Stress Modeling of Nanoscale Mosfet
Total Page:16
File Type:pdf, Size:1020Kb
STRESS MODELING OF NANOSCALE MOSFET By NIRAV SHAH A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Nirav Shah This work is dedicated to my parents for their unconditional love and support, and without whom, I could not have achieved what I have. ACKNOWLEDGMENTS First and foremost, I would like to thank my advisor, Dr. Scott E. Thompson, for all the support, encouragement and assistance he has given me throughout my graduate studies, and for the opportunity to work with him in the SWAMP group. Despite being really busy, he always found time for his students to discuss research and other technical deliberations. I will always adore his innovative thinking and diligent commitment to research, which I tried to imbibe during my work tenure. I am also very grateful to Dr. Mark E. Law and Dr. William R. Eisenstadt for supporting my research activities and for their guidance and support as my supervisory committee. This research could not have been completed without the financial support of the Semiconductor Research Corporation and Applied Materials Inc. I would like to thank the University of Florida and Department of Electrical and Computer Engineering for giving me an opportunity to explore the wide horizons of the technical arena. I would like to thank the SWAMP group and all its members for their warm support during my research. I appreciate the efforts of Teresa Stevens for being an excellent program assistant. I am grateful to Russ Robison for his assistance to get me acquainted with FLOOPS and his continuous support thereafter. I would like to thank Ljubo Radic for being a good friend and helping me solve problems during my research work. I am especially thankful to Heather Randell, for her help all throughout my research work and then after to compile my thesis. I would like to thank Sagar Suthram, iv Guangyu Sun, Nidhi Mohta and Kehuey Wu for their availability for research related discussions. I thank my loving parents and each member of my family, without whose support and motivation, my achievements would have been incomplete. Last but not least, I would specifically like to thank all my roommates, friends, colleagues and teachers in the United States, and back home, for their overwhelming love and trust in my efforts, and for standing by me whenever I needed them the most. v TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix ABSTRACT....................................................................................................................... xi CHAPTER 1 INTRODUCTION ........................................................................................................1 1.1 History and Motivation...........................................................................................1 1.2 Strained Silicon Physics .........................................................................................3 1.3 Modifications in Conventional MOSFET Equation due to Strain..........................5 1.4 Summary.................................................................................................................6 2 SIMULATION MECHANICS.....................................................................................7 2.1 Basics of Engineering Mechanics...........................................................................7 2.2 Relationship between Stress and Strain..................................................................8 2.3 Software Approach To Engineer Stress................................................................10 2.3.1 ISE-FLOOPS Background .........................................................................10 2.3.2 How to use ISE-FLOOPS...........................................................................11 2.3.3 Computation of Mechanical Stress using ISE-FLOOPS............................11 2.3.4 Finite Element Method (FEM) ...................................................................12 2.3.5 Boundary Conditions..................................................................................15 2.4 Material Parameter Sensitivity .............................................................................15 2.5 Summary...............................................................................................................17 3 STRESS GENERATION TECHNIQUES IN ADVANCED CMOS ........................18 3.1 Types of Process Induced Stresses .......................................................................18 3.1.1 Thermal Mismatch Stress...........................................................................18 3.1.2 Intrinsic Stress ............................................................................................19 3.1.3 Dopant Induced Stress................................................................................20 3.2 Biaxial Stress Generation Technique....................................................................20 3.3 Uniaxial Stress Generation Technique .................................................................23 vi 3.4 Effect of Varying Geometrical Parameters...........................................................24 3.4.1 Critical Dimension Scaling.........................................................................25 3.4.2 Polysilicon Gate Scaling.............................................................................26 3.4.3 Effect of Buffer Layer on NMOS Channel Stress......................................27 3.4.4 Effect of Salicide ........................................................................................28 3.5 Summary...............................................................................................................29 4 CASES OF TECHNOLOGICAL IMPORTANCE AND RELATED ISSUES.........30 4.1 Strained-Silicon-On-Insulator (SSOI) ..................................................................30 4.2 Uniaxially Strained Device Issues........................................................................32 4.2.1 Effect of Varying Silicon Nitride Thickness ..............................................32 4.2.2 Multiple Gate Structure ..............................................................................34 4.2.3 Stress Relaxation Due to the Presence of STI ............................................35 4.2.4 Stress Relaxation due to Contact Etching ..................................................37 4.2.5 Effect of Raised Source/Drain in PMOS Device .......................................39 4.2.6 SOI vs Bulk Technology ............................................................................40 4.2.7 Effect on Stress by Boron Doping in p-channel Devices...........................42 4.3 Prospective Stress Generation Techniques...........................................................44 4.3.1 Stress Variation Along the Device Width ..................................................45 4.3.2 Stress Engineering by STI Depth ...............................................................46 4.3.3 Stress Engineering by STI Width...............................................................47 4.3.4 Stress Dependence on STI Topology .........................................................48 4.3.5 Stress Dependence on STI Densification ...................................................49 4.4 Summary...............................................................................................................49 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK ........................................................................................................................51 5.1 Summary and Conclusions ...................................................................................51 5.2 Recommendations for Future Work .....................................................................56 5.2.1 3D Modeling...............................................................................................57 5.2.2 Additivity Issue ..........................................................................................57 5.2.3 Stress Generation due to Thermal Mismatch and Material Growth...........58 5.2.4 Better Understanding of Novel Stress Generation Techniques..................58 LIST OF REFERENCES...................................................................................................60 BIOGRAPHICAL SKETCH .............................................................................................65 vii LIST OF TABLES Table page 2-1 Material Parameter Sensitivity Results ....................................................................16 2-2 Material Properties at Room Temperature ...............................................................17 3-1 Longitudinal and Transverse Piezoresistance Coefficients Evaluated for Standard Layout and Wafer Orientation (Units of 10-12 cm2 dyne-1).......................21 3-2 Effect of Salicide on NMOS Channel Stress ...........................................................29 viii LIST OF FIGURES Figure page 1-1 Prediction by Dr. Gordon E. Moore, also known as Moore’s Law............................1 1-2 Transistor size