<<

SiGeSiGe CVD,CVD, fundamentalsfundamentals andand devicedevice applicationsapplications

DrDr DerekDerek HoughtonHoughton AixtronAixtron IncInc ICPS,ICPS, FlagstaffFlagstaff JulyJuly 20042004 . OVERVIEW

1.1. Introduction Introduction

2.2. SiGe SiGe Market Market SurveySurvey

3.3. Fundamentals Fundamentals ofof SiGeSiGe CVDCVD

4.4. CVD CVD EquipmentEquipment forfor SiGeSiGe

5.5. Device Device aplicationsaplications andand commercializationcommercialization

6.6. SiGe SiGe materialsmaterials engineering,engineering, metrologymetrology

7.7. Summary Summary and and DiscussionDiscussion

SiGe’s Market Opportunity...

Si CMOS/BJTs SiGe HBTs/CMOS? III-V FETs/HBTs

Automotive Road Collision Pricing Avoidance

Navigation/Areospace GPS x-band Radar

Communications

GSM DCS ISM DECT FRA WLAN DTH WLAN OC-48 DBS FRA G-Ethernet OC-192 LMDS 0.1 0.2 0.5 1 2 5 10 20 50 100 Frequency (GHz)

SiGe HBT device structure and process description

KeyKey figures figures of of SiGe SiGe HBT HBT process process

•• SiGe SiGe BiCMOSBiCMOS uses uses SiGeSiGe HBT HBT ++ SiSi CMOSCMOS

•• SiGe SiGe HBT HBT showsshows samesame processprocess asas SiSi BT BT withwith exceptionexception ofof 30-8030-80 nmnm thinthin SiGeSiGe base base layerlayer (Ge(Ge <25%) <25%)

•• Growth Growth ratesrates usedused areare aboutabout 3030 nm/minnm/min (~(~ 22 minmin forfor basebase layer)layer)

•• Typically, Typically, samesame LPCVDLPCVD growthgrowth chamberschambers cancan depositedeposite both both SiSi and and SiGeSiGe layers layers Only difference: Base SiGe replaces •• Depending Depending onon SiGeSiGe HBT HBT process,process, basebase layerlayer depositeddeposited eithereither usingusing selectiveselective oror differentialdifferential epitaxyepitaxy SiGe‘s main market is telecommunication (wireless and datacom) SiGe IC forecast by market, 2000 to 2005, in mil. US$

CommentsComments Industrial •• SiGeSiGe viable viable alternativealternative toto GaAsGaAs Computer Consumer •• Main Main marketsmarkets beingbeing targeted:targeted:

Communications •• Cellular Cellular // CordlessCordless // WLANWLAN

•FO-Datacom•FO-Datacom 1800 CAGR=+125%CAGR=+125% (MUX/DEMUX)(MUX/DEMUX) 1600 1400 •• PC PC interfaceinterface cardscards // LANLAN 1200 1000 •• Future Future trends:trends: 800 •• integrated integrated lowlow powerpower RF-RF- SiGe [Mio. US$] IC Market 600 frontfront endend ofof mostmost handsetshandsets 400 •• First First choicechoice forfor up/downup/down 200 conversionconversion inin tuners/tuners/ transceiverstransceivers 0 •• will will dominatedominate 4040 GbpsGbps 2000 2001 2002 2003 2004 2005 YEAR Source: Strategies Unlimited, 1999 CAGR: Compound Average Growth Rate Strained Si: prototypes from Intel, IBM & UMC demonstrated

Almost all large Si-CMOS manufacturers are presenting cross sectional pictures of CMOS (with gate lengths between 65 and 90 nm) which use Strained-Si technology. Intel and IBM use their own technology, whereas UMC is Amberwave’s licensee Strained-Si HeteroWafer® technology: process and actual status

ActualActual statusstatus Strained-SiStrained-Si process process

•• Strained Strained SiSi technologytechnology enablesenables improvementimprovement inin CMOSCMOS performanceperformance andand functionalityfunctionality viavia replacementreplacement ofof thethe bulk,bulk, cubic-crystalcubic-crystal SiSi substratesubstrate withwith aa SiSi substratesubstrate thatthat containscontains aa tetragonallytetragonally distorted,distorted, biaxiallybiaxially strainedstrained SiSi thinthin filmfilm atat thethe surfacesurface

•• Different Different typestypes ofof processesprocesses developeddeveloped andand patentedpatented byby thethe mainmain players:players: AmberwaveAmberwave (IQE)(IQE) -- AIXTRON, AIXTRON, IBM,ToshibaIBM,Toshiba && IntelIntel

•• First First demosdemos ofof perfectperfect workingworking 5252 MbitMbit SRAMsSRAMs with with 9090 nmnm CMOSCMOS devicesdevices onon 300300 mmmm waferswafers availableavailable fromfrom Intel.Intel. Ramp-upRamp-up ofof PentiumPentium 44 productionproduction withwith Str.-SiStr.-Si planned planned forfor 2H/20032H/2003 !!

•• Process Process andand substratesubstrate costscosts stillstill notnot 100%100% fixed.fixed. PricePrice expectationsexpectations forfor substratesubstrate fromfrom ICIC manufacturersmanufacturers stillstill unknownunknown Strained Si process of Amberwave: One of the Strained Si pioneers

•Typically,•Typically, 22 toto 44 µmµm thickthick gradedgraded SiGeSiGe buffer buffer layer,layer, followedfollowed byby thinthin (<20(<20 nm)nm) strainedstrained SiSi channel channel layerlayer

•Depending•Depending onon substratesubstrate GeGe concentration, concentration, clearclear mobilitymobility andand transistortransistor currentcurrent drivedrive improvementimprovement

•• Through Through Amberwave’sAmberwave’s proprietaryproprietary chemical-mechanicalchemical-mechanical polishingpolishing (CMP)(CMP) intermediateintermediate process,process, SiGeSiGe bufferbuffer layerlayer surfacesurface roughnessroughness isis eliminatedeliminated beforebefore SiSi layerlayer deposi-tion,deposi-tion, resultingresulting inin samesame qualityquality comparedcompared toto bulkbulk SiSi waferswafers

Strained Silicon CMOS technology *SiGe deposited selectively, Intel Pentium IV in production Strained silicon mainly addresses high-end digital CMOS markets Digital electronic market forecast and expected strained Si penetration, 2003 to 2007, in mil. US$ 100000

CAGR*=CAGR*= 12.5%12.5% 80000 Si FPGAs

Si Digital Signal Processors (DSPs) 60000 Si Micro-controllers (MCUs)

40000 Si Microprocessors (MPUs)

20000 AssumptionsAssumptions

Digital CMOSMarket Electronic [Mio. US$] 0 •• Main Main applicationapplication willwill bebe high-endhigh-end 100000 2003 2004 2005 2006 2007 MicroprocessorsMicroprocessors likelike IBM‘sIBM‘s Source: VLSI Research, 2002 YEAR Power-PC,Power-PC, SUN‘sSUN‘s Sparc,Sparc, AMD‘sAMD‘s 80000 Athlon,Athlon, IntelIntel PentiumPentium // Itanium.Itanium.

60000 •• Main Main marketsmarkets beingbeing targeted:targeted: PCs,PCs, workstations,workstations, gamegame 40000 CAGR*=CAGR*= >200%>200% consoles,consoles, otherother internetinternet appliancesappliances

20000 •• Future Future trends:trends: StrainedStrained SiSi penetratespenetrates 3G/WLAN3G/WLAN wirelesswireless 0 applicationsapplications (DSPs/MCUs)(DSPs/MCUs) 2003 2004 2005 2006 2007

Strained Si US$] based CMOS Market [Mio. YEAR CAGR: Compound Average Growth Rate Source: AIXTRON estimates

Effect of air exposure prior to HF passivation )

-3 10 21

RCA + 4 hours in air + HF dip

RCA + HF dip 1020

1019 Oxygen

1018

1017 0 500 1000 1500 2000 2500 3000 3500

Carbon and Oxygen concentrations (cm Oxygen Carbon and Depth (Å)

Partial pressure for oxygen incorporation from H2O and O2

AIXTRON‘s flexible epi systems for Strained Si / SiGe Tricent® vs. Multiwafer Reactor® Tricent SiGe Cluster Tool: 150, 200 or 300 AIX 2600G3: up to 7x150 or 3x200 mm mm SiGe UHVCVD

Quartz tube

SiH4 -3 P~ 10 mbar GeH4 Tg<600C B2H6 PH3 wafers molecular flow  uniform growth sticking coefficients~10-3 UHV initial conditions, P~10-9 m bar hydrogen terminated Si wafers at start Hot wall UHVCVD Batch tool

Uniform Gas Distribution by AIXTRON´s Closed Coupled Showerhead

Horizontal Quarz Tube Reactor Closed Coupled Showerhead Reactor Growth Rate Growth Rate

Distance to gas inlet Distance to gas inlet SiGe Tricent® Dual-Chamber Showerhead (pat. pend.)

Showerhead Detail Water-Cooled Reactor Lid

N2/H2 Gas Mix

Showerhead

Process Chamber

TLid TSH TSubstr Coated Graphite Wafer Susceptor Temperature Control Concept SiGe Tricent® Unique CVD chamber features developed beyond industry standards

..ShowerheadShowerhead ..TemperatureTemperature controlcontrol ® Tricent Customer Process Support

Clean Room Wall

Process platform for HBTs, HFETs and BiCMOS - pure Silicon Growth - differential SiGe:C growth - selective SiGe:C growth - SiGe on SOI Cassette Station Temp Process Gas Sources 550-680°C SiGe:C SiH4 + GeH4 + SiCH6 650-750°C SiGe SiH4 + GeH4 730-800°C sel. SiGe SiH2Cl2 + HCl + GeH4 800-900°C SEG SiH2Cl2 + HCl

SiGe HBT in a BiCMOS flow

Metallisation Polysilicon Emitter

Spacers Base SiGe

LOCOS n+ EpitaxialLayer N N +

MOS HBT

XTEM of Si deposition on Si/oxide HBT base structure SIMS profiling

15 10 19 SIMS analysis (cameca) CVD-197 conc. (%)

) 18 -3 10 10

10 17 Ge 5

Boron conc. (cm 10 16

10 15 0 0 500 1000 1500 Depth (Å) Gummel Plot, npn HBT

-3 10 Ic Ib 10 -5

A = 0.6 x 1.2 micron 2 E V = 0

(A) -7 10 CB B I , C I

-9 10

NPN11A, CVD-140

-11 10 Triangular SiGe base profile V (V) BE -13 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4

CMOS

Selective SiGe Epitaxy

DC Houghton J.Appl.Phys.1991

Strained Silicon on Strained Silicon on graded SiGe buffer SOI wafer by layer transfer Amberwave SOITEC Ge%

Strained Si Strained Si SiGe stack SiGe grade

Si substrate Si substrate

DCD x ray diffraction SIMS profileStrained Si – Graded SiGe Buffer

Cs Cascade Scientific

12/04/2003 1E+23 1E+05 Sample A3 29Si+30Si-> 1E+22 70Ge interface 1E+04 1E+21 SIMS 1E+03 1E+20

1E+19 Low O and C background 1E+02

No Interface peak 16O Counts Per Second Concentration 1E+18

1E+01 1E+17 12C

1E+16 1E+00 0246 810 Depth (microns)

Strained Si layers

SiGe 40%

SiGe graded 5...40%

Pure Ge on Silicon substrates Low defect density Ge without SiGe graded buffer

Ge

Si wafer

Cross sectional TEM Plan view TEM (looking down through Ge cap) Growth Rate vs Germanium concentration

12

Rate @ 495° 10 570°C Rate @ 525° Rate @ 570°

8 ) 525°C

6

4

495°C 2

Growth Rate (nm/minute Growth Rate 0

0 5 10 15 20 25 30 35 40 Ge concentration (%) Growth Rates vs Temperature

10 Si Ge 600°C 0.7 0.3

Reactant Limited

Si 1

Ea = 1.6 ± 0.1 eV 495°C Growth rate (nm/minute)

0.1 1.1 1.15 1.2 1.25 1.3 1.35

1000/T (k-1)

SiGe/Si Multilayer structure

SiGe silicon Abrupt Si/SiGe interfaces and precise control of Ge % for “PIN Photodetector” SiGe Multi Quantum Wells (MQW)

Cs Cascade Scientific

12/04/2003 a5321d_lin.SWF 20 1E+07 Sample A 18 SIMSSIMS 1E+06 16 30Si-> 14 1E+05

12 1E+04 10 70Ge 1E+03 8 Counts Per Second 6 1E+02

Concentration (Ge %) 4 1E+01 2

0 1E+00 0 1000 2000 3000 4000 5000 Depth (angstroms) SiGe Multi Quantum Wells (MQW) Reference (Active) Comparison 10A532-14 XRD • Double crystal X-ray data 10 3 • Period of super-lattice = 39.5nm • Mean Ge fraction of structure (Si spacers + SiGe Wells) = 0.6% 10 2

10 1 Intensity (cps)

10 0

10 -1 -3000 -2000 -1000 0 1000 2000 3000 th\2th (sec) Measured by Raman Scattering Raman Scattering Fourier transform low temperature photoluminescence apparatus.

Fourier Spectrometer

Moving Mirror Germanium Detector

Beam- splitter

Excitation Source

Laser Cryostat SAMPLE PL spectra from SiGe HBT transistors

Patterned Wafer Vertical Profile SiGe 50 nm SiGe Layer

Si Surround SiGe Etched Off Photoluminescence Intensity

900 1000 1100 Energy - meV PL of SiGe HBT

SiGe PL Threshold & 1 Saturation Effects

0.1

Sample A 0.01 As Grown Sample B Sample B

SiGe PL Peak Height Peak Height PL SiGe Annealed As Grown 1E-3 1015 1016 1017 1018 -1 -2 Incident Photon Flux / s cm

PL Spectra Sample B Annealed

TO 100 15% Ge Profile 16 -1 -2 3.5x10 s cm NP

TA Si Carrier 10 Wavefunction 20 nm PL Intensity PL

1.4x1016 s-1cm-2 Si SiGe - Graded Composition Si 1 980 1000 1020 1040 1060 Energy / meV Photoluminescence Mapping of Composition and Bandgap on a 6" wafer

Sample point "NP" energy Energy Composition (meV) bandgap (meV) (% of Ge)

a 1080 1092.2 8.97 b 1082.5 1094.7 8.69 c 1085.2 1097.4 8.39 d 1083.3 1095.5 8.60 e 1082.5 1094.7 8.69 h f 1084.8 1097.0 8.44 g 1083.7 1095.9 8.56 g h 1079 1091.2 9.08 d c b a

f

e Auger Electron Spectroscopy Of Graded germanium concentration profiles

20 Actual profile Ideal profile

15

HBT profile FET profile 10

5 Germanium atomic (%) concentration 0 0 2000 4000 6000 8000 1 10 4 Sputtering time (s) Trends in “novel” epitaxy in Si based materials

For graded SiGe buffers Low CoO, defect density reduction, flatness

Thin SiGe epitaxy with defect nucleation layer SOI substrates

Lower thermal budget in CMOS low leak rate tools new precursors with high GR at <600C, e.g.trisilane

Selectivity, patterned wafers, SOI substrates

High mobility channels Pure Ge, III-V’s on Ge on SiGe, epitaxial metals