Chasing Moore's Law with 90-Nm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel's Breakthrough in High-K Gate Dielectric Drives Moore's Law Well
January 2004 Magazine Page 1 Technology @Intel Intel’s Breakthrough in High-K Gate Dielectric Drives Moore’s Law Well into the Future Robert S. Chau Intel Fellow, Technology and Manufacturing Group Director, Transistor Research Intel Corporation Copyright © Intel Corporation 2004. *Third-party brands and names are the property of their respective owners. 1 January 2004 Magazine Page 2 Technology @Intel Table of Contents (Click on page number to jump to sections) INTEL’S BREAKTHROUGH IN HIGH-K GATE DIELECTRIC DRIVES MOORE’S LAW WELL INTO THE FUTURE................................................................... 3 OVERVIEW .......................................................................................................... 3 RUNNING OUT OF ATOMS ....................................................................................... 3 SEARCH FOR NEW MATERIALS ................................................................................ 4 RECORD PERFORMANCE ........................................................................................ 5 CAN-DO SPIRIT.................................................................................................... 6 SUMMARY ........................................................................................................... 6 MORE INFO ......................................................................................................... 7 AUTHOR BIO........................................................................................................ 7 DISCLAIMER: THE MATERIALS -
Strained Silicon Devices M. Reiche , O. Moutanabbir , J. Hoentschel , U
Solid State Phenomena Vols. 156-158 (2010) pp 61-68 Online available since 2009/Oct/28 at www.scientific.net © (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.156-158.61 Strained Silicon Devices M. Reiche 1a , O. Moutanabbir 1b, J. Hoentschel 2c , U. Gösele 1d, S. Flachowsky 2e and M. Horstmann 2f 1 Max Planck Institute of Microstructure Physics, Weinberg 2, D – 06120 Halle, Germany 2 GLOBALFOUNDRIES Fab 1, Wilschdorfer Landstraße 101, D – 01109 Dresden, Germany a [email protected], b [email protected], c [email protected], d [email protected], e stefan.flachowsky@ globalfoundries.com, f [email protected] Keywords: strained silicon, mobility enhancement, process-induced strain, global strain, SSOI. Abstract. Strained silicon channels are one of the most important Technology Boosters for further Si CMOS developments. The mobility enhancement obtained by applying appropriate strain provides higher carrier velocity in MOS channels, resulting in higher current drive under a fixed supply voltage and gate oxide thickness. The physical mechanism of mobility enhancement, methods of strain generation and their application for advanced VLSI devices is reviewed. Introduction The ordinary device scaling was the most important principle of performance enhancement in Si CMOS for more than 30 years. However, starting with 90 nm technologies the performance enhancements of CMOS started to diminish through standard device scaling such as shrinking the gate length and thinning the gate oxide due to several physical limitations in miniaturization of MOSFETs. For example, thinning the gate oxide requires a reduction of the supply voltage and an increase of the gate tunneling current occurs. -
Moore's Law at 40
Moore-Chap-07.qxd 7/28/2006 11:07 AM Page 67 C H A P T E R 7 MOORE’S LAW AT 40 Gordon E. Moore ollowing a paper that I wrote in 1965 and a speech that I gave in F1975, the term “Moore’s law” was coined as a name for a type of prediction that I had made. Over time, the term was used much more broadly, referring to almost any phenomenon related to the semiconductor industry that when plotted on semilog graph paper approximates a straight line. In more recent years, Moore’s law has been connected to nearly any exponential change in technology. I hesitate to focus on the history of my predictions, for by so doing I might restrict the definition of Moore’s law. Nevertheless, in my discussion, I will review the background to my predictions, the reasoning behind them, how these pre- dictions aligned with actual industry performance, and why they did. I will close with a look forward at the future prospects for the prediction. OVERVIEW Moore’s law is really about economics. My prediction was about the future direction of the semiconductor industry, and I have found that the industry is best understood through some of its underlying economics. To form an overall view of the industry, it is useful to consider a plot of revenue versus time. As Figure 1 indicates, the semicon- ductor industry has been a strong growth industry: it has grown a hundredfold dur- ing Intel’s existence. However, from my point of view, this plot of revenue growth really underestimates the true rate of growth for the industry. -
Intel(R) Pentium(R) 4 Processor on 90 Nm Process Datasheet
Intel® Pentium® 4 Processor on 90 nm Process Datasheet 2.80 GHz – 3.40 GHz Frequencies Supporting Hyper-Threading Technology1 for All Frequencies with 800 MHz Front Side Bus February 2005 Document Number: 300561-003 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Pentium® 4 processor on 90 nm process may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading Technology enabled chipset, BIOS and operating system. -
Intel's 90 Nm Logic Technology
IEEE/CPMT Intel's 90 nm Logic Technology Mark Bohr Intel Senior Fellow Director of Process Architecture & Integration ® March 25, 2003 Outline y Logic Technology Evolution y 90 nm Logic Technology y Package Technology ® Page 2 CPU Transistor Count Trend 1 billion transistor CPU by 2007 1,000,000,000 Itanium® 2 CPU 100,000,000 Pentium® 4 CPU Pentium® III CPU 10,000,000 Pentium® II CPU Pentium® CPU TM 1,000,000 486 CPU 386TM CPU 100,000 286 8086 10,000 8080 8008 4004 1,000 1970 1980 1990 2000 2010 ® Page 3 CPU MHz Trend 10 GHz CPU by 2007 10,000 Pentium® 4 CPU 1,000 Pentium® III CPU Pentium® II CPU Pentium® CPU MHz 100 486TM CPU 386TM CPU 286 10 8086 8080 1 1970 1980 1990 2000 2010 ® Page 4 Feature Size Trend 10 10000 3.0um 2.0um 1.5um 1.0um 1 .8um Feature 1000 .5um .35um Size .25um Nanometer Micron .18um .13um 90nm 0.1 100 0.01 10 1970 1980 1990 2000 2010 2020 New technology generation introduced every 2 years ® Page 5 Feature Size Trend 10 10000 3.0um 2.0um 1.5um 1.0um 1 .8um Feature 1000 .5um .35um Size .25um Nanometer Micron .18um .13um 90nm 0.1 100 Gate Length 50nm 0.01 10 1970 1980 1990 2000 2010 2020 Transistor gate length scaling faster for improved performance ® Page 6 Logic Technology Evolution Each new technology generation provides: ~ 0.7x minimum feature size scaling ~ 2.0x increase in transistor density ~ 1.5x faster transistor switching speed Reduced chip power Reduced chip cost ® Page 7 Outline y Logic Technology Evolution y 90 nm Logic Technology y Package Technology ® Page 8 Key 90 nm Process Features y High Speed, Low -
Strained Silicon Layer in CMOS Technology
ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014 63 Strained Silicon Layer in CMOS Technology Tatjana Pešić-Brđanin, Branko L. Dokić However, the other demands of designing integrated circuits Abstract— Semiconductor industry is currently facing with the with ultra large scale of integration, such as, for example, the fact that conventional submicron CMOS technology is increase in density on the chip and reducing the size of the approaching the end of their capabilities, at least when it comes to chip, have led to the scaling of other transistor dimensions. scaling the dimensions of the components. Therefore, much attention is paid to device technology that use new technological Fig. 1 shows the trend of reducing the gate length that has led structures and new channel materials. Modern technological to the emergence of new technologies [1]. Reducing the gate processes, which mainly include ultra high vacuum chemical length caused a simultaneous scaling of other technological vapor deposition, molecular beam epitaxy and metal-organic parameters, in order to meet the required performances of molecular vapor deposition, enable the obtaining of ultrathin, integrated circuits regarding high speed and low power crystallographically almost perfect, strained layers of high purity. consumption, or the desired degree of integration. However, In this review paper we analyze the role that such layers have in modern CMOS technologies. It’s given an overview of the with recent CMOS technologies, in which the gate length is characteristics of both strain techniques, global and local, with less than 90 nm, this performance improvement becomes more special emphasis on performance of NMOS biaxial strain and difficult due to physical limitations in miniaturization of MOS PMOS uniaxial strain. -
A 65 Nm 2-Billion Transistor Quad-Core Itanium Processor
18 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 1, JANUARY 2009 A 65 nm 2-Billion Transistor Quad-Core Itanium Processor Blaine Stackhouse, Sal Bhimji, Chris Bostak, Dave Bradley, Brian Cherkauer, Jayen Desai, Erin Francom, Mike Gowan, Paul Gronowski, Dan Krueger, Charles Morganti, and Steve Troyer Abstract—This paper describes an Itanium processor imple- mented in 65 nm process with 8 layers of Cu interconnect. The 21.5 mm by 32.5 mm die has 2.05B transistors. The processor has four dual-threaded cores, 30 MB of cache, and a system interface that operates at 2.4 GHz at 105 C. High speed serial interconnects allow for peak processor-to-processor bandwidth of 96 GB/s and peak memory bandwidth of 34 GB/s. Index Terms—65-nm process technology, circuit design, clock distribution, computer architecture, microprocessor, on-die cache, voltage domains. I. OVERVIEW Fig. 1. Die photo. HE next generation in the Intel Itanium processor family T code named Tukwila is described. The 21.5 mm by 32.5 mm die contains 2.05 billion transistors, making it the first two billion transistor microprocessor ever reported. Tukwila combines four ported Itanium cores with a new system interface and high speed serial interconnects to deliver greater than 2X performance relative to the Montecito and Montvale family of processors [1], [2]. Tukwila is manufactured in a 65 nm process with 8 layers of copper interconnect as shown in the die photo in Fig. 1. The Tukwila die is enclosed in a 66 mm 66 mm FR4 laminate package with 1248 total landed pins as shown in Fig. -
Electron Effective Mobility in Strained Si/Si1-Xgex MOS Devices Using Monte Carlo Simulation
Electron effective mobility in strained Si/Si1-xGex MOS devices using Monte Carlo simulation V. Aubry-Fortuna, P. Dollfus, S. Galdin-Retailleau Institut d'Electronique Fondamentale, CNRS UMR 8622, Bât. 220, Université Paris-Sud, 91405 Orsay cedex, France. E-mail : [email protected] Abstract Based on Monte Carlo simulation, we report the study of the inversion layer mobility in n-channel strained Si/ Si1-xGex MOS structures. The influence of the strain in the Si layer and of the doping level is studied. Universal mobility curves µeff as a function of the effective vertical field Eeff are obtained for various state of strain, as well as a fall-off of the mobility in weak inversion regime, which reproduces correctly the experimental trends. We also observe a mobility enhancement up to 120 % for strained Si/ Si0.70Ge0.30, in accordance with best experimental data. The effect of the strained Si channel thickness is also investigated: when decreasing the thickness, a mobility degradation is observed under low effective field only. The role of the different scattering mechanisms involved in the strained Si/ Si1-xGex MOS structures is explained. In addition, comparison with experimental results is discussed in terms of SiO2/ Si interface roughness, as well as surface roughness of the SiGe substrate on which strained Si is grown. Keywords strained Si, effective mobility, Monte Carlo simulation, MOSFET PACS codes 72.20.Dp, 72.20.Fr, 85.30.Tv -1- 1. Introduction The use of strained-Si channel pseudomorphically grown on a SiGe virtual substrate is becoming a promising way to accelerate the improvement of CMOS performance. -
Intel® Pentium® 4 Processor on 90 Nm Process Specification Update
R Intel® Pentium® 4 Processor on 90 nm Process Specification Update September 2006 Notice: The Intel® Pentium® processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are documented in this Specification Update. Document Number: 302352-031 R INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Pentium® processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading Technology enabled chipset, BIOS and operating system. -
Sige CVD, Fundamentals and Device Applications
SiGeSiGe CVD,CVD, fundamentalsfundamentals andand devicedevice applicationsapplications DrDr DerekDerek HoughtonHoughton AixtronAixtron IncInc ICPS,ICPS, FlagstaffFlagstaff JulyJuly 20042004 . OVERVIEW 1.1. Introduction Introduction 2.2. SiGe SiGe Market Market SurveySurvey 3.3. Fundamentals Fundamentals ofof SiGeSiGe CVDCVD 4.4. CVD CVD EquipmentEquipment forfor SiGeSiGe 5.5. Device Device aplicationsaplications andand commercializationcommercialization 6.6. SiGe SiGe materialsmaterials engineering,engineering, metrologymetrology 7.7. Summary Summary and and DiscussionDiscussion SiGe’s Market Opportunity... Si CMOS/BJTs SiGe HBTs/CMOS? III-V FETs/HBTs Automotive Road Collision Pricing Avoidance Navigation/Areospace GPS x-band Radar Communications GSM DCS ISM DECT FRA WLAN DTH WLAN OC-48 DBS FRA G-Ethernet OC-192 LMDS 0.1 0.2 0.5 1 2 5 10 20 50 100 Frequency (GHz) SiGe HBT device structure and process description KeyKey figures figures of of SiGe SiGe HBT HBT process process •• SiGe SiGe BiCMOSBiCMOS uses uses SiGeSiGe HBT HBT ++ SiSi CMOSCMOS •• SiGe SiGe HBT HBT showsshows samesame processprocess asas SiSi BT BT withwith exceptionexception ofof 30-8030-80 nmnm thinthin SiGeSiGe base base layerlayer (Ge(Ge <25%) <25%) •• Growth Growth ratesrates usedused areare aboutabout 3030 nm/minnm/min (~(~ 22 minmin forfor basebase layer)layer) •• Typically, Typically, samesame LPCVDLPCVD growthgrowth chamberschambers cancan depositedeposite both both SiSi and and SiGeSiGe layers layers Only difference: Base SiGe replaces Silicon •• Depending Depending -
Challenges and Innovations in Nano‐CMOS Transistor Scaling
Challenges and Innovations in Nano‐CMOS Transistor Scaling Tahir Ghani Intel Fellow Logic Technology Development October, 2009 Nikkei Presentation 1 Outline • Traditional‐Scaling ‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response • Post “Traditional‐Scaling” Innovations ‐ Mobility Booster: Uniaxial Strain - Poly Depletion Elimination: Metal Gate - Gate Leakage Reduction: HiK • Future Challenges and Options - Power Limitation - Potential New Transistor Structures and Materials 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Transistor Count has Doubled Every Two Years 40+ Years of Moore’s Law at INTEL: From Few to Billions of Transistors 2X transistors every 2 years Traditional Scaling Era END OF TRADITIONAL SCALING ERA ~ 2003 Lasted ~40 YEARS Top “Traditional-Scaling” Enablers R. Dennard et.al. IEEE JSSC, 1974 • Gate Oxide Thickness Scaling - Key enabler for Lgate scaling • Junction Scaling - Another enabler for Lgate scaling - Improved abruptness (REXT reduction) • Vcc Scaling - Reduce XDEP (improve SCE) - However, did not follow const E field 1990’s: Golden Era of Scaling Vcc, Tox & Lg scaling & increasing Idsat Year 2000: INTEL 90nm CMOS Pathfinding End of “Traditional-Scaling” Era Gate oxide running Mobility degrades out of atoms with scaling 1.E+04 Jox limit VLSI Symp. 2000 300 Universal 1.E+03 NA= Mobility 3x1017 ] 1.E+02 SiO 250 2 2 /(V.s) [Lo et. al, EDL97] 2 1.E+01 18 200 1.3x10 [A/cm 130nm 1.E+00 1.8x1018 OX J 1.E-01 18 150 2.5x10 18 1.E-02 Nitrided SiO2 180nm 3.3x10 1.E-03 Mobility (cm 100 0.51.01.52.02.5 0 0.5 1 1.5 TOX Physical [nm] E EFF [MV/cm] • Gate Oxide Leakage • Universal Mobility Model direct tunneling limited • Ionized impurity scattering T. -
Elastic Strain Engineering in Silicon and Silicon-Germanium Nanomembranes
Elastic Strain Engineering in Silicon and Silicon-Germanium Nanomembranes By Deborah Marie Paskiewicz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 11/14/12 The dissertation is approved by the following members of the Final Oral Committee: Max G. Lagally, Professor, Materials Science and Engineering Mark A. Eriksson, Professor, Physics Thomas F. Kuech, Professor, Chemical and Biological Engineering Paul G. Evans, Associate Professor, Materials Science and Engineering Irena Knezevic, Associate Professor, Electrical and Computer Engineering ©Copyright by Deborah Marie Paskiewicz 2012 All Rights Reserved i Abstract Elastic Strain Engineering in Silicon and Silicon-Germanium Nanomembranes Deborah M. Paskiewicz Under the supervision of Professor Max G. Lagally At the University of Wisconsin-Madison Strain in crystalline materials alters the atomic symmetry, thereby changing materials properties. Controlling the strain (its magnitude, direction, extent, periodicity, symmetry, and nature) allows tunability of these new properties. Elastic strain engineering in crystalline nanomembranes (NMs) provides ways to induce and relax strain in thin sheets of single- crystalline materials without exposing the material to the formation of extended defects. I use strain engineering in NMs in two ways: (1) elastic strain sharing between multiple layers using the crystalline symmetry of the layers to induce unique strain distributions, and (2) complete elastic relaxation of single-crystalline alloy NMs. In both cases, NM strain engineering methods enable the introduction of unique strain profiles or strain relaxation in ways not compatible with conventional bulk processing, where strain destroys the long-range crystallinity.