solve_ntmp1 solvevgate=1.2outf=solve_ntmp12 #load in temporary files and ramp Vds loadinfile=solve_ntmp0 logoutf=NIDSAT_00_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1

P a g e | 102

Appendix A –SimulationCodes loadinfile=solve_ntmp2 logoutf=NIDSAT_0.2_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp4 logoutf=NIDSAT_0.4_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp6 logoutf=NIDSAT_0.6_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp8 logoutf=NIDSAT_0.8_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp1 logoutf=NIDSAT_1.1_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp12 logoutf=NIDSAT_1.2_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 extractname="nidsmax"max(i."drain") extractname="nsat_slope"slope(minslope(curve(v."drain",i."drain"))) extractmaxcurrentandsaturationslope outpute.fieldj.electronj.holej.conducj.totale.velocityh.velocity\ex.fieldey.fieldflowlinese.mobilityh.mobility qsse.temph.temp\chargeval.bandcon.bandqfnqfpj.dispphotogenimpacttot.doping saveoutf=SS_900_15_15_30.str qui ##################################### PMOS IDS- VD CURVE ##################################### #### DEVICE SIMULATOR BEGINS ##### goatlas initinfile=PMOS_L65.str # SET FLAGS FOR MOBILITY MODELS ##################### modelsboltzmanbgnccsmobfldmobDGLOGprinttemperature=300 # METHOD OF SOLUTION methodnewtonclimit=60 #definetheGateworkfunction contactname=gatep.poly # set gate biases with Vds=0.0 solveinit solvevgate=0outf=solve_ntmp0 solvevgate=0.2outf=solve_ntmp02 solvevgate=0.4outf=solve_ntmp04 solvevgate=0.6outf=solve_ntmp06 solvevgate=0.8outf=solve_ntmp1

P a g e | 103

Appendix A –SimulationCodes solvevgate=1.0outf=solve_ntmp2 solvevgate=1.2outf=solve_ntmp3 #load in temporary files and ramp Vds loadinfile=solve_ntmp00 logoutf=PIDSAT_0.0_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 outpute.fieldj.electronj.holej.conducj.totale.velocityh.velocity\ex.fieldey.fieldflowlinese.mobilityh.mobilityqss e.temph.temp\chargeval.bandcon.bandqfnqfpj.dispphotogenimpacttot.doping saveoutf=flatband.str loadinfile=solve_ntmp02 logoutf=PIDSAT_0.2_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp04 logoutf=PIDSAT_0.415_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 outpute.fieldj.electronj.holej.conducj.totale.velocityh.velocity\ex.fieldey.fieldflowlinese.mobilityh.mobilityqss e.temph.temp\chargeval.bandcon.bandqfnqfpj.dispphotogenimpacttot.doping saveoutf=weakinv.str loadinfile=solve_ntmp06 logoutf=PIDSAT_0.6_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp1 logoutf=PIDSAT_0.8_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp2 logoutf=PIDSAT_1.0_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 loadinfile=solve_ntmp3 logoutf=PIDSAT_1.2_15_30.log solvename=drainvdrain=0vfinal=2.0vstep=0.1 extractname="Pidsmax"max(i."drain") extractname="Psat_slope"slope(minslope(curve(v."drain",i."drain"))) extractmaxcurrentandsaturationslope tonyplot overlay PIDSAT_0.8_15_30.log PIDSAT_1.0_15_30.log PIDSAT_1.2_15_30.log PIDSAT_0.6_15_30.log PIDSAT_0.415_30.logPIDSAT_0.2_15_30.log outpute.fieldj.electronj.holej.conducj.totale.velocityh.velocity\ex.fieldey.fieldflowlinese.mobilityh.mobilityqss e.temph.temp\chargeval.bandcon.bandqfnqfpj.dispphotogenimpacttot.doping saveoutf=strong.str # quit P a g e | 104

Appendix B –MaterialParameters

APPENDIXB:MaterialParametersUsedinSimulation DefaultMaterialPropertiesofSiandSiGeasspecifiedinATLASManual Table B1 : Band Parameters for Silicon and Polysilicon

Table B2: Static dielectric constant for silicon and polysilicon

Table B3: Lattice mobility model (Low Field Mobility) for Si and polysilicon

Table B4 : Band Gap Narrowing Parameters

P a g e | 105

Appendix B –MaterialParameters

Table B5: Material Parameter for SiGe ( x=0.3)

P a g e | 106