<<

            TheSixthMeetingoftheInternationalUnion ofForestResearchOrganizations IUFROWorkingParty7Ͳ02Ͳ09 PhytophthorainForestsand NaturalEcosystems     Córdoba(Spain) 9thͲ14thSeptember 2012

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 1 9th-14th September 2012 Córdoba-Spain COMMITTEEMEMBERS  LocalOrganising ScientificCommitteeOrganisingCommittee Committee PalomaAbadͲCamposPalomaAbadͲCampos  MónicaBerbegal CliveBrasierAnaCristinaCoelho  PaoloDeVita AnaCristinaCoelhoPilarFernándezRebollo  SantiagoCatalà EverettHansenLuisVenturaGarcía  MariliaHorta GilesHardyThomasJung  RamónLeal ThomasJungAnaPérezSierra  MaelaLeón AnaPérezSierra CristinaRamo  JonatánSánchez MaríaEsperanzaSánchezMaríaEsperanzaSánchez  MaríaSerrano AndreaVanniniAndreaVannini  

 

2 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain SPONSORS



  SecretaríadeEstadodeInvestigación,DesarrolloeInnovación.  ExcelentísimaDiputaciónProvincial MinisteriodeEconomíayCompetitividad.GobiernodeEspaña deCórdoba 

  UniversidaddeCórdoba UniversitatPolitècnicadeValència 

   AyuntamientodeCórdoba CEMACAMͲCentroEducativo Ajuntamentd’Alcoi(Alicante) delMedioAmbienteFont RojaͲAlcoi 

  ConsorciodeTurismodeCórdoba FertinyectSL  COLLABORATORS     UniversidadedoAlgarveConsejeríadeAgriculturayMedioAmbiente, JuntadeAndalucía   D.JavierCrusells.LaJarosa(Córdoba) D.JoséRosa.DehesaLosBueyes(Huelva) 

 CampoBaldío(Huelva) AyuntamientodelaPuebladelRío(Sevilla)

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 3 9th-14th September 2012 Córdoba-Spain   

DearColleagues,

After the Fifth Meeting of the International Union of Forest Research Organizations IUFROWorkingParty7Ͳ02Ͳ09“PhytophthorainForestsandNaturalEcosystems”inRotoruain New Zealand in 2010, we are pleased to hold the Sixth Meeting in Córdoba (Spain). The meetinghasbeenorganizedjointlybytheUniversidaddeCórdobaandUniversitatPolitècnica deValència.

The city of Córdoba has over two thousand years of history. It was founded in the II centuryBCbytheRomanConsulClaudiusMarcellus,keepingthesameIberianname“Corduba” (hill near the river) of the former Iberian (Turdetan) village emerged in the late second milleniumBC.Córdobaisalivingwitnessandafaithfulreflectionofpowerfulcivilisationsthat have settled there. Romans, Moors, Jews and Christians have all left a deep mark on its heritage,culture,traditionsandcustoms.TheMosquewasdeclaredaWorldHeritagein1984, beingextendedtothewholeoldcityin1994.

Furthermore, Córdoba has landscapes derived from Mediterranean forest ecosystems called“”,consistingofpasturelandfeaturingherbaceousspeciesforgrazingandtree species belonging to the genus Quercus, such as holm oak (Quercus ilex) and  oak (Q. suber),althoughothertreespeciessuchpines,wildolivesorchestnutsarealsopresent.Two field trips to visit “dehesas” that show different degrees of decline caused by Phytophthora havebeenorganizedforthismeeting.

Aspreviousmeetings,wehopethatthismeetingwillbeanewoccasiontoexchange scientificideasandencouragenewcollaborations.

Yourssincerely,   Theorganizingcommitte

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 5 9th-14th September 2012 Córdoba-Spain PROGRAMME  6thInternationalMeetingIUFROWorkingParty7.02.09 ‘PhytophthorainForestsandNaturalEcosystems’   SUNDAY,9thSeptember2012  17:00Ͳ20:30 RegistrationandPosterSetUp  20:30 DeparturetoWelcomeReception  21:00 WelcomeReceptionatPalaciodelaMerced  MONDAY,10thSeptember2012  08:30–13:00 MORNINGFIELDTRIP:Holmoak(Quercusilex)dehesa  13:30Ͳ15:00 LUNCH  15:00Ͳ15:30 WelcomingAddress:OrganisingCommitteeandLocalAuthorities  15:30Ͳ17:30 SESSION1:EVOLUTION,POPULATIONBIOLOGY,EXPERIMENTALTAXONOMY  Chairperson:EverettHansen  15:30Ͳ15:40 Determiningtheoriginoftheemergingpathogen,Phytophthoramultivora A.REA,G.HARDY,M.STUKELY,T.BURGESS  15:40Ͳ15:55 FourphenotypicallydistinctlineagesidentifiedwithinPhytophthoralateralis C.M. BRASIER, S. FRANCESCHINI, A. M. VETTRAINO, E. M.HANSEN, S. GREEN, C. ROBIN,J.WEBBER,A.VANNINI  15:55Ͳ16:10 Population dynamics of aerial and terrestrial populations of Phytophthora ramoruminaCaliforniawatershedunderdifferentclimaticconditions M.GARBELOTTO,M.KOZANITAS,C.EYRE  16:10Ͳ16:25 Phenotypic diversification is associated with hostͲinduced transposon derepression and repression of crinkler genes in the Sudden Oak Death pathogen M.GARBELOTTO,D.M.RIZZO,T.KASUGA  16:25Ͳ16:40 EU2,afourthevolutionarylineageofPhytophthoraramorum K.VANPOUCKE,S.FRANCESCHINI,J.F.WEBBER,K.HEUNGENS,C.M.BRASIER 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 7 9th-14th September 2012 Córdoba-Spain 16:40Ͳ17:05 Characterization of Phytophthora hybrids from ITS clade 6 associated with riparianecosystemsinSouthAfricaandAustralia T.BURGESS,J.NAGEL,D.HÜBERLI,G.HARDY,M.STUKELY,M.WINGFIELD  Promiscuity, fertility and survival of ITS clade 6 hybrids associated with riparianecosystemsinWesternAustralia T.BURGESS,D.HÜBERLI,D.WHITE,M.STUKELY,G.HARDY  17:05Ͳ17:15 AnalysisoftheglobalpopulationstructureofPhythophtoraplurivorausing newlydeveloped,polymorphicSSRmarkers C.N.SCHOEBEL,S.PROSPERO  17:15Ͳ17:20 AFLPanalysisrevealslowgeneticdiversityofPhytophthoraaustrocedraein (+poster76) Patagonia,Argentina M.L.VÉLEZ,M.P.A.COETZEE,M.J.WINGFIELD,M.RAJCHENBERG,A.G.GRESLEBIN   17:30–18:00 REFRESHMENTS  18:00–20:00 DISCUSSIONSESSION:ADAPTATIONANDEVOLUTION Keynotespeakers:  "Morphological and physiological adaptability of the genus Phytophthora" ThomasJung  "Fitness,selectionandevolutionarydivergenceinPhytophthora” CliveBrasier  "WhatisaPhytophthoraspecies?" EverettHansen    Dinner(selforganized)inCórdoba  TUESDAY,11thSeptember2012  09:00Ͳ11:00 SESSION2:SURVEYS,DIVERSITY,INVASIONANDSPREAD  Chairperson:CecileRobin  09:00Ͳ09:15 RoleofPhytophthorapseudosyringaeinwidespreaddiebackofNothofagus plantationsinBritain B.SCANU,J.F.WEBBER  09:15Ͳ09:25 More new Phytophthora species from natural ecosystems in Western Australia A.SIMAMORA,G.HARDY,M.STUKELY,T.BURGESS  8 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain 09:25Ͳ09:40 LandscapeͲscaleepidemicofPhytophthoraramorumonlarchintheUK J.FWEBBER,C.M.BRASIER  09:40Ͳ09:55 Evaluating the effect of Phytophthora spp. on tree health in exotic plantationsinNewZealand M.DICK,N.WILLIAMS,I.HOOD,J.GARDNER  09:55Ͳ10:05 SurveysofsoilandwaterfromasymptomaticnaturalecosystemsinSouth AfricarevealagoldmineofPhytophthoradiversity E.OH,M.WINGFIELD,M.GRYZENHOUT,B.WINGFIELD,T.BURGESS  10:05Ͳ10:15 Species of Phytophthora associated with Quercus decline in the MediterraneanPark'CarrascardelaFontRoja'(Spain) A.PÉREZͲSIERRA,C.LÓPEZͲGARCÍA,M.LEÓN,J.GARCÍAͲJIMÉNEZ,P.ABADͲCAMPOS, T.JUNG  10:15Ͳ10:25 FirstapproachintotheknowledgeofthePhytophthoraspeciesdiversityin Mediterranean Holm oak forests based on 454 parallel amplicon pyrosequencingofsoilsamples S.CATALÀ,A.PÉREZͲSIERRA,M.BERBEGAL,P.ABADͲCAMPOS  10:25Ͳ10:35 IntroductionofPhytophthoraramoruminFagaceaeforestsinItaly A.VETTRAINO,A.TOMASSINI,N.BRUNI,S.FRANCESCHINI,A.VANNINI   11:00Ͳ11:30 COFFEEBREAK  11:30Ͳ13:30 SESSION3:ECOLOGY,EPIDEMIOLOGYANDCLIMATECHANGE  Chairperson:JoanWebber  11:30Ͳ11:45 Ectomycorrhizae and Phytophthora cinnamomi relations within the rizosphereofQuercusilex T.CORCOBADO,A.PÉREZ,M.VIVAS,G.MORENO,A.SOLLA  11:45Ͳ11:55 Wildfireinfluencesforestdiseasedynamicsthroughselectivehostmortality andpathogensuppression:SuddenoakdeathinBigSur,California M.R.METZ,M.M.BEH,K.FRANGIOSO,R.K.MEENTEMEYER,D.M.RIZZO  11:55Ͳ12:05 SusceptibilitytoPhytophthoracinnamomiofthemaincropsindehesasand theirinfluenceintheepidemiologyoftheoakdisease M.S.SERRANO,P.DEVITA,P.FERNÁNDEZ,M.E.SÁNCHEZ  12:05Ͳ12:15 Sudden oak death impacts to communities and ecosystems in California forests R.C.COBB,D.M.RIZZO 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9 9th-14th September 2012 Córdoba-Spain 12:15Ͳ12:25 CouldclimatewarmingbeoneofthecausesofPhytophthoraalniemergence inEurope? J.AGUAYO,C.HUSSON,B.MARÇAIS  12:25Ͳ12:30 Influence of bird faeces in the behaviour of the root rot of Quercus suber (+poster15) causedbyPhytophthoracinnamomiatDoñanaBiologicalReserve(SWSpain) P.DEVITA,M.S.SERRANO,L.V.GARCÍA,C.RAMO,M.E.SÁNCHEZ  12:30Ͳ12:35 Spatial patterns of Phytophthora cinnamomi in declining Mediterranean (+poster23) forests:implicationsfortreespeciesregeneration L.GÓMEZͲAPARICIO,B.IBÁÑEZ,M.S.SERRANO,P.DEVITA,J.M.ÁVILA,I.M.PÉREZͲ RAMOS,L.V.GARCÍA,M.E.SÁNCHEZ,T.MARAÑÓN  12:35Ͳ12:40 Roads and streams are not significant pathways for SOD spread in tanoak (+poster49) forests E.PETERSON,J.HULBERT,E.M.HANSEN  12:40Ͳ12:45 NatureofPhytophthorainoculuminflowingsurfacewaters (+poster5) K.ARAM,D.M.RIZZO  12:45Ͳ12:50 Seasonalvariationofinoculumdensityandspeciescompositionofsoilborne (+poster32) PhytophthorasinaninfectedblackwalnutstandinHungary J.KOVÁCS,F.LAKATOS,I.SZABÓ  12:50Ͳ12:55 Epidemiology of Phytophthora ramorum and Phytophthora kernoviae on (+poster73) VacciniuminthenaturalenvironmentintheUK G.L.THORP,J.A.TURNER,P.JENNINGS   13:30Ͳ15:00 LUNCH  15:00Ͳ17:00 SESSION4:RESISTANCE,PATHOGENESIS,ECOPHYSIOLOGY  Chairpersons:FrankFleischmann/MariliaHorta  15:00Ͳ15:15 BlockingofɲͲplurivorincompromisesPhytophthoraplurivorapathogenicity towardsFagussylvaticaseedlings R. J. D. DALIO, F. FLEISCHMANN, A. CHAMBERY, R. EICHMANN, N. MASSOLA, S. F. PASCHOLATI,W.OSSWALD  15:15Ͳ15:40 IdentificationofPhytophthoracinnamomigenetranscriptsininfectedcork oak M.HORTA,A.C.COELHO,A.CRAVADOR  TranscriptomeanalysisofQuercussuberrootsinresponsetoPhytophthora cinnamomi M.HORTA,A.CRAVADOR,A.C.COELHO 

10 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain 15:45Ͳ15:55 QuantitativetraitlociforresistancetoPhytophthoracinnamomiintwohost species C.ROBIN,J.M.GION,T.BARRENECHE  15:55Ͳ16:05 Interactions between Phytophthora cinnamomi and Phlomis purpurea, a plantresistanttothepathogen D. NEVES, C. MAIA, S. DURAES, M. HORTA, S. CAMPOS, M. C. MATEUS, F. GARCÍA BREIJO,J.R.ARMINANA,A.CRAVADOR  16:05Ͳ16:15 HowdoPhytophthoraspp.harmwoodyplants?. W.OßWALD,F.FLEISCHMANN,T.CECH,A.CHAMBERY,A.CRAVADOR,S.DIAMANDIS, J.DÍEZCASERO,A.C.COELHO,E.HANSEN,M.HORTA,T.JUNG,N.S.MASSOLA,L.B. ORLIKOWSKI,S.PROSPERO,M.PTASZEK,D.RIGLING,C.ROBIN,A.SOLLA,G.SIPOS,A. TRZEWIK,S.WERRES  16:15Ͳ16:25 Multitrophic interactions between Quercus robur, Phytophthora quercina andPilodermacroceum(onajointexperimentalplatform) O.ANGAY,F.FLEISCHMANN,S.RECHT,S.HERMANN,T.GRAMS  16:25Ͳ16:35 Drought, fire and flood: approaches to the renewed challenge of PhytophthoracinnamomiinsouthͲeasternAustralia D.CAHILL,J.ROOKES,J.CULLUM,H.BRAMWELLS,D.PHILLIPS,P.BEECH   17:00Ͳ18:30 POSTERSESSIONI+REFRESHMENTS   Dinner(selforganised)inCórdoba  21:00 Eveningvisittotheoldcity  WEDNESDAY,12thSeptember2012  08:00Ͳ20:00 FIELDTRIPTOANDALUSIANMEDITERRANEANFORESTS:  HolmoakͲP.cinnamomiand WildoliveͲP.megaspermaandP.inundata  Canlimestoneamendmentsandpigslurrybeconsideredascontrolmethods for Quercus ilex root rot caused by Phytophthora cinnamomi in dehesa? Preliminaryresultsfromfieldtrials M.S.SERRANO,J.R.LEAL,,P.DEVITA,P.RÍOS,P.FERNÁNDEZ,M.E.SÁNCHEZ  Holmoakregenerationindehesaswithpresenceofthesoilbornepathogen Phytophthoracinnamomi:somethingtodo? M. S. SERRANO,P. DE VITA, A. M. GARCÍA, M. D. CARBONERO, J. R. LEAL, M. E. SÁNCHEZ,P.FERNÁNDEZ 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 11 9th-14th September 2012 Córdoba-Spain  Phytophthorarootrotinawildoliveforest(P.megaspermaandP.inundata) M.E.SÁNCHEZ,A.TRAPERO,C.M.BRASIER    Dinner(selforganised)inCórdoba  th THURSDAY,13 September2012  10:00Ͳ11:00 SESSION5:SURVEYS,DIVERSITY,INVASIONANDSPREAD(cont.Session2)/ CLASSICALTAXONOMYANDCLASSICALMOLECULARDIAGNOSTICS  Chairperson:EllenGoheen  10:00Ͳ10:10 PhytophthoraspeciesassociatedwithAlnusrubrainwesternOregon riparianecosystems L.SIMS,E.HANSEN,S.NAVARRO  10:10Ͳ10:15 PhytophthoraramorumandP.lateralisinNorthernIreland (+poster51) L.QUINN,A.MCCRACKEN,B.MORELAND  10:15Ͳ10:20 Phytophthorabilorbangprov.nom.,anewspeciesassociatedwithdeclining (+poster4) Rubusanglocandicans(blackberry)inWesternAustralia S.AGHIGHI,G.HARDY,J.K.SCOTT,T.BURGESS  10:20Ͳ10:25 SpatialpatternsofholmandcorkoakdeclineinExtremadura,Spain (+poster12) E.CARDILLO,A.ACEDO,C.PEREZ  10:25Ͳ10:30 PhytophthoraspeciesinSerbia (+poster40) I.MILENKOVIC,N.KECA,J.NOWAKOWSKA,K.SIKORA,M.BORYS,T.OSZAKO,T.JUNG  10:30Ͳ10:35 AspeciesconceptforPhytophthorataxonAgathis(PTA)—causalagentof (+poster9) rootandcollarrotofAgathisaustralisinNewZealand S.E.BELLGARD,B.S.WEIRA,P.R.JOHNSTON,D.PARK,D.J.THAN,N.ANAND,S.R. PENNYCOOK  10:35Ͳ10:40 PhytophthoraITSClade3expandstoincludeasixthnewspecies,P.taxon (+poster54) pluvialis P.W.REESER,W.SUTTON,E.M.HANSEN  10:40Ͳ10:45 Phytophthoraacerinaprov.nom.,anewspeciesfromtheP.citricola (+poster21) complexcausingaerialcankersonAcerpseudoplatanusinItaly B.GINETTI,S.MORICCA,A.RAGAZZI,T.JUNG   11:00Ͳ11:30 COFFEEBREAK 

12 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain 11:30Ͳ12:00 SESSION6:RESISTANCE,PATHOGENESIS,ECOPHYSIOLOGY(cont.Session4)  Chairperson:AnaPérezSierra   11:30Ͳ11:35 AnewmethodtoquantifyzoosporechemoͲattraction (+poster38) N.S.MASSOLAJR.,R.DALIO,F.FLEISCHMANN,W.OSSWALD  11:35Ͳ11:40 Fluorescent in situ hybridization (FISH) assay as a tool to microscopically (+poster33) viewPhytophthoracinnamomigrowthwithinplanttissues A.LI,M.CRONE,P.ADAMS,S.FENWICK,N.WILLIAMS,G.HARDY  11:40Ͳ11:45 Histological changes of Quercus ilex seedlings infected by Phytophthora (+poster52) cinnamomi M.A.REDONDO,A.PÉREZͲSIERRA,P.ABADͲCAMPOS,J.GARCÍAͲJIMÉNEZ,A.SOLLA,J. REIG,F.GARCÍAͲBREIJO  11:45Ͳ11:50 QuickdisseminationofPhytophthoracinnamomithreatensbiodiversityina (+poster14) WorldHeritageSite(DoñanaBiologicalReserve,SWSpain) P.DEVITA,L.V.GARCÍA,C.RAMO,M.S.SERRANO,C.APONTE,M.E.SÁNCHEZ   12:00Ͳ13:30 SESSION7:MANAGEMENTANDCONTROL  Chairperson:MatteoGarbelotto  12:00Ͳ12:20 AchronicleoftheimpactsofsuddenoakdeathinCalifornia:Fifteenyearsof invasion S.J.FRANKEL  12:20Ͳ12:40 Monitoring the effectiveness of Phytophthora ramorum eradication treatmentsinOregonTanoakForests E.M.GOHEEN,A.KANASKIE,E.HANSEN,W.SUTTON,P.REESER,N.OSTERBAUER  ManagingsuddenoakdeathinOregonforests,2001Ͳ2011 A.KANASKIE,M.MCWILLIAMS,S.SAVONA,E.HANSEN,W.SUTTON,P.REESER,E.M. GOHEEN,D.HILBURN,N.OSTERBAUER  12:40Ͳ12:50 MitigatingagainstdispersalofPhytophthoraspp.onforestproduce I.HOOD,M.DICK,N.ARHIPOVA,J.GARDNER,P.TAYLOR  12:50Ͳ13:00 Survival and eradication of Phytophthora cinnamomi from black gravel graveyardsitesintheEucalyptusmarginata(jarrah)forest M.CRONE,J.MCCOMB,P.O’BRIEN,V.STOKES,I.COLQUHOUN,G.HARDY  13:00Ͳ13:05 InvestigationsoncontrolmeasuresforPhytophthoraramorumand (+poster80) Phytophthorakernoviaeinheritagegardensandparks E.F.WEDGWOOD,D.LOCKLEY,J.TURNER,G.THORP,B.HENRICOT  6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 13 9th-14th September 2012 Córdoba-Spain 13:30Ͳ15:00 LUNCH   DISCUSSIONSESSION:THENURSERYPATHWAY 15:00–17:00 Keynotespeakers:  "UbiquitiousPhytophthorainfestationsofnurseriesandplantingsinEurope demonstratemajorfailureofplantbiosecurity" ThomasJung  "PatternsofrepeatedintroductionsandmigrationsofP.ramoruminNorth America" NikGrünwald   17:00–18:30 POSTERSESSIONII+REFRESHMENTS  18:30Ͳ19:30 DISCUSSIONSESSION:GEOGRAPHICORIGINSOFSPECIES Keynotespeakers:  "SearchingforPhytophthorasintheforestsofNepalandTaiwan" AndreaVannini  "VariationinPhytophthora:akeytohistoricalpathways?" FransArentz  "AretropicalforestsPhytophthorahotspots?" YilmazBalci   20:30 LEAVEFORCONFERENCEDINNER(BodegasCampos)  FRIDAY,14thSeptember2012  09:15–09:45 Announcements 09:15Ͳ09:25 ForestPhytophthoras,anewinternationaljournalandwebsite J.PARKE,J.EBERHART  09:25Ͳ09:35 MorphologicalͲMolecularIDToolsofPhytophthora:Lucid&TabularKeys andSequencingAnalysis Z.G.ABAD,Y.BALCI,M.COFFEY,S.KANG    

14 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain 09:45Ͳ10:45 Session8:MANAGEMENTANDCONTROLINAUSTRALIA  Chairperson:SusanFrankel  09:45Ͳ10:15 ThestateofPhytophthorascienceandmanagementinnaturalecosystemsis Australasia G.HARDY,N.WILLIAMS  Acomparisonbetweenliquidphosphiteinjectionsandnovelsoluble phosphiteandnutrientimplantstocontrolPhytophthoracinnamomiin BanksiagrandisandEucalyptusmarginata P.SCOTT,P.BARBER,G.HARDY  10:15Ͳ10:25 CommunityinvolvementinPhytophthoradiebackmanagementͲlooking backandforward I.COLQUHOUN,C.DUNNE,J.YOUNG  10:25Ͳ10:35 SuccessfulcontainmentanderadicationofPhytophthoracinnamomiata managementlevelfromdiversenaturalecosystemsinWesternAustralia C.DUNNE,R.HARTLEY,W.DUNSTAN,P.SCOTT,T.PAAP,G.HARDY  10:45Ͳ11:15 COFFEEBREAK  11:15Ͳ12:15 GeneralDiscussion.MeetingSummary:AndreaVanniniandJoanWebber  12:15Ͳ13:00 Wrapupsession:RegionalChairs  13:30Ͳ14:30 LUNCH  14:30 DEPARTURETOVALENCIA                  

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 15 9th-14th September 2012 Córdoba-Spain POSTERS Assessment of the presence of oomycetes in forest nurseries in Eastern Spain. P. ABADͲ 1 CAMPOS,A.PUÉRTOLAS,A.ORTEGA,P.GUIRAO,M.LEÓN,J.GARCÍAͲJIMÉNEZ,A.PÉREZͲSIERRA EffectofthreecontroltreatmentsonthesurvivalofQuercusilexseedlingsinfectedwith 2 Phytophthoracinnamomi.A.ACEDO,E.CARDILLO,I.NÚÑEZ Pythiaceousandfungalspeciesisolatedfromconiferousanddeciduousseedlingsinsome 3 Turkishnurseries.A.G.ADAY,A.LEHTIJÄRVI,H.T.DO)MUbͲLEHTIJÄRVI Phytophthora bilorbang prov. nom., a new species associated with declining Rubus 4 anglocandicans(blackberry)inWesternAustralia.S.AGHIGHI,G.HARDY,J.K.SCOTT,T.BURGESS 5 NatureofPhytophthorainoculuminflowingsurfacewaters.K.ARAM,D.M.RIZZO Characterisation of the two informally designated ITS Clade 6 taxa Phytophthora taxon 6 ForestsoilandP.sp.hungarica.J.BAKONYI,Z.Á.NAG,T.BURGESS,A.SZIGETHY,J.NECHWATAL,A. KOLTAY,S.WOODWARD,L.BELBAHRI,T.JUNG Population fluctuation of Phytophthora spp in streams and their possible role as early 7 colonizers.Y.BALCI Phytophthora species associated with disease in periͲurban woodland and forest 8 ecosystems.P.BARBER,T.BURGESS,T.PAAP,G.HARDY AspeciesconceptforPhytophthorataxonAgathis(PTA)—causalagentofrootandcollar 9 rotofAgathisaustralisinNewZealand.S.E.BELLGARD,B.S.WEIRA,P.R.JOHNSTON,D.PARK,D.J. THAN,N.ANAND,S.R.PENNYCOOK DiversityofoomycetesdetectedinthelaurelforestinTenerife(CanaryIslands).A.BELTRÁN, 10 M.LEÓN,P.ABADͲCAMPOS,F.SIVERIO,L.GALLO,A.PÉREZͲSIERRA DiversityanddistributionofPhytophthoraspeciesinassociationwithwaterqualityandthe 11 health of trees in fragmented riparian ecosystems. T.BURGESS, M. KUNZINGER, D. WHITE, A. LYMBERY,G.HARDY SpatialpatternsofholmandcorkoakdeclineinExtremadura,Spain.E.CARDILLO,A.ACEDO,C. 12 PEREZ Next Generation Sequencing shows Phytophthora species diversity in soil samples of 13 MacaronesianlaurelforestsfromtheCanaryIslands.S.CATALÀ,A.BELTRÁN,A.PÉREZͲSIERRA,P. ABADͲCAMPOS Quick dissemination of Phytophthora cinnamomi threatens biodiversity in a World 14 HeritageSite(DoñanaBiologicalReserve,SWSpain). P. DE VITA, L. V. GARCÍA, C. RAMO, M. S. SERRANO,C.APONTE,M.E.SÁNCHEZ Influence of bird faeces in the behaviour of the root rot of Quercus suber caused by 15 PhytophthoracinnamomiatDoñanaBiologicalReserve(SWSpain).P.DEVITA,M.S.SERRANO, L.V.GARCÍA,C.RAMO,M.E.SÁNCHEZ AirborneinfectionsofPhytophthoracitrophthoraoncitrusinSicily.A.DEPATRIZIO,R.FAEDDA, 16 A.PANE,S.O.CACCIOLA ITS based identification and phylogeny of Phytophthora spp. detected in UK gardens. G. 17 DENTON,J.DENTON,I.WAGHORN,S.ARCHER,B.HENRICOT Pathogenicity of Phytophthora species on Liquidambar orientalis and Castanea sativa 18 seedlings.H.T.DO)MUbͲLEHTIJÄRVI,A.G.ADAY,A.LEHTIJÄRVI,T.JUNG PhytophthoraipomoeaecausingblightonIpomoeaeorizabensisinMichoacan,Mexico.S. 19 FERNÁNDEZͲPAVÍA,G.RODRÍGUEZͲALVARADO,N.GÓMEZͲDORANTES,H.SILVAͲROJAS Research driving management and policyͲmaking on Sudden Oak Death in California. M. 20 GARBELOTTO,S.MASCHERETTI,D.SCHMIDT Phytophthoraacerina,anewspeciesfromtheP.citricolacomplexcausingaerialcankers 21 onAcerpseudoplatanusinItaly.B.GINETTI,S.MORICCA,A.RAGAZZI,T.JUNG

16 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain POSTERS(cont.) ReducingthespreadofPhytophthoraramorumontheRedwoodNatureTrail,CurryCounty 22 Oregon:Acasestudy.E.M.GOHEEN,P.REESERandW.SUTTON Spatial patterns of Phytophthora cinnamomi in declining Mediterranean forests: 23 implicationsfortreespeciesregeneration.L.GÓMEZͲAPARICIO,B.IBÁÑEZ,M.S.SERRANO,P.DE VITA,J.M.ÁVILA,I.M.PÉREZͲRAMOS,L.V.GARCÍA,M.E.SÁNCHEZ,T.MARAÑÓN HostandhabitatindexforPhytophthoraspeciesinOregonforests(32species!).E.HANSEN, 24 P.REESER,W.SUTTON,andL.SIMS Characterization of Phytophthora alni isolates from Alnus glutinosa in Castilla y León, 25 Spain.M.M.HAQUE,E.HIDALGO,A.I.DELUCAS,J.J.DIEZ PersistenceofPhytophthoraramorumoninfestedlarchsites.A.R.HARRIS,S.SANCISIͲFREYand 26 J.WEBBER Comparative sporulation of Phytophthora ramorum on larch, rhododendron and bay 27 laurel.A.HARRISandJ.WEBBER Phytophthora pini found on thuja in Norway. M. L. HERRERO, V. TALGØ, M. B. BRURBERG, K. 28 ØRSTAD,E.FLØISTAD,andA.STENSVAND DiseasemanagementofPhytophthoraramoruminaresearchquarantinenurseryatNORSͲ 29 DUC.S.JOHNSONͲBROUSSEAU,T.WIDMER,K.KOSTA,G.COPELAND,K.SUSLOW,A.POSADAS,R.BULLUCK, W.SCHWEIGKOFLER,S.GHOSH HeatͲtreated Japanese larch (Larix keampferi) wood chips can counter persistence of 30 Phytophthoraramorum.M.KALANTARZADEH,D.MULHOLLAND,M.LANGAT,T.HUTCHINGS,F.deLEIJ andJ.WEBBER DevelopmentofmolecularmarkersandprobesfordetectionofP.ramorum,P.nicotianae, 31 P.citricola,P.fragariaeandP.cactorum.M.KOPINA,T.SURINA Seasonal variation of inoculum density and species composition of soilborne 32 PhytophthorasinaninfectedblackwalnutstandinHungary.J.KOVÁCS,F.LAKATOS,I.SZABÓ Fluorescent in situ hybridization (FISH) assay as a tool to microscopically view 33 Phytophthoracinnamomigrowthwithinplanttissues.A.LI,M.CRONE,P.ADAMS,S.FENWICK,N. WILLIAMS,G.HARDY 34 EarlyPhytophthoraspp.detectionbyQPCR.N.LUCHI,D.MIGLIORINI,P.CAPRETTI,A.SANTINI DiversityofPhytophthoraspeciesinforestecosystemsofBulgaria.A.LYUBENOVA,K.KOSTOV, 35 I.TSVETKOV,T.OSZAKO,M.BORYS,K.SIKORA,T.JUNG,S.SLAVOV Determination of the minimum threshold of Phytophthora cinnamomi inoculum for 36 infectionofQuercusssp.L.MARTÍN,M.S.SERRANO,M.E.SÁNCHEZ Could climate change influence the survival of Quercus ilex seedlings germinating in 37 Phytophthorainfestedsoils?J.MARTÍNͲGARCÍA,T.CORCOBADO,A.SOLLA,S.WOODWARD A new method to quantify zoospore chemoͲattraction. N.S. MASSOLA JR., R. DALIO, F. 38 FLEISCHMANN,W.OSSWALD Cryptogeinandcapsiceinelicitdefenceresponsesincorkoak.C.MEDEIRA,V.QUARTIN,I.MAIA, 39 I.DINIZ,M.C.MATOS,J.N.SEMEDO,P.SCOTTIͲCAMPOS,J.RAMALHO,I.PAIS,P.RAMOS,E.MELO,A.LEITÃO andA.CRAVADOR PhytophthoraspeciesinSerbia.I.MILENKOVIC,N.KECA,J.NOWAKOWSKA,K.SIKORA,M.BORYS,T. 40 OSZAKO,T.JUNG Susceptibility of Quercus ilex to mixed infections by multiple Phytophthora species. J. 41 MIRANDA,T.CORCOBADO,T.JUNG,J.MARTÍNͲGARCÍA,A.PÉREZͲSIERRA,P.ABADͲCAMPOSandA.SOLLA Effect of Phytophthora quercina, P. gonapodyides and P. cinnamomi on germination of 42 Quercusilexacornsandseedlingestablishmentininfestedsoils.J.MIRANDA,T.CORCOBADO,A. PÉREZ,J.MARTÍNͲGARCÍA,E.CUBERA,T.JUNGandA.SOLLA

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 17 9th-14th September 2012 Córdoba-Spain POSTERS(cont.) InvitroinhibitionofmycelialgrowthofPhytophthoracinnamomibypelletsofbrassicas. 43 MORALESͲRODRÍGUEZ, M.C., PICÓNͲTORO, J., PALO, C., PALO, E.J., GARCÍA, A. and RODRÍGUEZͲMOLINA, M.C. PCR detection of Phytophthora ramorum from woody tissue. B. MORELAND, J. POLLOCK, R. 44 SWAN,A.MCCRACKEN,M.WILSON,C.FLEMING PhytophthoraplurivoraandPhytophthoramultivoraintheCzechRepublic–comparisonof 45 distributionandpathogenicitytoforesttrees.M.MRÁZKOVÁ,K.ERNÝ,V.STRNADOVÁ,V.HOLUB, B.GREGOROVÁ,M.TOMŠOVSKÝ,M.PÁNEK,L.HAVRDOVÁ,Š.GABRIELOVÁ,M.HEJNÁ Oomycete survey at two cork oak stands at Alentejo. Correlation with the declining 46 condition.D.NEVES,C.MAIA,S.DURÃES,A.CRAVADOR Looking for a new quick and effective method of Phytophthora identification in 47 environmental samples. J. NOWAKOWSKA, K. SIKORA, T. MALEWSKI, P. BONANTS, C. SCHOEN, T. OSZAKO TheoccurrenceofPhytophthoraspeciesinEuropeanEcologicalNetworkNATURA2000in 48 Poland.I.OLEJARSKI,K.KUBIAK,J.NOWAKOWSKA,T.JUNG,T.OSZAKO Roads and streams are not significant pathways for SOD spread in tanoak forests. E. 49 PETERSON,J.HULBERT,E.HANSEN Ecophysiologicalreactionsofalder(Alnusspec.)aftertheinfectionwithPhytophthoraalni 50 ssp.AlniinthefieldandduringcontrolledgreenͲhouseconditions.H.PFANZ,J.MOMBOUR Phytophthora ramorum and P. lateralis in Northern Ireland. L. QUINN, A. MCCRACKEN, B. 51 MORELAND HistologicalchangesofQuercusilexseedlingsinfectedbyPhytophthoracinnamomi. M.A. 52 REDONDO,A.PÉREZͲSIERRA,P.ABADͲCAMPOS,J.GARCÍAͲJIMÉNEZ,A.SOLLA,J.REIG,F.GARCÍAͲBREIJO A new Phytophthora species in ITS Clade 2 killing Ceanothus grown for rehabilitation of 53 disturbedforestsites.P.W.REESER,W.SUTTON,E.M.HANSEN,andE.M.GOHEEN PhytophthoraITSClade3expandstoincludeasixthnewspecies,P.taxonpluvialis.P.W. 54 REESER,W.SUTTON,E.M.HANSEN EvaluationofbiofumigantplantsforcontrolofQuercusrootrotcausedbyPhytophthora 55 cinnamomiinrangelandecosystems. P. RÍOS, S. OBREGÓN, A. de HARO, P. FERNÁNDEZ and M. E. SÁNCHEZ Variation in pathogenicity of Phytophthora lateralis and interactions with its host 56 Chamaecyparislawsoniana.C.ROBIN,W.SUTTON,P.REESER,E.HANSEN Evaluation of fungal secondary metabolites against Phytophthora spp. B. SCANU, B. 57 LINALDEDDU,A.FRANCESCHINI,A.EVIDENTEandL.MADDAU EvidenceoflipophilicphytotoxicmetabolitesproducedbyPhytophthoraspp.involvedin 58 chestnutinkdisease.B.SCANU,B.LINALDEDDU,A.FRANCESCHINIandL.MADDAU PhytophthoraspeciesoccurringindecliningoakecosystemsinSardinia(Italy).B.SCANU,B. 59 LINALDEDDU,T.JUNG,L.MADDAUandA.FRANCESCHINI Development, comparison and validation of a RealͲTime PCR tool for the detection of 60 Phytophthoralateralis.N.SCHENCK,C.FOURRIER,C.ROBIN,R.IOOS Differential susceptibility of the commonest Andalusian morphotypes of Holm oak to 61 Phytophthoracinnamomi.M.S.SERRANO,P.DEVITA,P.FERNÁNDEZ,M.E.SÁNCHEZ Effectiveness of calcium and potassium fertilizers for control of Quercus ilex root rot 62 causedbyPhytophthoracinnamomi.M.S.SERRANO,P.DEVITA,P.FERNÁNDEZ,M.E.SÁNCHEZ Proteomics analysis of responses to Phytophthora cinnamomi in Holm oak. B. SGHAIER– 63 HAMMAMI,J.VALERO–GALVÀN,M.C.ROMERO–RODRÍGUEZ,R.M.NAVARRO–CERRILLO,J.JORRÍN–NOVO AnoverviewofresearchactivitiesonSuddenOakDeath(Phytophthoraramorum)atthe 64 CanadianForestService:resultsandprogress.S.F.SHAMOUNandD.RIOUX

18 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain POSTERS(cont.) FoliarinfectionofRhododendronbyzoosporesandcystsofPhytophthorapiniLeonian.S. 65 SHAY,J.EBERHART,andJ.PARKE Infectionofoak(Quercusrobur)andbeech(Fagussylvatica)seedlingsgrowinginelevated 66 CO2conditionswithpathogenicPhytophthoraspecies.K.SIKORA,M.SIEBYBA,J.NOWAKOWSKA, T.OSZAKO AnecologicalroleforPhytophthorataxonoaksoilinwesternOregonriparianecosystems. 67 L.SIMSandE.HANSEN Biological pollution: Phytophthora species threatening forest nurseries and natural 68 ecosystemsinPortugal.HORTA,M.,PÉREZͲSIERRA,A.,SOLLA,A.,CRAVADOR,A.,JUNG,T. A simple, rapid and inexpensive chemical method for the detection phosphite in plant 69 tissue.P.STASIKOWSKI,D.CLARK,J.MCCOMB,B.SHEARER,P.O’BRIEN,G.HARDY Calcium supplementation of soil augments the control of Phytophthora cinnamomi by 70 phosphite.P.STASIKOWSKI,J.MCCOMB,B.SHEARER,P.O’BRIEN,G.HARDY PhytophthoraͲbaitinginNorwegianwaterways.V.TALGØ,M.L.HERRERO,M.B.BRURBERG,andA. 71 STENSVAND 72 PhytophthoraontreesinNorway.V.TALGØ,M.L.HERRERO,M.B.BRURBERG,A.STENSVAND EpidemiologyofPhytophthoraramorumandPhytophthorakernoviaeonVacciniuminthe 73 naturalenvironmentintheUK.G.L.THORP,J.A.TURNER,P.JENNINGS Subspecies identification of Phytophthora alni in alder riparian stands in the Czech 74 Republic.M.TOMŠOVSKÝ,P.ŠT PÁNKOVÁ,K.ERNÝ The presence of Phytophthora ramorum in Greece: The risk of spread into forest 75 ecosystems.P.TSOPELAS,N.SOULIOTI,S.E.TJAMOS,E.J.PAPLOMATAS,E.K.KULAKIOTU AFLP analysis reveals low genetic diversity of Phytophthora austrocedrae in Patagonia, 76 Argentina.M.L.VÉLEZ,M.P.A.COETZEE,M.J.WINGFIELD,M.RAJCHENBERG,A.G.GRESLEBIN 77 PhytophthoraspeciesfromnativeforestsofPatagonia.M.L.VÉLEZ,P.V.SILVAandA.G.GRESLEBIN Pyrosequencing as a tool for detection of Phytophthoras: error rate and risk of false 78 MOTU’s.A.M.VETTRAINO,P.BONANTS,A.TOMASSINI,N.BRUNI,A.VANNINI BiodiversityofPhytophthoracommunityinacostaloakecosysteminItaly.A.M.VETTRAINO, 79 G.NATILI,A.VANNINI Investigations on control measures for Phytophthora ramorum and Phytophthora 80 kernoviaeinheritagegardensandparks. E. F. WEDGWOOD, D. LOCKLEY, J.TURNER, G. THORP, B. HENRICOT PhytophthoraobscuraandthewidespreadbleedingcankerofAesculusinEurope 81 N.J.GRÜNWALD,S.WERRES,E.M.GOSS,C.R.TAYLOR,V.J.FIELAND Variability in response to infection of Phytophthora cinnamomi in diferents family of 82 Quercusilex.I.LEÓNͲSÁNCHEZ,J.J.GARCÍAͲMARTÍNEZ,M.FERNÁNDEZͲMARTÍNEZ,J.VÁZQUEZͲPIQUÉ,A. CRAVADOR,R.TAPIASͲMARTÍN CharacterisingthedistributionofPhytophthorataxonAgathis(PTA)inthebark,cambium, 83 andwoodofdiseasedNewZealandkauri(Agathisaustralis).M.P.WHEAT,S.E.BELLGARD Phytophthoracinnamomiinfectionresultsinchangedpatternsoffinerootproductionin 84 Scotspine.ELENISIASOU,HELENABRAGANCAANDSTEVEWOODWARD PhytophthoraplurivoraandotherOomycotainanAberdeenshirewatershed. DAVID BELO, 85 DAFNINIANIAKA,PIETERVANWEST,LASSAADBELBAHRI,IVANBACCELLI,ELENISIASOU,STEVEWOODWARD Quantification of infection and colonization of holm oak (Quercus ilex) roots by 86 Phytophthora cinnamomi using histological methods. FRANCISCO J. RUIZͲGÓMEZ, RAFAEL SÁNCHEZͲCUESTA,RAFAELM.NAVARROͲCERRILLO,ALEJANDROPÉREZͲDEͲLUQUE New hypothesis on the ploidy of the hybrid species Phytophthora alni subsp. alni. C. 87 HUSSON,J.AGUAYO,P.FREY,B.MARÇAIS

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 19 9th-14th September 2012 Córdoba-Spain                                    SESSION1 EVOLUTION,POPULATIONBIOLOGY,EXPERIMENTALTAXONOMY       

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 21 9th-14th September 2012 Córdoba-Spain Determiningtheoriginoftheemergingpathogen,Phytophthoramultivora AlexRea1,GilesHardy1,MikeStukely2andTreenaBurgess1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia. EͲmail: [email protected] Phytophthora multivora is widespread in Western Australia (WA); it has a wide host range and considerablyvariabilityinthesequenceofthemitochondrialgenecox1ledtothehypothesisthatitmay beendemictotheregion.Totestthishypothesis,fournuclear(ITS,enolase,HSP90andras)andthree mitochondrial(coxI,coxIGSandnadh1)lociweresequencedfor60isolatesofP.multivoraisolatedfrom Australia,SouthAfrica(RSA)andEuropeandthedataweresubjectedtophylogenetic,coalescentͲbased andpopulationgeneticanalyses.IsolatesfromRSApossessgreaternucleotidediversityandagreater numberofallelesatthreeofthenuclearlociandatallthreemitochondriallocithanthosefromWA.In addition,theRSApopulationhadmoreuniquemultilocusgenotypesthantheWApopulation.WhileP. multivoraiswidelydistributedinnaturalecosystemsinWAandRSA,itisusuallyisolatedfromnurseries orhorticultureelsewhereintheworld.Additionally,P.multivoraisconsistentlyisolatedfromcankers anddeadanddyingplantsofnumerousendemichostsinWA,butispredominantlyisolatedfromsoil associatedwithasymptomaticplantsinRSA.BasedonthisevidenceitisproposedthatP.multivorais endemictoRSAandhasbeenintroducedtoWesternAustralia.  FourphenotypicallydistinctlineagesidentifiedwithinPhytophthoralateralis Clive Brasier1, Selma Franceschini1, Anna Maria Vettraino2, Everett Hansen3, Sarah Green4, CecileRobin5,JoanWebber1,AndreaVannini2 1ForestResearch,AliceHoltLodge,Farnham,Surrey,GU104LH,UK;2DIBAF,UniversityofTuscia,ViaS. Camillo de Lellis, Viterbo 01100, Italy; 3Department of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331, USA; 4Forest Research, Northern Research Station, Roslin, Scotland, EH259SY,UK; 5UMR1202BIOGECO,INRA,69Routed’Arcachon,33612,CestasCedex,France.EͲmail: [email protected] Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest [1]. Since the 1990s however diseaseoutbreakshaveoccurredincreasinglyonornamentalC.lawsonianainEurope;andin2007the pathogenwasdiscoveredinsoilaroundoldgrowthC.obtusainTaiwan,whereitmaybeendemic[2]. When the phenotypes of over 150 isolates of Phytophthora lateralis from Taiwan; across the Pacific Northwest (British Columbia to California); and from France, the Netherlands and the UK were compared three well separated growth rate groups were resolved: one from Taiwan, one from the PacificNorthwestandEuropeandonefromasmallareaoftheUK.Amongthesegroupsninedistinct typeswereidentifiedbasedoncolonypatternsandsporemetricsanddiscriminatedinamultivariate analysis.Theassumptionthatthethreemaingrowthrategroupsrepresenteddistinctphylogeneticunits wastestedbycomparativesequencingoftwomitochondrialandthreenucleargenes.Thisassumption wasconfirmed.InadditiontwophenotypeclusterswithintheTaiwangrowthgroupwerealsoshownto be separate lineages. The characteristics and distribution of the four P. lateralis lineages will be presentedandtheirevolutionary,taxonomicandplanthealthsignificancediscussed. [1]HansenE.M.,GoheenD.J.,JulesE.S.andUllianB.ManagingPortͲOrfordͲCedarandtheintroducedpathogen Phytophthoralateralis.PlantDisease844Ͳ14(2000). [2]BrasierC.M.,VettrainoA.M.,ChangT.T.andVanniniA.Phytophthoralateralisdiscoveredinanoldgrowth ChamaecyparisforestinTaiwan.PlantPathology59595Ͳ603(2010).   6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 23 9th-14th September 2012 Córdoba-Spain PopulationdynamicsofaerialandterrestrialpopulationsofPhytophthora ramoruminaCaliforniawatershedunderdifferentclimaticconditions M.Garbelotto,M.Kozanitas,andC.Eyre ForestPathologyandMycologyLaboratory,UniversityofCaliforniaBerkeley,54MulfordHall,Berkeley CA94720 IntheattempttounderstandtheepidemiologyofSuddenOakDeathinCalifornia,wepresentthefirst combinedgeneticanalysisofP.ramorumfromsoilandleaves.Successfulisolationsfromleavesofthe transmissive host California bay laurel increased from 15 to 39% between dry and wet conditions. Symptoms caused by other foliar pathogens were highest (69%) in dry conditions, suggesting that P. ramorumandotherpathogensarefavoredbydifferentclimaticconditions.SomefoliargenotypesofP. ramorumweremoreabundantinwetthanindryconditionsandpersistentthroughtime.Soilandfoliar populations were genetically distinct, but were not segregated in different portions of a minimum spanningnetwork,suggestingintermixingofthetwo.Wesurmisethatthegeneticstructurebetween substrates is not due to the presence of two distinct populations, but to the different ability of genotypes to adapt to different substrates. To support this hypothesis, we show that ranking of genotypes based on abundance are clearly different between soil and leaf populations. We provide evidencethatinclimaticconditionsunfavorabletothepathogen,geneticdiversityincreasesbothwithin andbetweensites,whileinfavorableconditionsdiversitydecreasesduetogreatermigrationlevelsof somegenotypes.Finally,weshowthatfoliargenotypescanspreadfurtherthansoilgenotypesinwet years,andthatsoilappearstobereͲinoculatedonayearlybasis.Cumulatively,resultsindicateleaves actasarelativelypersistentsourceofinoculum,whilesoilispotentiallyinconsequentialforthenatural spreadofthedisease.  PhenotypicdiversificationisassociatedwithhostͲinducedtransposon derepressionandrepressionofcrinklergenesintheSuddenOakDeath pathogen M.Garbelotto1,D.M.Rizzo2andT.Kasuga3 1ForestPathologyandMycologyLaboratory,UniversityofCalifornia,Berkeley,CA;2DepartmentofPlant Pathology,UniversityofCalifornia,Davis,CA;3USDAͲARSCropPathology&GeneticsResearch,Davis,CA Phytophthora ramorum is responsible for sudden oak death in California. P. ramorum is a generalist pathogen with over 100 known host species. Three or four closely related genotypes of P. ramorum (from a single lineage) were originally introduced in California forests and the pathogen reproduces clonally. Because of this, the genetic diversity of P. ramorum is extremely low in Californian forests. However, P. ramorum shows diverse phenotypic variation in colony morphology, colony senescence, andvirulence.Inthisstudy,weshowthatphenotypicvariationamongisolatesisassociatedwiththe hostspeciesfromwhichthemicrobewasoriginallycultured.MicroarrayglobalmRNAprofilingdetected derepressionoftransposableelements(TEs)anddownͲregulationofcrinklereffectorhomologs(CRNs) inthemajorityofisolatesoriginatingfromcoastliveoak(Quercusagrifolia),butthisexpressionpattern wasnotobservedinisolatesfromCaliforniabaylaurel(Umbellulariacalifornica).Insomeinstances,oak andbaylaurelisolatesoriginatingfromthesamegeographiclocationhadidenticalgenotypesbasedon multilocus simples sequence repeat (SSR) marker analysis but had different phenotypes. Expression levelsofthetwomarkergenesanalyzedbyquantitativereversetranscriptionPCRwerecorrelatedwith originatinghostspecies,butnotwithmultilocusgenotypes.BecauseoakisanonͲtransmissivedeadͲend host for P.ramorum, our observations are congruent with an epiͲtransposon hypothesis; i.e., physiological stress is triggered on P. ramorum while colonizing oak stems and disrupts epigenetic silencingofTEs.WeproposetheP.ramorumͲoakhostsysteminCaliforniaforestsasanadhocmodel forepiͲtransposonmediateddiversification.

24 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain EU2,afourthevolutionarylineageofPhytophthoraramorum  KrisVanPoucke1,SelmaFranceschini2,JoanWebber2,KurtHeungens1,CliveBrasier2 1ILVO Plant Sciences Unit, Burg. Van Gansberghelaan 96 box 2, 9820 Merelbeke, Belgium 2Forest Research,AliceHoltLodge,Farnham,SurreyGU104LH,UK.EͲmail:[email protected] StudiesinNorthAmericaandEuropeoverthepastdecadehavedemonstratedtheoccurrenceofthree lineagesofPhytophthoraramoruminformallydesignatedtheNA1,NA2andEU1lineages.Eachlineage appearstorepresentareproductivelyisolatedpopulation,butwhethertheyhavecomefromdifferent geographicregionsisunknown.OnlytheEU1lineagehadbeenfoundinEuropeuntilrecently.EU1is believedtohavebeenintroducedintoEuropearound1990.Sincethenithasspreadwidelyandrapidly acrossthecontinent,includingtheUKandIreland,viatheplanttrade.In2011P.ramorumisolatesfrom Northern Ireland and a closely adjacent area of western Scotland, mostly from Larix but also from Quercus,RhododendronandVaccinium,werefoundtohavemolecularprofilesnotmatchingthoseof anyknownlineage.FollowingaphylogeneticstudybasedonelevenpolymorphiclociandanSSRanalysis theywereassignedtoanewlineage,informallydesignatedEU2.ThisanalysisindicatestheEU2lineage may be ancestral to the other lineages. No SSRͲbased intraͲEU2 lineage genotypic diversity was detected.AllEU2isolatesexaminedtodatehaveallbeenofA1matingtype.Asthisisthesamemating typeasthatofEU1inEurope,sexualrecombinationwithEU1lineagegenotypesalreadyresidentinthe UKisunlikely.Theearliestisolationdatesto2007.Presentevidencepointstoarecentintroductionof EU2 in the context of ongoing phytosanitary emergency measures. The arrival of EU2 highlights an urgent need to identify the geographic origins of P. ramorum in order to understand the organism’s natural ecology, the processes that have produced the lineages, and whether further lineages exist. Presently,studyingtheorganisminthecontextofintroductionandinvasion,wemayonlybelookingat halfthepicture.  CharacterizationofPhytophthorahybridsfromITSclade6associatedwith riparianecosystemsinSouthAfricaandAustralia TreenaBurgess1,2,JanNagel2,DanielHüberli3,GilesHardy1,MikeStukely4andMikeWingfield2 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University,Perth,WA,Australia;2ForestryandAgricultureBiotechnologyInstitute,UniversityofPretoria,Pretoria, 0002,SouthAfrica; 3DepartmentofAgricultureandFood,WesternAustralia,3BaronͲHayCourtSouthPerth,WA 6151; 4ScienceDivision,DepartmentofEnvironmentandConservation,LockedBag104,BentleyDeliveryCentre, WA6983,Australia.EͲmail:[email protected] RecentsurveysofAustralianandSouthAfricanrivershaverevealednumerousClade6Phytophthoras, which either have ITS gene regions that were highly polymorphic or could not be sequenced. These isolatesweresuspectedtobehybrids.Inordertoestablishthehybridnatureoftheseisolates,three nuclearlociandonemitochondriallocuswereamplifiiedand,inthecaseofthenucleargeneregions cloned,andsequenced.AbundantrecombinationwithintheITSregionwasobservedandthiscombined with phylogenetic comparison of other three loci confirmed the presence of four distinct hybrids involvingthreeknownparentalspecies:P.amnicola,P.thermophilaandP.taxonPgChlamydo.Ineach case the hybrid is between two parental species. For the single copy nuclear genes (ASF and GPA) examined,twoalleleswereobtained,oneofwhichcorrespondedtoeachoftheparentalspecies.Inall cases, only a single coxI allele was obtained indicating that mitochondria were always uniparentally inherited from one of the nuclear parents. This pattern of nuclear and mitochondrial inheritance suggests that each hybrid is a result of an independent hybridization event involving two parental species. The hybrid species are sterile and have physiological traits similar to those of the maternal parental. Thepathogenicityofthesehybridsisunknown,butseveralisolatesfromWesternAustralia wereobtainedfromtherhizospheresoilofdyingplants.Theserendipitousandsimultaneousdiscovery ofthesamehybridcomplexontwocontinentsisintriguing.However,thewidegeographicdistribution,

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 25 9th-14th September 2012 Córdoba-Spain frequentisolationandpresenceofallfourhybridsandallparentalspeciessuggestthattheiroriginlies inAustralia.TheassociationofthesampledriverwayswithbotanicalgardensinSouthAfricacontaing Australianplantsmaybeacluetothepathwayofintroduction.  Promiscuity,fertilityandsurvivalofITSclade6hybridsassociatedwithriparian ecosystemsinWesternAustralia TreenaBurgess1,DanielHüberli2,DianeWhite1,MikeStukely3andGilesHardy1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Department of Agriculture and Food, Western Australia, 3 BaronͲHayCourtSouthPerth,WA6151;3ScienceDivision,DepartmentofEnvironmentandConservation, LockedBag104,BentleyDeliveryCentre,WA6983,Australia.EͲmail:[email protected] Over the past few years several large scale Phytophthora surveys have been undertaken in Western Australia.Inallcases,theITSregionofnumerousisolatesobtainedfromwaterorripariansoilhave beenunsequencable.Theseisolatesarehybrids,allinvolvingparentalspeciesfromITSclade6,subͲ cladeII.ParentalspeciesareP.thermophila(T),P.fluvialis(F),P.litoralis(L),P.amnicola(A)andP.taxon stagnum (S).In most cases, two alleles were found for the nuclear genes and a single allele for the mitochondriagene,suggestingthateachhybridisaresultofanindependentsexualhybridizationevent involvingtwoparentalspecieswiththemitochondriainheritedfromthematernalparent.Todatethe followinghybridshavebeencharacterised(maternalparentfirst);AͲF,AͲS,FͲS,LͲS,TͲA,TͲSandSͲF.The hybridisolatesallappeartobesterileandreadilyproducesporangiaonsoilextract,however,someof themproducedunusualorabortedsporangia.Thegrowthandcolonypatternproducedbythehybrids on three different agar media is similar to that of the maternal parent. These hybrids have predominantlybeenisolatedfromnaturalwaterwaysbutsomehavebeenisolatedfromtherhizosphere soilofdyingplants.Thereisnoevidenceofsubsequenthybridizationevents(backcrossingorhybrids crossing with hybrids), but this cannot be ruled out at this stage. The two parental ITS alleles are combined and subsequently recombined through mitotic recombination events creating significant variationbetweentherDNAsubunits.Thefactthatthisoccurssuggeststhatthehybridsarerelatively stableandareabletosurvivewithoutrestingstructures,probablythroughcontinualsporulationwithin riparianecosystems.Theirroleintheenvironmentremainsamystery.   AnalysisoftheglobalpopulationstructureofPhythophtoraplurivorausing newlydeveloped,polymorphicSSRmarkers CorineN.SchoebelandSimoneProspero Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland. EͲmail: [email protected] Phytophthoraspeciesarewellknowntocausedevastatingdiseasesonnumerouscrops,ornamentals, and native plants. In recent years, their spread has been accelerated by the increasing international tradeofwoodyplants.However,withafewexceptions(e.g.P.ramorum,thecausalagentofSudden OakDeath),detailedknowledgeontheglobalpopulationstructureandthepathwaysofspreadofforest Phytophthoraspeciesisstillmissing.Thislackofknowledgeismainlyduetotheabsenceofappropriate speciesͲspecificmolecularmarkers. P. plurivora, a member of the P. citricola species complex, is involved in widespread beech (Fagus sylvatica)andoak(Quercussp.)declinesinnaturalandsemiͲnaturalforestecosystemsinEurope(1). Moreover,thisspeciesisfrequentlyfoundinEuropeanornamentalnurseriesandhasbeenreportedin NorthAmericannurseriesandplantationsnotlongago. We recently developed polymorphic SSR markers for P. plurivora (2) and used them to analyze the 26 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain worldwidepopulationstructure,genotyping~500isolatesfrom18countriesofthiscosmopolitanplant pathogen.Here,wewillpresenttheresultsofthisstudywhichaimed(a)todeterminewhetherEurope canbeconsideredasthecenteroforiginofP.plurivora,and(b)tocharacterizethepathwaysofspread ofP.plurivorawithinEuropeandbetweenEuropeandUS. [1]Jung,T.andBurgess,T.I..ReͲevaluationofPhytophthoracitricolaisolatesfrommultiplewoodyhostsinEurope andNorthAmericarevealsanewspecies,Phytophthoraplurivorasp.nov.Persoonia,2295–110(2009). [2]Schoebel,C.N.andProspero,S.Developmentofnew,polymorphicSSRmarkersforthreecloselyrelatedplant pathogenicPhytophthoraspeciesusing454nextgenerationsequencing(inpreparation)(2012).  +Poster76 AFLPanalysisrevealslowgeneticdiversityofPhytophthoraaustrocedraein Patagonia,Argentina M.L.Véleza,M.P.A.Coetzeeb,M.J.Wingfieldb,M.RajchenbergaandA.G.Greslebina aProtecciónForestal,CentrodeInvestigaciónyExtensiónForestalAndinoPatagónico(CIEFAP).Consejo NacionaldeInvestigacionesCientíficasyTécnicas(CONICET).UniversidadNacionaldelaPatagoniaSan Juan Bosco (UNPSJB). Esquel, Argentina; bDepartment of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. EͲmail: [email protected] Phytophthora austrocedrae is a recently discovered pathogen that causes high levels of mortality of Austrocedrus chilensis in Patagonia. The susceptibility of the host tree together with the dispersal patternofthepathogeninPatagonialedtothehypothesisthatP.austrocedraewasintroducedinto Argentina.Butthegeneticdiversityofthepathogenthatwouldbetterinformthisquestionhasnotbeen determined.Theaimofthisstudywas,therefore,toassessthepopulationstructureofP.austrocedrae isolates from Argentina in order to gain an understanding of the origin and spread of the pathogen. Geneticdiversitywasdeterminedbasedonamplifiedfragmentlengthpolymorphisms(AFLPs).Intotal, 48isolatesofP.austrocedraewereobtainedfrominfectedA.chilensistrees,andtheserepresentedthe geographicalrangeofthehost.FourprimercombinationswereusedfortheAFLPanalysis.Ofthe332 scoredbands,12%werepolymorphic.Genediversity(h)rangedfrom0.0050Ͳ0.0258andtheShannon index (I) from 0.0180Ͳ0.0432. A high degree of genetic similarity was observed among the isolates (pairwiseSvalues=958Ͳ1;0.993r0.009,meanrS.D).Afrequencyhistogramshowedthatmostofthe isolate pairs were 100% similar. Principal coordinate analysis using threeͲdimensional plots did not group any of the isolates based on their geographical origin. The low genetic diversity (within and between sites) and absence of population structure linked to geographic origin, suggest that P. austrocedraewasintroducedintoArgentina.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 27 9th-14th September 2012 Córdoba-Spain                                   SESSION2 SURVEYS,DIVERSITY,INVASIONANDSPREAD           

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 29 9th-14th September 2012 Córdoba-Spain RoleofPhytophthorapseudosyringaeinwidespreaddiebackofNothofagus plantationsinBritain B.Scanu1,2andJ.F.Webber1 1CentreforForestryandClimateChange,ForestResearch,Farnham,SurreyGU104LH;2Dipartimentodi Agraria,SezionediPatologiavegetaleedEntomologia,UniversitàdiSassari,ViaE.DeNicola1,07100 Sassari,Italy.EͲmail:[email protected] Since2009extensivediebackandmortalityofNothofagusobliquaassociatedwithbleedingcankerson stem and branches has been observed in Britain. The casual agent of this disease was identified as Phytophthora pseudosyringae, based on morphological and ITS analysis. In 2011 a survey was undertaken to assess the frequency and type of P. pseudosyringae infections, the comparative susceptibility of N. obliqua and other different woody hosts, and the sporulation potential of P. pseudosyringaeonNothofagusfoliage.InfectionsofP.pseudosyringaeonNothofagusappearedtobe widespreadinBritainwithinfectedtreesbeingfoundonatleastthreesitesinEngland,twoinScotland and one in Wales. Additional symptoms such as twig blight and leaf necrosis suggested that aerial infection was occurring. Besides N. obliqua, also Nothofagus alpina, Fagus sylvatica and Vaccinium myrtillus were found to be infected. In pathogenicity tests P. pseudosyringae was shown to be an effective bark pathogen of Nothofagus, but with significant differences between the different woody hosts assayed. Susceptibility of foliage showed marked differences between the host species tested, with N. obliqua leaves proving to be highly susceptible. The high levels of sporulation observed on infected N. obliqua leaves suggests that P. pseudosyringae has the potential to sporulate heavily on foliage and spread from there to shoots, branches and stems. P. pseudosyringae on Nothofagus representsthethirdPhytophthoraspeciescausingaerialinfectiononforesttreesintheUKandcould havethepotentialtoposeaseriousthreattoNothofagusinitsnativesouthernhemisphere.  MorenewPhytophthoraspeciesfromnaturalecosystemsinWesternAustralia AgnesSimamora1,GilesHardy1,MikeStukely2andTreenaBurgess1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia; EͲmail: [email protected] In 2009 (Plant Dis. 93:215Ͳ223) we reported 11 apparently new Phytophthora species, designated P.sp.1Ͳ11,fromnaturalecosystemsinWesternAustraliaWA).Sincethenmanyofthesespecieshave beendescribed:P.multivora(P.sp.4),P.elongata(P.sp.2),P.constricta(P.sp.9),P.arenaria(P.sp.1),P. thermophila(P.sp.3),P.litoralis(P.sp.11),P.gregata(P.sp.7),P.fluvialis(P.sp.8).P.sp.5fallsintheP. cryptogeaspeciescomplexandP.sp.6hasbeenidentifiedasP.taxonpersonii.Additionallywehave describedP.gibbosaandP.amnicola.FurthersamplingandcontinuedmolecularreͲevaluationofthe culture collection at the Department of Environment and Conservation’s Vegetation Health Service (VHS)hasuncoveredmorenewspeciestentativelynamedP.aff.humicola,P.aff.rosacearum,P.aff. elongata, P. aff. arenaria, P. aff. captiosa, P. taxon. kwongan (=P.sp.10), P. taxon. casuarina.A large number of the new species are from ITS clade 6, subͲclade I and they have been isolated in remote naturalvegetation.AllknownspeciesandtaxainsubͲcladeI,withtheexceptionofP.humicola,have beenisolatedinWA,perhapsilluminatingaWAoriginforthisclade.Studiesarecurrentlyunderwayto formallydescribethenewspeciesinconjunctionwithlargescalepathogenicitytrialsoftheseandthe othernewlydescribedspecies.    6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 31 9th-14th September 2012 Córdoba-Spain LandscapeͲscaleepidemicofPhytophthoraramorumonlarchintheUK JoanWebberandCliveBrasier ForestResearch,AliceHoltLodge,Farnham,Surrey,GU104LH,UK PhytophthoraramorumhasbeenreportedfrommostEUMemberStates,mainlyaffectingornamental plants in nurseries. The most epidemiologically important hosts are those that support abundant sporulation and until recently in Europe this applied primarily to rhododendron and Vaccinium. However,followingthefirstfindingsofP.ramorumonJapaneselarch(Larixkaempferi)insouthwest Britain in 2009, it soon became clear that infected needles of Larix species, especially L. kaempferi, (Japaneselarch)couldproduceabundantnumbersofsporangia,asdemonstratedbothinthelaboratory andonnaturallyinfectedtrees.Moreover,aslarchisalsoacankerhost,theinfectedfoliagethencauses steminfectionsonlarchaswellasonothernearbysusceptibletreesincludingbroadleafandconifer species. Since2009ithasbecomeclearthanramorumdiseaseoflarchisnowthroughoutthewesternsideofthe UKwheretheclimateisespeciallyconducivetoinfectionandsporulation.Tocontroldiseasespread millionsoftreeshavenowbeenfelledandaerialsurveillanceisavitalpartofdiseasedetection.All threelarchspeciesthataregrowncommerciallyintheUK(L.kaemperfi,L.deciduaandL.xeurolepis) canbecomenaturallyinfectedalthoughtheydifferintheirbarkandfoliarsusceptibility.Thecurrent epidemicrasiesmanychallengestoourundertandingofthediseaseincludinghowP.ramorummaybe changinginthisnewenvironment,theneedforimproveddiagnosticmethodsforconifermaterial,and whether other Phytophthora species may also be associated with larch but have previously gone undetectedbecauseofcrypticsymptomdevelopment.  EvaluatingtheeffectofPhytophthoraspp.ontreehealthinexoticplantations inNewZealand MargaretDick,NariWilliams,IanHood,JudyGardner Scion(NewZealandForestResearchInstitute),PrivateBag3020,Rotorua3046,NewZealand HistoricallytheexoticforestplantationsinNewZealandhavebeenlargelyfreeofdiseasescausedby Phytophthora spp. in spite of the presence of some capable pathogens such as P. cinnamomi and P. kernoviae.HoweverbecauseoftheincreasingnumberofPhytophthoraspeciescausingnoveldiseases worldͲwideareͲevaluationofthoseisolatedfromNewZealandforestryspeciesandtheirassociation withsymptomsofdiseasewasundertaken. Inasurveyprogrammecoveringfouryears,standsagedfrom2Ͳ28yearsinplantationforestsacrossthe NorthIslandwereassessedforwilt,dieback,stemandbranchcankersandneedlediseasethatcouldnot be attributed to known biotic and abiotic causal agents. Where nonͲattributable conditions were identified a potential association with an oomycete(s) was sought through isolation, by ELISA test (followedbyPCRconfirmation),andthroughmicroscopicexaminationoftissues. Somenovelhost/Phytophthoraassociationsofundeterminedsignificancewereencounteredandthese willbediscussed.        32 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain SurveysofsoilandwaterfromasymptomaticnaturalecosystemsinSouthAfrica revealagoldmineofPhytophthoradiversity EunsungOh1,2,MikeWingfield1,MarikaGryzenhout1,3,BrendaWingfield1andTreenaBurgess1,4 1Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa; 2DivisionofForestInsectsPestandDiseases,KoreaForestResearchInstitute,57Hoegiro,DondaemunͲ gu, Seoul 130Ͳ712, South Korea; 3Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; 4Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia. EͲmail: [email protected] Phytophthoraspeciesarewellknownasdestructiveplantpathogens,especiallyinnaturalecosystems. However,littleisknownregardingthePhytophthoradiversityinforestsofSouthAfrica.Inthisstudy, Phytophthoraspecieswereisolatedusingstandardbaitingtechniquesfrom150soilandwatersamples andthesewereidentifiedbasedonITSandcoxIsequencedata.The162resultingPhytophthoraisolates residedin11taxaincludingfourknownspecies(P.multivora,P.capensisP.frigida,P.cinnamomi)the knownbutasyetunnamed,PhytophthorataxonPgChlamydoandP.taxonemzanziandfivenewtaxa. ThemostcommonlyisolatedspeciesfromsoilwasP.multivora(75%),aspeciesrecentlydescribedfrom WesternAustraliawhereithasbeenextensivelyassociatedwithdeadanddyingtrees.P.capensisandP. taxonemzanzihaverecentlybeendescribedfromtheCaperegionofSouthAfricaandP.multivorawas also reported from this region.The extensive isolation of P. multivora from asymptomatic natural vegetationsuggeststhatSouthAfricamaybetheoriginofthisspecies.P.frigidawasisolatedforthe firsttimefromstreamwaterandP.taxonPgChlamydowasisolatedforthefirsttimeinAfrica.Thenew specieswereisolatedfromwaterandnotsurprisinglybelongtoITSClades6and9.Withtheexception ofP.cinnamomi,verylittleisknownregardingthebiology,epidemiologyororiginofthesespecies.  SpeciesofPhytophthoraassociatedwithQuercusdeclineintheMediterranean Park‘CarrascardelaFontRoja’(Spain) PérezͲSierraA.1,LópezͲGarcíaC.1,LeónM.1,GarcíaͲJiménezJ.1,AbadͲCamposP.1,JungT.2,3 1InstitutoAgroforestal Mediterráneo, UniversidadPolitécnicade Valencia,CaminodeVeras/n,46022 Valencia, Spain; 2Phytophthora Research and Consultancy, Thomastrasse 75, 83098 Brannenburg, Germany; 3IBB/CGB Plant and Animal Genomic Group, Laboratório de Biotecnologia Molecular e Fitopatologia, University of Algarve, Campus de Gambelas, 8005Ͳ139 Faro, Portugal. EͲmail: [email protected] The Natural Park Carrascar de la Font Roja is one of the best preserved nature areas (2298 Ha.) in ComunidadValenciana(EasternSpain)thatincludestheMenejadormountainrange,withthehighest altitudeof1356m.TheforestisdominatedbyMediterraneanQuercusspp.,ie.Quercusilex,Q.faginea and Q. coccifera. During the last decade a severe decline of oaks has been observed. The symptoms includediebackofbranchesandpartsofthecrown,increasedtransparencyofthecrown,witheringof leaves and death of trees. A significant decrease in theproduction of acorns andsaplings affectingnaturalregenerationhasalsobeenobserved.Nopreviousstudiesonapossibleinvolvementof Phytophthoraandotheroomycetesinthedeclinehavebeencarriedout.Therefore,during2010Ͳ2011 soil samples from affected trees were collected and their roots examined. An extensive loss of both lateral small woody roots and fine roots and callussing or open cankers were observed. Soil samples containingfinerootsfromdecliningtreeswerebaitedusingbothQ.roburleavesandapplefruitsas baits. Six Phytophthora species were detected: P. cryptogea, P. gonapodyides, P. megasperma, P. quercina, P. psychrophila and P. syringae. Pathogenicity test with representative isolates of these specieswereconductedforsixmonthsundercontrolconditionswithoneͲyearoldseedlingsofQ.ilex andQ.faginea.P.cinnamomiwasincludedinthepathogenicitytestforcomparison.Theresultsshowed that Q. ilex seedlings were more susceptible to infection than Q. faginea with P. cinnamomi and P. 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 33 9th-14th September 2012 Córdoba-Spain megaspermacausingseverereductioninrootbiomass.TheroleofallPhytophthoraspeciesdetectedin thedeclineofMediterraneanQuercusspp.isdiscussed.  FirstapproachintotheknowledgeofthePhytophthoraspeciesdiversityin MediterraneanHolmoakforestsbasedon454parallelamplicon pyrosequencingofsoilsamples CatalàS.,PérezͲSierraA.,BerbegalM.,AbadͲCamposP. Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia,Spain.EͲmail:[email protected] Theevergreenholmoak(QuercusilexL.)isthemostrepresentativetreespeciesintheIberianPeninsula andthemaintreeinoakͲrangelandecosystems(dehesas).Amongthemostimportantproblemsthat threatenthepersistenceofoakgrovesanddehesasaretheabsenceofnaturalregenerationandroot rotduetoPhytophthoracinnamomi.Recently,newspeciesofPhytophthoraotherthanP.cinnamomi weredetectedinholmoakforestusingtraditionalbaitingmethodsandisolation.Sinceitisnoteasyto detect,identifyorquantifyPhytophthoraspecies,theneedarisestofindarigoroustechnique,whichis rapid,reliableandhighly reproducible toevaluatetheirdiversityinlivingin holmoakforests.Inthis study, the polymorphic ITS1 region is used to evaluate the presence of Phytophthora species in soil samples.TaggedampliconswereobtainedwithPhytophthoratemplateͲspecificprimerswhichexcluded other oomycetes and fungi. Similarity of the barcoded reads obtained by 454Ͳpyrosequencing after BLASTagainstGenBankdatabaseandcomparisonofabundancewasassessedfromthreedifferentsoil samples: from trees showing decline symptoms, rainfall runoff areas from the same forest, and soil samplesfromanasymptomaticforest.Theresultsshowthereadsdistribution,thespeciesabundance from each soil and the phylogenetic analyses. This study provides important insights into the PhytophthoraspeciesdiversityinMediterraneanholmoakforests.  IntroductionofPhytophthoraramoruminFagaceaeforestsinItaly AnnaMariaVettrainoa,AlessiaTomassinia,NataliaBrunia,SelmaFranceschinia,AndreaVanninia aDIBAF,UniversityofTuscia,ViaS.CamillodeLellis,Viterbo01100,Italy.EͲmail:[email protected] SinceitbecomeaquarantinepathogenforEurope,Phytophthoraramorumhasbeendetectedofficially twiceinItaliannurserystocks.Duetothelowlevelofattentionputindetectionactivitiesinthelast years,presenceofP.ramoruminItaliannurseriesmightbeunderestimated.DifferentlyItalianFagaceae forestshavebeenlargelyinspectedforPhytophthorapresenceespeciallyinsoilbymeansofclassical baiting methods followed by morphological and molecular identification. Results of these activities never recorded the presence of P. ramorum in Fagaceae forests in Italy. Recent utilization of mass sequencetechniquesprovidedthepossibilitytoanalyseinonestep,andhighsensitivity,Phytophthora populationinforestsoils.Pyrosequencinganalysisofchestnutsoilshasbeencarriedoutintwositesin ItalytoevaluatethediversityofresidentPhytophthoracommunity.Sequencedatahavebeenanalysed with dedicated database and resulted in a range of Phytophthoras including species known to be commoninchestnutandbeechforestsoilsinItaly.Inadditionsomenewspeciesresultedtobepresent andrepresentedbyadiscretenumberofreads.Amongthese,P.ramorumwascommonlydetectedin chestnutsoils.Toconfirmthedetection,DNA’sutilisedforpyrosequencingwasamplifiedwithspecies specificprimerssetsforP.ramorumandtheampliconsobtainedweresequenced.Sequencesobtained matchedwith100%identitywithP.ramorumsequencesondatabase.CrypticpresenceofP.ramorum inforestsoilswouldrepresentanimportantimprovementofknowledgeonepidemiologyandinvasion mechanismsofthisspeciesinMediterraneanclimate.  34 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain                          SESSION3 ECOLOGY,EPIDEMIOLOGYANDCLIMATECHANGE   

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 35 9th-14th September 2012 Córdoba-Spain EctomycorrhizaeandPhytophthoracinnamomirelationswithintherizosphere ofQuercusilex TamaraCorcobado,AndreaPérez,MaríaVivas,GerardoMorenoandAlejandroSolla Ingeniería Forestal y del Medio Natural. Universidad de Extremadura. Avenida Virgen del Puerto 2, 10600Plasencia,Spain.EͲmail:[email protected] OakdeclineisamajorforestprobleminIberiaandisprincipallyassociatedwiththelossoffineroots caused by Phytophthora cinnamomi. Ectomycorrhizae (ECM) are known to be beneficial for trees promotingplantgrowthandprotectingrootsfrompathogeninfections[1].Thisstudyaimedtoanalyse theECMcommunitystructureanditsrelationwiththepresenceofP.cinnamomi.In96decliningstands in Extremadura, Spain, three nonͲdeclining and three declining trees (ч 5% and 21Ͳ40% of crown transparency,respectively)perstandwereselected.ForECMandPhytophthoraassessmentmonoliths of rhizosphere soil were collected from each tree. Each ECM tip was counted and categorized into morphotypes and the ECM abundance, species richness and diversity were estimated. Concerning physicalandchemicalsoilfactors,Asoilhorizondepth,soilbulkdensity,soiltextureandpH,soilredox + status and contents of ammonium (NͲNH4 ) and nitrate (NͲNO3) were measured. Preliminary results revealedahigherpercentageofmycorrhizalroottipsinnonͲdecliningtreesthanindecliningtrees(62.3 ±17.8%and57.6±15.8%,respectively;p<0.05).Thedecliningstatusoftreeshadalsoanimpacton speciesrichness andShannondiversityindex,whichwerehigherinnonͲdecliningtrees(p<0.05).The presenceofP.cinnamomiwasassociatedwithanincreaseoffinerootmortality(p<0.001).Significant correlationswerefoundbetweenphysicalandchemicalsoilfactorsandECMabundance.Theseresults showed that crown transparency had a negative effect on ECM structure as demonstrated in other studies[2]. [1]Branzanti,M.B.,Rocca,E.andPisi,A.Effectofectomycorrhizalfungionchestnutinkdisease.Mycorrhiza,9 103Ͳ109(1999). [2]Kuikka,K.,Härmä,E.,Markkola,A.M.,Rautio,P.,Roitto,M.,Saikkonen,K.,AhonenͲJonnarth,U.,Finlay,R.and Tuomi,J.SeveredefoliationofScotspinereducesreproductiveinvestmentbyectomycorrhizalsymbionts.Ecology, 842051–2061(2003).  Wildfireinfluencesforestdiseasedynamicsthroughselectivehostmortalityand pathogensuppression:suddenoakdeathinBigSur,CA MargaretR.Metz1,MaiaM.Beh1,KerriFrangioso1,RossK.Meentemeyer2andDavidM.Rizzo1 1Department of Plant Pathology, University of California, Davis, CA 95616 USA; 2Department of Geography and Earth Sciences, University of North Carolina, Charlotte, NC 28223 USA. EͲmail: [email protected] Mostdiseaseecologyinforestshasfocusedonshiftstocommunitycompositionduetodiseasewithout considerationoftheroleofinteractingdisturbances.Suddenoakdeath(SOD),causedbyPhytophthora ramorum, is associated with extensive tree mortality in coastal California forests. Wildfire is an importantdisturbanceintheseforestsinfluencingcommunitycompositionintheabsenceofSOD[1]. Fire may impact SOD directly through suppression of P. ramorum or indirectly through mortality of epidemiologicallyimportanthosts.Throughsurveysofburnseverity,treemortality,andregeneration followingwildfiresinSODͲimpactedforests,weasked(i)howwildfireaffectedP.ramorumsurvival;and (ii) how forest recovery differs under the separate or joint influences of SOD and wildfire. Both disturbancescauseselectivemortalitybecausethedominanttreespeciesintheseforestsdifferintheir susceptibility to mortality from SOD and fire. In two habitat types, the dominant hosts for pathogen sporulation suffered greater fireͲcaused mortality than other species, which should lead to disease suppression in burned, infested areas relative to unburned, infested areas. We observed such suppressionbecauseonly20%ofsampled,previouslyinfestedburnedareaswerefoundtocontainP. ramorumimmediatelyfollowingthefire.InnonͲburnedareas,forestcompositionhasbeenshiftingto 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 37 9th-14th September 2012 Córdoba-Spain dominancebysporulatingspeciesthatdonotdiefrompathogeninfection,leadingtopositivefeedbacks ondiseaseprevalenceintheseareasandcontinuedmortalityofcankerhosts.ThetrajectoryofpostͲ disturbancerecoverythusdiffersgreatlyamongsitesdependingontheseparateorjointinfluencesof SODandfire. [1]Metz,M.R.,Frangioso,K.,Meentemeyer,R.K.andRizzo,D.M.Interactingdisturbances:wildfireseverityaffected bystageofforestdiseaseinvasion.EcologicalApplications,21313Ͳ320(2011).  SusceptibilitytoPhytophthoracinnamomiofthemaincropsindehesasand theirinfluenceintheepidemiologyoftheoakrootdisease MaríaSocorroSerrano1,PaoloDeVita1,PilarFernández2,MaríaEsperanzaSánchez1 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestryDepartment,UniversityofCórdoba.Ctra.MadridͲCádizKm.396.14014Córdoba,Spain.EͲmail: [email protected] Phytophthoracinnamomi,themaincauseofQuercusrootrotinsouthͲwesternSpain,isanaggressive pathogenonLupinusluteus(yellowlupin),causingrootrot,wiltinganddeathofthiscrop[1],butnoton other crops (Triticum aestivum, Avena sativa or Vicia sativa) common in oakͲrangeland ecosystems (dehesas) in the region. The pathogen was isolated from roots of wilted lupins in the field. Artificial inoculations on four cultivars of L. luteus reproduced the symptoms of the disease, both in preͲ and postͲemergencestages,recoveringthepathogenfromnecroticroots.Undercontrolledconditionsand alsoinfieldsamples,itwasobservedthatLupinusluteusincreasedtheinoculumlevelsinthesoil.For therestofcrops,bymeansofartificialinoculationswithP.cinnamomi,positiveisolationsfrominfected rootsofyellowlupin(symptomatic) andvetch (asymptomatic)wereobtained,but neverformwheat andoat(asymptomatic).Throughinvitroinfectionexperiments,itwasdemonstratedthatyellowlupin highlystimulatedtheproductionofzoosporesofP.cinnamomi.Vetch,wheatandoatdidnotstimulate zoospore production. In addition and opposite to lupin, vetch did not influence the viability of chlamydosporesinthesoil.Weconcludedthatthecultureofwheat,oatandevenvetchinrangelands did not influence the epidemiology of Quercus root disease and they could be a good alternative to yellowlupininrangelandecosystemsaffectedbyrootrot. [1]Serrano,M.S.,FernándezͲRebollo,P.,DeVita,P.,Carbonero,M.D.andSánchez,M.E.Lupinusluteus,anew hostofPhytophthoracinnamomiinSpanishoakͲrangelandecosystems.EuropeanJournalofPlantPathology128 149Ͳ152(2010).  SuddenoakdeathimpactstocommunitiesandecosystemsinCaliforniaforests RichardC.CobbandDavidM.Rizzo UniversityofCaliforniaDavis,DepartmentofPlantPathology,OneShieldsAve,DavisCAUSA RecognitionofPhytophthoraimportancehasincreasedasmoreofthesepathogensareintroducedto naive host populations. We demonstrate epidemiological drivers of Phytophthora impacts on community composition, distribution of forest biomass, and ecosystem processes including litterfall, decomposition,andnitrogencyclinginCaliforniaforestsimpactedbyPhytophthoraramorumandthe resultingdiseasesuddenoakdeath.ForP.ramorum,patternsofhostmortality,pathogenspread,and accumulationoflargewoodydebrisaregreatlydeterminedbytheprevalenceofsporulationsupporting speciesespeciallytanoak(Notholithocarpusdensiflorus)whichisrapidlykilledfollowinginfectionand Californiabaylaurel(Umbellulariacalifornica)whichdoesnotsufferdeleteriousimpactsfrominfection. Thisleadstoapparentcompetition(increaseddominanceofspeciesnotdirectlyimpactedbyoutbreak organisms) between the two species and positive feedbacks on pathogen populations in many P. ramorumimpactedforests.P.ramorumcausedmortalityleadstomodestchangesinlitterfallchemistry andsoilNavailabilitybutthelongͲtermconsequencesofspeciesshiftsaremuchlargerandlongͲlasting 38 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain consequencestoecosystemprocesses.ControlanderadicationofP.ramorumisverydifficultbecause of the pathogen’s broad host range, survival in the environment, and prolific basal sprouting from diseaseͲkilledtrees.ThelongͲtermconsequenceofthisdiseaseisremovaloftanoakfromtheoverstory in many forests, an impact similar to chestnut blight in the Northeastern USA. However, we found thresholdsforpathogenpersistenceinepidemiologicalmodelssuggestingaconservationstrategythat combines identification of host resistance and management to reduce sporulation can retain biodiversityassociatedwithtanoak.  CouldclimatewarmingbeoneofthecausesofPhytophthoraalniemergencein Europe? AguayoJ.,HussonC.andMarçaisB. INRA,NancyͲUniversité,UMR1136InteractionsArbresͲMicroorganismes,54280Champenoux,France.EͲ mail:[email protected] Emerginginfectiousdiseaseshavebecomeamajorthreattotheforestecosystemconservation.Several factorsmaycausetheseemergences,amongwhichevolutionofsylviculturepractices,environnemental changes, or introduction of alien pathogen by international trade. Those causes often can occur togetherandpreciselyassessingtheirimportanceisanimportantscientificquestion.InFrance,Alnus glutinosaisthreatenedbythedevelopmentoftheepidemiccausedbyPhytophthoraalni.Thispathogen isknowntohavebeeninvasiveinpartofEuropeandistheresultofaninterspecifichybridationevent betweenPhytophthoraalnisubsp.uniformisandPhytophthoraalnisubspmultiformis.Theaimofthis studywastoassesswhethertheclimatewarmingofthelastdecadesmighthaveparticipateddetermine in the disease emergence. For that, P. alni soil inoculum and incidence of the crown decline and of cankerweremonitoredon16siteslocatedalongaaltitudinalgradientinNEFranceusedasanproxifor atemperaturegradient.Theresultsshowthatthediseaseincidence,i.e.thelikelihoodofnewdisease caseinthesites,waspositivelycorrelatedwiththemeantemperatureofthewinter.Evolutionofpast temperatureinthelast40yearssuggeststhatclimatewarmingcouldbyoneofthecauseexplainingthe emergenceofP.alnialderdecline.  +Poster15 InfluenceofbirdfaecesinthebehaviouroftherootrotofQuercussubercaused byPhytophthoracinnamomiatDoñanaBiologicalReserve(SWSpain) PaoloDeVita1,MaríaS.Serrano1,LuisV.García2,CristinaRamo3andM.EsperanzaSánchez1 1Dpto.Agronomía.ETSIAM,UniversidaddeCórdoba,Apdo.3048,14080ͲCórdoba,Spain; 2IRNAS(CSIC), Avda Reina Mercedes 10, 41012ͲSevilla, Spain; 3Estación Biológica de Doñana (CSIC). Avda Américo Vespucios/n,41092ͲSevilla,Spain.EͲmail:[email protected] Centennialcorkoaksareconsideredkeystonestructuresintheecosystemofthestabilisedsandsofthe Doñana Biological Reserve. These remnant big trees are currently threatened by nesting of colonial waterbirds,whosedebrisinduceddeepsoilchemicalchanges.Since2008P.cinnamomiisalsobeing isolatedfromrootsandrhizosphereofdecliningtrees[1].Phytophthoracinnamomihasexperienceda large spread in the Park over the last years, taking advantage of the extremely wet 2010 spring and winter.Theobjectiveofthisworkwastoanalyzetheabilityofthepathogenforoakrootinfectionat variousconcentrationsofnaturalandcommercial(guano)birddejections: a) in vitro, by testing the influence of three concentrations of bird faeces on clamydiospore viability, sporangialproductionandzoosporerelease,and b)inplanta,addingbirdfaecestoinfestedsoilatdifferentconcentrationsandanalyzingplantresponse

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 39 9th-14th September 2012 Córdoba-Spain atthesynergybetweenpathogenanddejectionsoninfectionofseedlingroots. Theresultsobtainedintheinvitroexperimentsshowedthathighconcentrationsoffaecesinhibitcrucial stepsinthelifecycleofthepathogenandconsequently,couldaffectitsinfectionability.Resultstobe obtainedinplantexperimentswillbeshowatthecongress.

[1]DeVita,P.,Serrano,M.S.,Callier,P.,Ramo,C.,GarcíaL.V.andSánchez,M.E.Phytophthorarootdisease:a newthreatforcorkoaksatDoñanaNationalPark(SouthͲWesternSpain).IOBC/WPRSBulletin7693Ͳ96(2012).

 +Poster23 SpatialpatternsofPhytophthoracinnamomiindecliningMediterraneanforests: implicationsfortreespeciesregeneration Lorena GómezͲAparicio1, Beatriz Ibáñez1, María S. Serrano2, Paolo De Vita2, José M. Ávila1, IgnacioM.PérezͲRamos1,LuisV.García1,M.EsperanzaSánchez2andTeodoroMarañón1 1InstitutodeRecursosNaturalesyAgrobiologíadeSevilla(IRNAS),CSIC,POBox1052,SevillaEͲ41080, Spain.Email:[email protected]2Dpto.Agronomía,ETSIAM,UniversidaddeCórdoba,POBox3048, CórdobaEͲ14080,Spain SoilͲbornepathogensareakeycomponentofthebelowgroundcommunityduetothesignificanceof theirecologicalandsocioͲeconomicimpacts.However,verylittleisknownaboutthecomplexityoftheir distribution patterns in natural systems. Here we explored the patterns, causes and ecological consequences of spatial variability in the abundance of the soilͲborne pathogen Phytophthora cinnamomiinMediterraneanforests,wherethisspeciesrepresentsamajordriverofoakdecline.We usedspatiallyͲexplicitneighborhoodmodelstopredictPhytophthoraabundanceasafunctionoflocal abiotic conditions (soil texture) and the characteristics of the tree and shrub neighborhoods (species composition, size and health status). The implications of Phytophthora abundance for tree seedling performancewereexploredbyconductingasowingexperimentinthesamelocationswherepathogen abundancewasquantified.Phytophthoraabundanceintheforestsoilwasnotrandomlydistributed,but exhibitedspatiallypredictablepatternsinfluencedbybothabioticandparticularlybioticfactors(tree andshrubspecies).SoiltextureseemedtoaffectPhytophthoraabundanceindirectlythroughitseffects onsoilwatercontent,whereaswoodyspeciesaffectedPhytophthoramostlydirectlybyprovidingliving hosttissuewithdifferentsusceptibilitytopathogenattack.Phytophthoraabundancereducedseedling emergenceandsurvival,but notinallsitesortreespecies.Ourfindingssuggestthatheterogeneous spatialpatternsofPhytophthoraabundanceatfinespatialscalecanhaverelevantimplicationsforthe dynamicsandrestorationofdecliningMediterraneanforests.  +Poster49 RoadsandstreamsarenotsignificantpathwaysforSODspreadintanoak forests EbbaPeterson,JoeHulbertandEverettHansen Department of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331. EͲmail: [email protected] We used two approaches to study the importance of roads and streams as pathways of spread of sudden oak death in Oregon. A GISͲbased spatial analysis of infected sites relative to the road and streamnetworkswascomparedtoanalysisbasedonasetofrandompoints.Second,groundsurveysof roadsandstreamsidevegetationintheinfestedareamappedtheassociationbetweenP.ramorumin streamsoronroadsurfacesandinfectionofadjacentvegetation. ThespatialanalysisshowednoassociationbetweenroadsandSODsites.ThemediandistancefromP. 40 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain ramoruminfectionstoroadswasnotsignificantlydifferentfromthemediandistanceexpectedunder randomness.Inroadsampling,P.ramorumwasnotrecoveredfromroadsorsusceptibleplantsgrowing within splash distance from roads except when they were growing immediately beneath an infected overstorytree.Ontheotherhand,therewasasignificantassociationbetweenP.ramorumintanoak and proximity to streams. Surveys of streamside vegetation, however, produced no evidence of infectionoriginatingfromstreamͲborneinoculum. Results indicate that roads are not important dispersal pathways for P. ramorum in Oregon. This is probablytestamenttotheeffectivenessofthesanitationprotocolsincorporatedintheSODeradication program,aswellasevidencethattheharshroadenvironmentdoesnotfavorP.ramorumsurvival.The positive correlation between SOD and streams apparently results from channeled air movement, carryingaeriallydispersedsporangiaupanddownstreamvalleys,notfromP.ramorumtransportedin streamwater.  +Poster5 NatureofPhytophthorainoculuminflowingsurfacewaters K.AramandD.M.Rizzo DepartmentofPlantPathology,UniversityofCalifornia,Davis,CA95616USA;EͲmail: [email protected] Phytophthora species are regularly recovered from surface waters, often in the absence of apparent sources of inoculum [1, 2]. The persistence of such plant pathogens in water bodies has significant implications for their spread and management in agricultural as well as more natural contexts. To determine if Phytophthora spp. can complete their life cycle in aquatic environments, we have undertaken experiments focused on P. ramorum and P. gonapodyides in California coastal streams. Exposing fresh rhododendron leaves along with those killed by drying or freezing to inoculum in naturallyinfestedstreamsandincontrolledenvironmentexperimentsindicatedthatP.ramorumhasa limited ability to colonize degraded leaf litter in aquatic environments. In contrast, P. gonapodyides more readily colonized dead leaves. The potential of aquatic and riparian plants as sources of Phytophthora inoculum in aquatic environments will be addressed by surveys for cryptic infections. Colonies of P. ramorum and P. gonapodyidesͲlike spp. were recovered from glass slides exposed in streams, indicating that propagules passively adhere to substrates in streams. Colonies were also recoveredfromleavesandglassslidessuspended intubesinstreamflow,indicatingthatpropagules adherewithoutbeingtrappedbetweensurfaces.Todeterminethepresenceofsporangia,zoospores andcystsinflowingstreamwater,selectiveisolationofpropaguletypeswillbebasedondifferencesin sizeandlackofacellwallinzoospores. [1]Hong,C.X.andMoorman,G.W.Plantpathogensinirrigationwater:Challengesandopportunities.Crit.Rev. PlantSci.2489Ͳ208(2005). [2]Reeser,P.W.,Sutton,W.,Hansen,E.M.,Remigi,P.andAdams,G.C.Phytophthoraspeciesinforeststreamsin OregonandAlaska.Mycologia1022Ͳ35(2011).           6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 41 9th-14th September 2012 Córdoba-Spain +Poster32 Seasonalvariationofinoculumdensityandspeciescompositionofsoilborne PhytophthorasinaninfectedblackwalnutstandinHungary JuditKovács,FerencLakatosandIlonaSzabó University of WestͲHungary, Institute of Sylviculture and Forest Protection. HͲ9400 Sopron, BajcsyͲ ZsilinszkyE.Str.4.,Hungary.EͲmail:eͲmail:[email protected] PreviousstudiesshowedthepresenceofPhytophthoraplurivoraandPhytophthoracactoruminthesoil of declining black walnut stands in Hungary, and the pathogenicity of these species was proved by inoculationofseedlings[1]. Thehealthconditionofa73yearsblackwalnutstandwasexaminedinJuneandSeptember2011in WestͲHungary..Thestandissituatedonadrainedfloodplain.Thetreesshoweddecliningsymptoms: sparsecrown,dryingbranches,smallleaveswithyellowishdiscolouration.Twentytreeswereselected for monitoring survey. The health condition of the trees was evaluated on a 4Ͳpointed scale. Soil sampleswerecollectedfromtherhizosphereofeachofexaminedtreesforisolationofPhytophthoras. Phytophthora species were isolated on selective agar media, using the leaf baiting method (Rhododendron and Prunus laurocerasus leaves as baits). The spots on the baits were counted to estimate the inoculum density in the soil sample. The isolates were identified by morphological and molecularmethods.Themorphologicalfeaturesoftheisolateswereexaminedonculturesgrownon carrot agar at 20 °C. The molecular identification was performed by sequencing the ITS 1 and ITS 2 regionoftherDNAofselectedisolates. Thehealthystateof30%oftheinvestigatedtreesgotworseduringthesummer.However,theinoculum density and the isolation success were lower in September in almost every soil samples. There were changesalsointhespeciescomposition:InJune59.26%oftheisolateswerePhytophthoracactorumand 18.52% Phytophthora plurivora, however, 100% of the isolates were Phytophthora plurivora in the collectionofSeptember. [1]Szabó,I.andLakatos,F.PhytophthoraspeciesisolatedfromdecliningforestsinHungary.Növényvédelem,44 607Ͳ613(2008).  +Poster73 EpidemiologyofPhytophthoraramorumandPhytophthorakernoviaeon VacciniuminthenaturalenvironmentintheUK ThorpG.L.,TurnerJ.A.andJenningsP. Fera – The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ. EͲmail: [email protected] Phytophthora kernoviae was first detected causing stem blackening and leaf necrosis on Vaccinium myrtillusinlate2007inwoodlandintheSouthWestofEngland.FurtherUKwidesurveyshavesince detectedthepathogenin12additionallocations,mainlyintheSouthWestofEngland.Phytophthora ramorumwasconfirmedinfectingvacciniuminlate2008,causingsimilarsymptomstothoseseenbyP. kernoviae,andtodatehasbeenrecordedat10sites,predominantlyintheWestMidlandsandWales. Differences can be seen in the habitats favoured by the two pathogens with P. kernoviae mainly infectingvacciniuminheathland,whilstP.ramoruminfectionsmainlyoccurinvacciniumgrowingina woodlandenvironment.Althoughthetotalnumberofsitesinfectedwitheitherpathogenissmall,the numberofconfirmednewsiteshasbeenincreasingyearonyear. Laboratory experiments have been carried out in order to determine the relative susceptibility of V. myrtillustovaryingsporeconcentrationsofbothP.kernoviaeandP.ramorumandhowthiscompares 42 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain tootherhostspeciesincludingrhododendronandviburnum.Inordertoestablishifthereareperiodsof highhostsusceptibilitybaitplantswerepositionedinP.kernoviaediseasedareasinbothheathlandand woodlandalongwithadataloggerrecordingtemperatureandhumidity.Sporewasheswerealsocarried outtodeterminetimingofsporulation.Monitoringover2yearshasshownvacciniumissusceptibleall yearwithpeaksininfectionandsporulationcoincidingwithperiodsofhighhumidty/rainfall. 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 43 9th-14th September 2012 Córdoba-Spain                                   SESSION4 RESISTANCE,PATHOGENESIS,ECOPHYSIOLOGY    

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 45 9th-14th September 2012 Córdoba-Spain BlockingofɲͲplurivorincompromisesPhytophthoraplurivorapathogenicity towardsFagussylvaticaseedlings RonaldoJ.D.Dalio1,FrankFleischmann1,AngelaChambery2,RuthEichmann3,NelsonMassola4, SérgioF.Pascholati4andWolfgangOsswald1 1Section Pathology of Trees, Technische Universität München, HanzͲCarlͲvonͲCarlowitzͲPlatz 2, 85354, FreisingͲWeihenstephan,Germany; 2DepartmentofLifeSciences,SecondUniversityofNaples,Caserta, Via Vivaldi 43, IͲ81100, Italy; 3Lehrstuhl für Phytopathologie, Technische Universität München, EmilͲ RamannͲStraße 2, 85350 FreisingͲWeihenstephan, Germany; 4Department of Plant Pathology and Nematology,UniversityofSaoPaulo,Av.PaduaDias11,13418Ͳ900,Piracicaba,SP,Brazil. To manipulate host metabolism during infection, Phytophthora species secrete many effectors, includinghighamountsofelicitins,asmallproteinfamilyfirstdescribedtoelicitdefenceresponsesin tobaccoplants.Elicitinstriggeravarietyofdefenceresponses,includingprogrammedcelldeath(PCD)in severalplants,sharingmanyfeaturesofpathogenͲassociatedmolecularpatterns(PAMPs).However,the preciseroleofelicitinsasavirulencefactorhasyettobeclarified. Here, we show thatɲͲplurivorin, an elicitin secreted from Phythophthora plurivora, is essential for virulenceandcorrelatedwithpathogenpenetrationinthehostroottissuesanddefencesuppressionin beeches. TheblockingofɲͲplurivorinbyincubationwithaspecificantibodyduringinfectiondrasticallyimpaired its internalization in host tissues and P. plurivora penetration, disabling the pathogen’s disease promotioninbeechseedlings.Furthermore,thelackofɲͲplurivorininsidethehosttissuesledtoanupͲ regulation ofdefenceͲrelatedgenes,suggesting thatɲͲplurivorinactsasadefencesuppressorduring infection.AlloftheinfectedplantstreatedwiththeantiͲɲͲplurivorinantibodysurvivedwhereasmostof the other infected plants died by the end of the experiment. Remarkably, given the potential of hundreds of effector genes in the P. plurivora genome, inhibition ofɲͲplurivorin compromises P. plurivorapathogenicity,suggestingthatɲͲplurivorinisessentialforvirulence. BecauseelicitinsareubiquitouslysecretedbyPhytophthoraspecies,itisverylikelythatthesemolecules canalsoactasvirulencefactorsinotherPhytophthoraͲsusceptibleplantinteractions.Therefore,the selectiveblockingofelicitinsfunctionmightbeaspecifictargetforprotectingplantsagainst Phytophthora.  IdentificationofPhytophthoracinnamomigenetranscriptsininfectedcorkoak roots 1,2 1,3 1,2 HortaM. ,CoelhoA.C. ,CravadorA. 1InstituteforBiotechnologyandBioengineeringͲCentreofGenomicsandBiotechnology(IBBͲCGB),Plant and Animal Genomic Group, University of Algarve Ͳ Campus de Gambelas, 8005Ͳ139 FARO, Portugal; 2UniversityofAlgarve,CampusdeGambelas,8005Ͳ139FAROPortugal;3CenterforResearchinChemistry ofAlgarve(CIQA),UniversityofAlgarve,CampusdeGambelas,8005Ͳ139FARO,Portugal. Phytophthoracinnamomiisassociatedwiththeseveredeclinethatisthreateningtypicalagroforestry ecosystemswithanoverstoreyofcork(Quercussuber)andholm(Q.ilex)oaks,resultinginsignificant economicandecologiclosses.ThetranscriptomeanalysisofQ.suberdirectedtogenesrelatedtobiotic stresscausedbyP.cinnamomiinfectionispresentlyinprogressinourlaboratoriesaspartoftheCork OakESTsConsortiumprogramme(http://coec.fc.ul.pt/). CorkoakrootswereimmersedinaP.cinnamomizoosporesuspensionandincubatedfor8,20,and36 h. RNA was extracted and pooled and cDNA was synthesised. cDNA was fragmented, the sequencing adaptors ligated andpyrosequenced using 454 GSFLX Titanium (RocheͲ454 LifeSciences) technology.Reliable reads were assembled and the resulting fasta files were run in the Blast2GO application

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 47 9th-14th September 2012 Córdoba-Spain (http://www.blast2go.org).Blast2GOisanallinonetoolforFunctionalAnnotation(FA)ofsequences andtheanalysisofannotationdata.TheFAwasrunin3steps:BLASTtofindhomologoussequences [queries against the NCBI Databases using BLASTx], MAPPING to retrieve Gene Ontology terms and ANNOTATION to select reliable functions. Different annotation databases were used: GO, Enzyme Codes,InterProandKEGG. Morethan580PhytophthoracontigswereidentifiedandtheirFunctionalcategorieswillbepresented. Transcripts putatively involved in pathogenicity will be disclosed. The project sponsored by the DOE Joint Genome Institute for the sequencing of the whole genome of P. cinnamomi was completed in March2012.Uponitspublicrelease,itwillbepossibletoaccessinformationonthecompletesequences oftheP.cinnamomigenesexpressedfollowinginfectionofcorkoakroots.  TranscriptomeanalysisofQuercussuberrootsinresponsetoPhytophthora cinnamomi 1 1,2 2,3 Horta,M. ,Cravador,A. ,Coelho,A.C.  1InstituteforBiotechnologyandBioengineeringͲCentreofGenomicsandBiotechnology(IBBͲCGB),Plant and Animal Genomic Group, University of AlgarveͲCampus de Gambelas, 8005Ͳ139 FARO, Portugal, 2UniversityofAlgarve,CampusdeGambelas,8005Ͳ139FAROPortugal,3CenterforResearchinChemistry of Algarve (CIQA), University of Algarve, Campus de Gambelas, 8005Ͳ139 FARO, Portugal. EͲmail: [email protected] TheoomycetePhytophthoracinnamomiiswidelydistributedinIberiansoilsandcausesrootrotonQ. suberandQ.rotundifolia.TheESTanalysisofQ.suberdirectedtogenesresponsivetoP.cinnamomi infection is presently in progress in our laboratories as part of the Cork Oak ESTs Consortium programme(http://coec.fc.ul.pt/). CorkoakrootswereimmersedinaP.cinnamomizoosporesuspensionandincubatedfor8,20,and36 h. Non treated roots were used as controls. RNA was extracted from healthy (RC) and infected (RIZ) rootsandcDNAwaspyrosequencedusing454GSFLXTitanium(RocheͲ454LifeSciences)technology. AdapterandpolyAclippedreadsweresubmittedtodenovoassembly. Only contig sequences where at least 10 reads were clustered together were considered for quantificationpurposes.ExpressionvaluesofcontigsintheRIZandRCsampleswereobtainedinRPKM (ReadsPerKbexon(contig)perMillionmappedreads)andweredirectlycomparabletoeachother.A tenͲfolddifferenceintheRPKMexpressionvalueswasusedasaclearcutofffordifferentialexpression. Contigsshowingover/underexpressionorpresence/absencewereselectedforfurtheranalysiswiththe Blast2GOapplication(http://www.blast2go.org). 195contigswerefoundtobeoverͲexpressedinRIZand85underͲexpressed;1771wereonlypresentin RIZand1606wereonlypresentinRC. Blast2GOallowedtoassignontologyclassestogenesoverexpressedoronlypresentininfectedroots.In the biological process category, genes function categories associated with biosynthetic, catabolic, primaryandsecondarymetabolicprocesses,responsetostressandtobioticstimulusarerepresentedin the transcriptome. In the molecular function category the most highly represented category includes genes involved in kinase and transferase activities and in the cellular component category, genes function categories associated with cell wall, cytoplasm and plasma membrane are the most represented. Overall,weconcludethatQ.suberrespondtoP.cinnamomiinfectionbyactivatingresistanceresponses.  

48 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain QuantitativetraitlociforresistancetoPhytophthoracinnamomiintwohost species C.Robin1,J.M.Gion1,2andT.Barreneche3 1INRA,UMR1202BIOGECO,69Routed’Arcachon,33612CestasCedex,France;2CIRAD,Departmentof Biological System, Research unit", Campus International de Baillarguet, 34398 Montpellier Cedex, France; 3INRA, UREF, 71 Avenue EdouardͲBourlaux, B.P.81Ͳ 33883 Villenave d'Ornon Cédex, Cedex. EͲ mail:[email protected] CastaneasativaandQuercusroburaretwoecologicalandeconomicalimportantEuropeanspecies.Both are host for Phytophthora cinnamomi, the causal agent of oak or chestnut ink disease. Sources of resistance to ink disease were identified in C. mollissima and C. crenata and susceptibility to P. cinnamomiisvaryinginC.sativaandQ.robur[1].However,verylittleisknownaboutthegeneticand theevolutionofthisadaptivetraitinFagaceaespecies. Knowingthemacrosyntenyandmacrocolinearityoccurringbetweenthetwogenura[2]ourobjective wastocomparethegeneticarchitectureofresistancetoP.cinnamomitraitinoakandchestnut.Wewill thentestthehypothesisthatthesyntenycanallowustousetheQuercuscandidategenesinvolvedin resistancetopathogensasputativecandidategenesinCastanea. ComponentsofgeneticresistancetoP.cinnamomiwereinvestigatedinafullͲsibfamilyofQ.robur.For chestnut,twoprogeniesfromtwocontrolledcrosses(C.sativaxC.crenataandC.sativaxC.mollissima) wereused.Thethreeprogenieswerevegetativelypropagatedbycuttings.Resistancetoinkdiseasewas estimatedinglasshousebyinoculatingP.cinnamomionthecuttingsstemsandbymeasuringthelength oftheinducedlesion.Theexperimentswererepeatedtwosuccessiveyears. Ninequantitativetraitloci(QTL)involvedinP.cinnamomiresistancemechanismswerelocatedoneight linkagegroupsoftheoakparentalgeneticmaps,explaining4to9%ofthephenotypicvariation.For chestnut,QTLareunderinvestigation(ongoingproject). [1] Robin, C., Morel, O., Vettraino, A.M., Perlerou, C., Diamandis, S. and Vannini, A. Genetic variation in susceptibility to Phytophthora cambivora in European chestnut (Castanea sativa). For. Ecol.Man. 226199Ͳ207 (2006). [2] Barreneche, T., Casasoli, M., Russell, K., Akkak, A., Meddour, H., Plomion, C., Villani, F. and Kremer, A. ComparativemappingbetweenQuercusandCastaneausingsimpleͲsequencerepeats(SSRs).Theor.Appl.Genet. 108558–566(2004).  InteractionsbetweenPhytophthoracinnamomiandPhlomispurpurea,aplant resistanttothepathogen DinaNeves1,CristianaMaia1,SusanaDuraes1,MaríliaHorta1,2,SandraCampos1,MªConceição Mateus1,3,FranciscoGarcíaBreijo4,JoséReigArminana5,AlfredoCravador2 1UniversidadedoAlgarve,FaculdadedeCiênciaseTecnologia,CampusdeGambelas,8005Ͳ139Faro, Portugal; 2IBBͲInstitute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, PlantandAnimalGenomicGroup,UniversityofAlgarve,CampusdeGambelas,8005Ͳ139Faro,Portugal; 3CIQA–CentrodeInvestigaçãoemQuímicadoAlgarve,FaculdadedeCiênciaseTecnologia,Campusde Gambelas, 8005Ͳ139 Faro, Portugal; 4Departamento de Ecosistemas Agroforestales. Universidad PolitécnicadeValencia.CaminodeVeras/n.46022ͲValencia,Spain;5LaboratoriodeAnatomíaVegetal "JulioIranzo".JardínBotánicodelaUniversidaddeValencia.c/Quart,81.46008ͲValencia,Spain.EͲmail: [email protected] Phlomis purpurea is spontaneous in Quercus suber and Q. ilex forest habitats in southern Portugal growing in areas affected by the decline disease. As previously described, in vitro inhibition of the oomycetelifecyclestructuresbyP.purpureacruderootextracts(PRE)at10mgmlͲ1,rangedfrom85% to 100% [1]. Recently, we have shown in planta that, at the same concentration, PRE significantly 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 49 9th-14th September 2012 Córdoba-Spain inhibited the infection of Q. suber roots by P.cinnamomi Moreover, PRE appear to elicit a defence response: radicles of twoͲweekͲold Q. suber exposed to PRE at 10 mgmlͲ1, 24 h prior to zoospore challengeweresignificantlyprotectedfrominfection. CytoͲhistologicalevaluationsarebeingmadetoelucidate: 1. HowP.purpureamanagestoavoidinfectionbyP.cinnamomizoospores; 2. HowPREinhibitstheinfectionofQ.suberbyzoospores; 3. WhetherPREareelicitors. Controlandinoculatedrootsat0,6,24,48and72hourspostinoculation(hpi)forP.purpureaandat0 and48hpiforQuercussuberarebeinganalysed,bylightmicroscopy.Preliminaryresultsshowedthe pathogendoesnotpenetratetheplantrhizodermis,suggestingatypeIresistance(thefirsttime,toour knowledge it is observed in respect to P. cinnamomi).These features make this plant interesting to studyitsinteractionswiththeoomyceteandtoexploreitinabiocontrolperspective.Afractionisolated fromPRE,showeda100%P.cinnamomiinhibitionat0.5mgmlͲ1.Itsmajorcompound,m/z473,was separatedfromcontaminants.ItsstructuredeterminedbyMSandNMRwillbepresented. [1] Neves, D. (2007). In vitro activity of plant crude extracts and in situ protective effect of Phlomis purpurea againstPhytophthoracinnamomi.MScdissertation.CranfieldUniversity.  HowdoPhytophthoraspp.harmwoodyplants? W. Oßwald1, F. Fleischmann1, T. Cech2, A. Chambery3, A. Cravador4, S. Diamandis5, J. Díez Casero6, A.C. Coelho7, E. Hansen8, M. Horta4, T. Jung9, N.S. Massola10, L.B. Orlikowski11, S. Prospero12,M.Ptaszek11,D.Rigling12,C.Robin13,A.Solla14,G.Sipos12,A.Trzewik11,S.Werres15 1Section Pathology of Woody Plants, Technische Universität München, Freising, Germany; 2Federal Research Centre for Forests, Natural Hazards and Landscape, Vienna, Austria; 3Dept. of Life Sciences, SecondUniversityofNaples,Casterta,Italy; 4InstituteforBiotechnologyandBioengeneering,Centreof Genomics and Biotechnology, University of Algarve Portugal; 5Laboratory of Forest Pathology & Mycology, Forest Research Institute, Thessaloniki, Greece; 6Sustainable Forest Managment Research Institute,UniversityofValladolidͲINIA,Palencia,Spain;7CentrodeInvestigaçãoemQuímicadoAlgarve (CIQA),UniversityofAlgarve,Portugal; 8Dept.ofBotanyandPlantPathology,OregonStateUniversity, Corvallis,OR,USA;9PhytophthoraResearchandConsultancy,Brannenburg,Germany;10PlantPathology and Nematogy, University of Sao Paulo, Piracicaba, Brazil; 11Institute of Horticulture, Skierniewice, Poland;12WSLSwissFederalResearchInstitute,Birmensdorf,Switzerland; 13UMR1202BIOGECO,INRA, CestasCedex,France;14IngenieriaForestalydelMedioNatural,UniversidaddeExtremadura,Plasencia, Spain;15JuliusKühnInstitut–FederalResearchCentreforCultivatedPlants,InstituteforPlantProtection inHorticultureandForestst,Braunschweig,Germany. One of the objectives of working group 2 “HostͲpathogenͲ interactions” within the FPC Cost action FP0801 (“Established and Emerging Phytophthora: Increasing Threats to Woodland and Forest Ecosystems in Europe”) was to analyze susceptible and resistant Phytophthora host interactions and shed light on the question “how do Phytophthora ssp. may harm woody plants”. Our evaluation comprised thirteen worldwide distributed species of the genus Phytophthora with the potential to invadeatleastnineteendifferentwoodyplantspecies. Different conceptual models describing the primary infection of roots, trunks or of leaves were developed,basedonextensiveliteraturereviewandgroupdiscussions.Weaimedtofigureoutwhich plant organs are infected first and in which tissues the mycelium grows during the early and late infectionstages. ThesignificanceofhostͲrootexudatesandtheirspecificcomponentstoattractPhytophthorazoospores is of great interest. In order to understand local and systemic responses, different physiological and biochemical reactions of host plants triggered by pathogen attack were evaluated. 50 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain Molecularstudiescompletedthesynopsis,focusingespeciallyonvirulenceandavirulencegenesofthe pathogens as well as on the components of Phytophthora secretomes such as PAMPS and effector molecules. In this context the significance of Phytophthora elicitins to establish a susceptible hostͲ pathogeninteractionortoactaselicitorisdiscussed. 

MultitrophicinteractionsbetweenQuercusrobur,Phytophthoraquercinaand Pilodermacroceum(onajointexperimentalplatform) OguzhanAngay1,2,FrankFleischmann2,SabineRecht3,SylvieHermann3andThorstenGrams1 1Ecophysiology of Plants, Technische Universität München, HansͲCarlͲvonͲCarlowitzͲPlatz 2, 85354 Freising, Germany; 2Pathology of Woody Plants, Technische Universität München, HansͲCarlͲvonͲ CarlowitzͲPlatz 2, 85354 Freising, Germany; 3Soil Ecology, UFZͲHelmholtz Centre of Environmental Research,TheodorͲLieserͲStr.4,06120Halle(Saale),Germany.EͲmail:[email protected] Withinthejointresearchproject“TrophinOak”,weanalyzemultitrophicinteractionsofQuercusrobur microͲcuttings DF159 with respect of the rhythmic growth of oak. Our research team focuses on interactionswiththerootpathogenPhytophthoraquercina.Inaddition,wecomparetheeffectsofthe ectomycorrhizal(EM)fungusPilodermacroceumF1598,asanadditionalinteractingpartner. Earlier conceptual models described the effects of alternating root and shootͲflushes of oaks on the susceptibility against P. quercina [1]. It was postulated, that ongoing shifts of resource availability towards flushing shoots should render the nonͲflushing roots less capable of repair and defense and thereforemoresusceptibleagainstP.quercina. Research on P. croceum revealed a protective effect of EM against root pathogens, possibly due to chemicaland/ormechanicalshielding.Furtherstudiesdemonstratedtheprevalentroleofalternating root/shootͲgrowthofoaksforthisEMformation[2]. TheoakswereculturedinaxinicsoilͲsystemseithersingleͲorcoͲinoculatedwithinteractionpartners. 15NͲ/13C stableͲisotope labeling was applied and the oaks, expressing rootͲ or shootͲflush, were harvested. Subsequently, we quantified PhytophthoraͲinfection, analyzed resource allocation by isotopicͲtracing as well as by analysis of soluble sugar and starch, and measured geneͲexpression patternsinoaksusingIlluminahighthroughputsequencing. OurdatarevealedsignificantdifferencesbetweentreatmentsandgrowthͲstagesconcerningresourceͲ allocation and susceptibility against P. quercina. Although investigations are still ongoing, the above hypothesisthathigherCavailabilityinrootsreducessusceptibilitytoP.quercinahastoberejectedfor oursystem. [1]Jönsson,U.AconceptualmodelforthedevelopmentofPhytophthoradiseaseinQuercusrobur.NewPhytol., 17155–68(2006). [2]Branzanti,M.B.,Rocca,E.andPisi,A.Effectofectomycorrhizalfungionchestnutinkdisease.Mycorrhiza9103Ͳ 109(1999).  Drought,fireandflood:approachestotherenewedchallengeofPhytophthora cinnamomiinsouthͲeasternAustralia DavidCahill1,JamesRookes1,JaneCullum1,HughBramwells2,DeanPhillips1andPeterBeech1 1School of Life and Environmental Sciences, Deakin University, Victoria, Australia; 2Department of SustainabilityandEnvironment,Melbourne,Victoria,Australia.EͲmail:[email protected] Fortheyears2000–2010southͲeasternAustraliaexperiencedthedriestclimaticperiodonrecord.In 2006devastatingbushfiresragedacrossthestateofVictoriaandagainin2009resultinginAustralia's greatest loss of life frombushfire. Since late 2010 there have been episodic and catastrophic floods. Phytophthoracinnamomiandthediseasethatitcausesinnativevegetationhavenotbeenabatedby theseincreasinglyharshenvironmentalconditions.Wenowhaveevidenceofrenewed,widespreadand 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 51 9th-14th September 2012 Córdoba-Spain severe impacts of the pathogen on natural systems. Many of the areas in Victoria for which P. cinnamomihasbeenrecorded[1]havebeenaffectedbydroughtandfireandrecenthighrainfallevents have stimulated large disease outbreaks in many national parks and reserves. In collaboration with government agencies we are undertaking an extensive surveillance and monitoring program in key biodiverse regions in the state with the aim of prioritising management. Work is continuing at the molecularleveltounravelthebasisofresistance[2]inarangeofhostspecies,forexample,wehave good evidence for the involvement of specific resistanceͲrelated signalling pathways in roots of the model,Zeamays.Thisfindingmaygiveusleadsintowaysinwhichwecanmodifyorengineerresistance toP.cinnamomiinsusceptibleplants.Wehavealsoidentifiedauniquesignallingphospholipasefrom Phytophthora that may explain the lack of phospholipase C in the genomes of the three sequenced species.Wearecurrentlyinvestigatingthisproteinasapossibletargetforantibiotics. [1] Cahill, D. M., Rookes, J. E., Wilson, B. A., Gibson, L. and McDougall, K. L. Phytophthora cinnamomi and Australia’sbiodiversity:impacts,predictionsandprogresstowardscontrol.Aust.J.Bot.56279Ͳ310(2008). [2] Allardyce, J. A., Rookes, J. E. and Cahill, D. M. Defining plant resistance to Phytophthora cinnamomi: A standardisedapproachtoassessment.JournalofPhytopathology,Doi:10.1111/j.1439Ͳ0434.2012.01895.x(2012).                                 52 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain                                    SESSION5 SURVEYS,DIVERSITY,INVASIONANDSPREAD(cont.)/CLASSICAL TAXONOMYANDCLASSICALMOLECULARDIAGNOSTICS      

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 53 9th-14th September 2012 Córdoba-Spain PhytophthoraspeciesassociatedwithAlnusrubrainwesternOregonriparian ecosystems LauraSims,EverettHansenandSarahNavarro Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall,Corvallis Oregon97331,USA.EͲmail:[email protected] A survey of alder health was conducted from 2010Ͳ2012 in western Oregon USAwith particular attention to Phytophthora species associated with decline. Water, bark, soil, and root samples were collectedsystematically.Watersampleswerefiltered,soilsampleswerebaited,androotsampleswere washedand surfacesterilized.AllsampleswereplatedonPhytophthoraselective media.Specifically, necroticmargins,cankeredtissue,andwatersoakedregionsofabovegroundbarkandbelowground roots were plated. To date, only Phytophthora siskiyouensis has been recovered from above ground alder bark. Phytophthora alni uniformis, Phytophthora siskiyouensis, and other Phytophthora species fromITSclades2,6and7werefoundinsymptomaticroottissue.MorePhytophthoraspecieshavebeen recoveredinwatersamplescomparedtoPhytophthoraspeciesrecoveredfromalderroots.Preliminary pathogenicitytestingsuggestsbothP.alniuniformisandP.siskiyouensisareabletocausesmallcankers. Moreextensivepathogenicitytestsarecurrentlyunderway.Observationandcultureevidencesuggest Phytophthora species are correlated with decline observed in patches along waterways. There is no evidence Phytophthora species found are invasive, but infected trees may provide better habitat for insectsandsecondarypathogens.  Poster51 PhytophthoraramorumandP.lateralisinNorthernIreland LisaQuinn,AlistairMcCrackenandBrendanMoreland Applied Plant Science & Biometrics Division, AgriͲFood & Biosciences Institute, 18A Newforge Lane, Belfast,NorthernIreland,UK.EͲmail:[email protected]) Phytophthora ramorum was first detected in Northern Ireland on plants in trade in 2004.The first outbreak on plants in the wild was in 2006 on rhododendron in private gardens and unmanaged woodlandsonprivateestates.ThefirstoutbreakofP.ramorumonlarchwasin2010.Astrategyof eradicationandcontainmenthasresultedinthefellingof300+haoflarch.AerialsurveysofN.Ireland havegivennoevidencethatthepathogenhasspreadtothewest.Significantimprovementshavebeen made on both the extraction of P. ramorum DNA from wood and its amplification which has very significantlyimproveddetectionsensitivity.IsolatesofP.ramorumobtainedfromrhododendron,larch, oakandVacciniumhavebeenshowntobelongtoanewlineageofP.ramorum[1].Theepidemiological significanceofthisnewlineageiscurrentlybeinginvestigated. In August 2011 P. lateralis was first diagnosed on specimen arboretum trees of Lawson cypress (Chamaecyparis lawsoniana) growing in a large public forest park in the southern part of Northern Ireland.ItwassubsequentlyfoundinanotherpublicparkinthenorthaswellasintwolargeLawson cypressforestplantations.Anumberofindividualtreesorgroupsoftrees,mainlyinprivategardens have been found to be infected.Studies are currently being undertaken to determine the factors influencing the survival and spread of the pathogen which will in turn inform the most appropriate diseasecontrolandbiosecuritymeasurestobetaken. [1]Poucke,K.,Franceschini,S.,Webber,J.F.,Vercauteren,A.,Turner,J.,McCrackenA.R.,Heungens,K.andBrasier C.M.DiscoveryofafourthevolutionarylineageofPhytophthoraramorum:EU2.(Inpreparation)(2012).  

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 55 9th-14th September 2012 Córdoba-Spain +Poster4 Phytophthorabilorbangprov.nom.,anewspeciesassociatedwithdeclining Rubusanglocandicans(blackberry)inWesternAustralia SoniaAghighi1,GilesHardy1,JohnK.Scott2andTreenaBurgess1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, MurdochUniversity,Perth,WA,Australia; 2CSIROEcosystemScienceandClimateAdaptationFlagship, WA,Australia.EͲmail:[email protected] Rubus anglocandicans is the most widespread and invasive species in the Rubus fruticosus aggregate (Europeanblackberry)foundinAustralia[1].Blackberryhasbeentargetedbybiologicalcontrolsince the1980sandmostofthisefforthasfocusedonintroducingexoticstrainsofthehostͲspecificleafrust, Phragmidiumviolaceum.Duringsurveysestablishedtoassessthereleasesoftherustfungusin2005, deadanddiseasedblackberryplantswerefoundattwolocationsalongtheWarrenandDonnellyRivers intheManjimupregionofWesternAustralia(P.YeohandL.Fontaninipersonalcommunication).The diseasesymptomscouldnotbeattributedtotherustfungusandthephenomenonhasbeenreferredto as‘blackberrydecline’.Thediseaseappearstobeduetorootpathogen(s)andduringinitialsampling several Phytophthora species were isolated. In order to investigate the cause(s) of disease and the potentialroleofPhytophthoraspeciesinthedecline,fieldsurveyswerecarriedoutover2010and2011 in the decline and nonͲdecline sites along the Warren and Donnelly Rivers. During these surveys, P. taxonoaksoilwasrecoveredfromdeclinesites.Severalisolatesofthistaxonhavebeenisolatedfrom Europe[2],andgivenaprovisionalname(oaksoil)untilformaldescription.Thistaxonisdescribedhere asPhytophthorabilorbangprov.nom.;anewtaxonwithintheITSClade6,subͲcladeIIofPhytophthora. ThisisthefirstreportofthisnewPhytophthoraspeciesinassociationwithdecliningR.anglocandicans. [1]Evans,K.J.andWeber,H.E.Rubusanglocandicans(Rosaceae)isthemostwidespreadtaxonofEuropean blackberryinAustralia.Aust.Syst.Bot.,16527–537(2003). [2]Brasier,C.M.,Cooke,D.E.L.,Duncan,J.M.andHansen,E.M.Multiplephenotypictaxafromtreesandriparian ecosystemsinPhytophthoragonapodyides–P.megaspermaITSClade6,whichtendtobehighͲtemperature tolerantandeitherinbreedingorsterile.MycologicalResearch,107277–290(2003).  +Poster12 SpatialpatternsofholmandcorkoakdeclineinExtremadura,Spain EnriqueCardillo,AngelAcedoandCelestinaPerez InstituteofCork,WoodandCharcoal(IPROCOR),ExtremaduraGovernment,CallePamplonas/n.Apdo 437Ͳ06800MeridaSpain.EͲmail:[email protected] NowadaysPhytophthoraepidemic,whichcausesoakdecline,representsoneofthemajorthreatsfor Iberian forest putting at risk its environmental, economical and cultural wealth. In order to develop rational strategies to prevent and control this forest disease, knowledge of coarseͲscale disease dynamicsinspace,timeandseveritydimensionsisneeded.Theaimsofthisstudyare1)toknowwhere andhowmuchoakdeclinediseasethereisinExtremadura,2)toestablishacurrentbaselinetomeasure controleffortefficiencyand3)toidentifyriskfactors.A10%ofregionalareawassampledrandomly pìckingquadranglesofaerialinfraredorthoͲphotography.IRdigitalimagerywasinterpretedbytrained operators to find out and delineate oak decline symptomatic foci. Preliminary results point out that more than 1% of holm and cork oak forests of Extremadura exhibit symptoms of decline. These foci werecompletelyspreadoverregionaloakforestareawithageographicpatternthatmatcheswiththe isolationrecordofPhytophthoracinnamomi.Thenumberofdiseaseplotsincreasedfrom470reported circa2000[1]tomorethan4000symptomaticpointsestimatedinthiswork,atenfoldincreaseina decade.Secondaryinfectionsoriginatedrecentlycouldbeexplainingtheobservedpatternconsistingon clusters of small size foci. Finally, disease foci were found more frequently in areas with signs of

56 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain livestockheavytramplingorinzonesnearwater. [1] Del Pozo, J.L. Prospección de la seca en Extremadura. Análisis de los resultados. In: Gestión Ambiental y EconómicadelEcosistemaDehesaenlaPenínsulaIbérica(M.Espejo,M.Martín,C.Matos,S.J.Mesías,eds.),Junta deExtremadura,Mérida.pp.131Ͳ143(2006).  +Poster40 PhytophthoraspeciesinSerbia Ivan Milenkovic¹, Nenad Keca¹, Justina Nowakowska², Katarzyna Sikora², Malgorzata Borys², TomaszOszako²,ThomasJung³,4 ¹UniversityofBelgrade,FacultyofForestry,1,KnezaViseslavastreet,11030,Belgrade,Serbia;²Forest ResearchInstitute–IBL,ul.BraciLesnej3,SekocinStary,0509–Raszyn,Poland;³PhytophthoraResearch andConsultancy,Thomastrasse75.,Brannenburg,Germany;4IBB/CGBPlantandAnimalGenomicGroup, Laboratório de Biotecnologia Molecular e Fitopatologia, Universidade do Algarve, 8005Ͳ139 Faro, Portugal.EͲmail:[email protected] SincethereisagreateconomicandecologicalthreatposedbyPhytophthoraspecies,astudyhasbeen performed during the years 2009Ͳ2012, aiming at determining the presence and diversity of PhytophthoraspeciesinbothnaturalecosystemsandamenitytreesinSerbia. SampledtreesshowedsymptomstypicalofPhytophthorainfections,suchaspresenceofcollarrotsor stem cankers with dark exudates, chlorosis and wilting of leaves, increased crown transparency, dieback,dyingofshoots,branchesorpartsofthecrown,rootlesions,anddecayandlossoffineroots. Sampling and isolation methods were according to Jung (2009) [1] and Jung et al. (1996) [2]. Tissue samplesweretakenfromnecroticpartsandplateddirectlyontoselectiveagarmedium(V8AͲPARPNH). Soil containing fine roots was sampled in the form of soil monoliths, measuring ~ 25x25x25 cm, and isolationtestswereperformedusingoak,beechandcherrylaurelleavesasbaits.Bothsymptomaticand healthytreesweresampled.Intotal167samplesweretakenfrom26differenthostspeciesincluding Quercus robur, Q. petraea, Q. cerris, Fagus sylvatica, Fraxinus angustifolia, Acer pseudoplatanus, A. platanoides, A.heldreichii,Populusspp.,JuglansregiaandBetulapendula,inbothforestecosystems andamenitytreestands.Phytophthoraspecieswereisolatedfromabout68%ofsamples.Also,many isolatesofPythiumspp.wereobtained. Afteradetailedmorphologicalandmolecularidentificationofallisolates,ninedifferentPhytophthora specieshavebeenconfirmed,i.e.P.europaea,P.cambivora,P.citricola,P.cactorum,P.plurivora,P. polonica,P.quercina,P.taxon´Pgchlamydo‘,andP.lacustris(previouslyknownasP.taxon‘Salixsoil’), andsomeofthemwererecordedforthefirsttimeindifferentecosystemsinSerbia. [1] Jung, T., Beech decline in Central Europe driven by the interactions between Phytophthora infections and climaticextremes.ForestPathology3873Ͳ94(2009). [2] Jung, T., Blaschke, H., Neumann, P. Isolation, identification and pathogenicity ofPhytophthoraspecies from decliningoakstands.EuropeanJournalofForestPathology26253Ͳ272(1996).  Acknowledgements. We are grateful to COST FP0801ͲShort Term Scientific Missions and to project TR 37008, MinistryofEducationandScience,RepublicofSerbiaformaterialsupportduringthesestudies.     

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 57 9th-14th September 2012 Córdoba-Spain +Poster9 AspeciesconceptforPhytophthorataxonAgathis(PTA)—causalagentofroot andcollarrotofAgathisaustralisinNewZealand1 Stanley E. Bellgard, Bevan S. WeirA, Peter R. Johnston, Duckchul Park, Daniel J. Than, Nitish AnandandShaunR.Pennycook Landcare Research Private Bag 92170, Auckland Mail Centre, Auckland, 1142, New Zealand. EͲmail: [email protected] KauriDiebackhasbeenidentifiedasanincreasingproblemaffectingkauri(Agathisaustralis)acrossthe AucklandandNorthlandregions.PhytophthorataxonAgathis(PTA)hasbeenidentifiedasacausalagent ofarootandcollarrotofkauri[1].‘PTA’sharesaplaceinPhytophthoraITSClade5[2]withP.heveae andP.katsurae.PTAwasoriginallymisidentifiedasthemorphologicallysimilarP.heveae.Ithasbeen established that PTA has a different oogonial morphology to both P. heveae and P. katsurae. The sequencingofeightlocifromboththenuclearandmitochondrialgenomeshasbeenusedtoresolvethe speciesboundarieswithinClade5.BayesianinferencephylogeniesrevealPTAisadiscretetaxonomic entity,separatefromeitherP.katsuraeorP.heveae.Further,becauseofitsuniquecolonymorphology, oogonialcharacters,persistentsporangiaandpathogenicitytoAgathisaustraliswerecognisePTAindet. asanewspeciesinITSClade5ofthegenusPhytophthora. [1]Beever,R.E.,Waipara,N.W.,Ramsfield,T.D.,Dick,M.A.andHorner,I.J.Kauri(Agathisaustralis)underthreat from Phytophthora? Proceedings 4th IUFRO Working Party 7Ͳ02Ͳ09 “Phytophthora in Forests and Natural Ecosystems”,26Ͳ31stAugust2007,Monterey,California,USA(2008). [2]Cooke,D.E.L.,Drenth,A.,Duncan,J.M.,Wagels,G.andBrasier,C.M.AmolecularphylogenyofPhytophthora andrelatedoomycetes.FungalGen.Biol.,3017Ͳ32(2000). Acknowledgements: Dr Nicholas Waipara Biosecurity Advisor, Auckland Council, Professor Andrea Vannini University of Tuscia, Dr Andre Drenth University of Queensland, Dr Peter Buchanan, Elsa Paderes, Karyn Hoksbergen,andChrisWinksLandcareResearchTamaki.  +Poster54 PhytophthoraITSClade3expandstoincludeasixthnewspecies,P.taxon pluvialis PaulW.Reeser,WendySuttonandEverettM.Hansen DepartmentofBotanyandPlantPathology,OregonStateUniversity,Corvallis,OR97331USA.EͲmail: [email protected] Phytophthorailiciswasdescribedin1957asapathogenofholly(Ilexaquifolium).In2002itwasoneof twofoundingmembersofITSClade3.In2002–2003threenewspecieswereadded.Weproposeto addasixthspeciestobenamedP.pluvialis.Whileexhibitinguniquefeatures,P.taxonpluvialisshares some morphological features with other members of Clade 3, excepting P. quercina.It has ovoid, partially caducous, semiͲpapillate sporangia with variable length pedicels borne on unbranched or simple sympodial sporangiophores.Antheridia are predominately amphigynous. Oogonia measure around32µmdiameter.AllisolatesstudiedhaveidenticalnuclearITSsequence,withatleastseven different‘genotypes’recognizedbymitochondrialcoxspacersequences.Comparedwithotherspecies in Clade 3, DNA sequences form a unique phylogenetic taxon. P. taxon pluvialis has been recovered mostlyfromstreams,soilandcanopydripinthemixedtanoak(Notholithocarpusdensiflorus)ͲDouglasfir (Pseudotsugamenziesii)forestinCurryCounty,Oregon,USA.Ithasbeenfoundonlyrarelyassociated withtwigandstemcankersontanoak.LikeP.pseudosyringaeandP.psychrophila,P.taxonpluvialisis

 58 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain notstronglyhostͲassociated,andmaybeendemic.ThiscontrastswithP.ilicis,whichhasbeenfound onlycausingdiseaseonholly,andwithP.nemorosa,whichisstronglyassociatedwithdiseaseontanoak andCaliforniabay(Umbellulariacalifornica). InmemoryofDrRossE.Beever,1946–2010. +Poster21 Phytophthoraacerinasp.nov.,anewspeciesfromtheP.citricolacomplex causingaerialcankersonAcerpseudoplatanusinItaly BeatriceGinetti1,SalvatoreMoricca1,AlessandroRagazzi1andThomasJung2,3 1UniversityofFlorence,AgriculturalandBiotechnologyDepartment,SectionofPlantProtection,Cascine Square28Ͳ50144,Florence,Italy,2PhytophthoraResearchandConsultancy,Thomastrasse75,DͲ83098 Brannenburg, Germany, 3Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology,(IBB/CGB),PlantandAnimalGenomicGroup,LaboratóriodeBiotecnologiaMoleculare Fitopatologia,University of Algarve, Campus de Gambelas, 8005Ͳ139 Faro, Portugal. EͲmail: [email protected] A new homothallic Phytophthora species with paragynous antheridia, semipapillate, persistent and highlyvariablesporangia,andoptimumandmaximumtemperaturesof25and32°C,respectively,was consistentlyisolatedfromaerialbleedingcankersandrhizospheresoilofdecliningAcerpseudoplatanus trees in planted forests in northern Italy. In underbark inoculation tests all isolates were highly aggressivetoA.pseudoplatanusandFagussylvaticaindicatingthatthispathogenmightposeaserious threattomapleandbeechforestsinEurope.AllisolatesshareidenticalITS andcox1sequencesand represent a distinct subclade of the P. citricola complex.Interestingly, all isolates showed a high abortionrateoftheoosporesdistinguishingthistaxonfromallotherknownspeciesandtaxaoftheP. citricola complex. Mostlikely,thisspeciesevolvedunderconditionsthatdid notrequire oosporesas longͲtermrestingstructuressothatselectiondidnotweedoutdeleteriousmutationsinthebreeding system.AgraduallossoffertilityinfavourofacontinuousasexualreproductionbyzoosporesiswellͲ known from Phytophthora species in wet or aquatic habitats. Due to its unique combination of morphological,physiologicalandmolecularcharactersthisnewtaxoniscurrentlybeingdescribedasa newspecies,P.acerinasp.Nov.

    

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 59 9th-14th September 2012 Córdoba-Spain                                    SESSION6 RESISTANCE,PATHOGENESIS,ECOPHYSIOLOGY(CONT.)   

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 61 9th-14th September 2012 Córdoba-Spain

+Poster38 AnewmethodtoquantifyzoosporechemoͲattraction N.S.MassolaJr.1,R.Dalio2,F.Fleischmann2andW.Osswald2 1DepartmentofPlantPathologyand Nematology,UniversityofSaoPaulo,Av.PaduaDias11,13418Ͳ 900,Piracicaba,SP,Brazil;2SectionPathologyofWoodyPlants,TechnischeUniversitätMünchen,HanzͲ CarlͲvonͲCarlowitzͲPlatz2,85354,FreisingͲWeihenstephan,Germany. Phytophthora species release zoospores which are, in case of soil born species, attracted by root exudates, before they encyst and infect root tissue. To test the activity of zoospores to several root exudates and to quantify zoospore attraction we developed a simple, cheap and easyͲtoͲbuilt new device.ItconsistsofthreecylindricalplasticcontainersA,BandC(length11.5cm,diameter3cm),that are connected to each other at the bottom with two tubes (length 1cm, diameter 0.5 cm) holding a dialysismembraneinthemiddleposition.ReservoirAcanbefilledwiththecontrol(water,buffer)and Cwiththetestsolution(e.g.rootexudate).FlaskBinthemiddleholdsthezoosporesuspension.The zoosporesswimtowardstheattractingsolutionandarefinallytrappedatthedialysismembranewhere theyencyst.Theactivityofdifferentzoosporeattractantscanbecomparedandquantifiedbycounting the zoospores cists on the membrane under the microscope or by quantitative realͲtime PCR in combinationwithPhytophthoraprimers.Usingthiszoosporetrap,wetestedtheattractionofzoospores of P. plurivora and P. nicotianae towards root exudates of their hosts. qRTͲPCR data showed that P. plurivorazoosporeswereattracted20.000timesmoretorootexudatesofF.sylvaticaascomparedto distilled water. Citrus Sunki (susceptible) root exudates attracted 6 times more zoospores of P. nicotianaethandidSwingle(resistant). Thisnewtrapcaneasilybebuiltwithmorethantwocontainersconnectedtothezoosporesreservoir (B),sothatitispossibletocomparedifferentialattractionofseveralrootexudatesaswellasofsingle compounds regarding their activity on zoospore attraction. This would contribute with important informationabouttheearlyinteractionsintherhizosphere.  +Poster33 Fluorescentinsituhybridization(FISH)assayasatooltomicroscopicallyview Phytophthoracinnamomigrowthwithinplanttissues AndrewLi1,MichaelCrone2,PeterAdams1,StanleyFenwick1,NariWilliams2,3,GilesHardy2 1School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, Murdoch,WesternAustralia6150,Australia;2CentreforPhytophthoraScienceandManagement,School ofBiologicalSciencesandBiotechnology,MurdochUniversity,Perth,WesternAustralia,6150,Australia; 3Scion,NewZealandResearchInstituteLtd.,49SalaSt.,PrivateBag3020,Rotorua3046,NewZealand. EͲmail:[email protected] The microscopic examination of naturally infected plant material for the presence of Phytophthora cinnamomi can be problematic as structures such as hyphae, hyphal swellings, chlamydospores, and oospores are often indistinguishable from those of other oomycetes or fungi. Frequently, it would be useful to be able to clearly differentiate P. cinnamomi from other microͲ organisms, especially when trying to determine how the pathogen is surviving in plant material particularly in harsh environments. Consequently, the lack of stains that can clearly and definitively localise hyphae and reproductive structures of P. cinnamomi within plant material is a limitation in increasingourunderstandingofthebiologyofthepathogeninsusceptibleandtolerantplantspeciesin differentecosystems.ThisstudydemonstratesthataP.cinnamomispecific,fluorescentlylabelledDNA probecanbeusedtospecificallydetectandvisualiseP.cinnamomiinplantmaterialusingfluorescentin situhybridization(FISH)withoutdamagetoplantorpathogencellintegrity.Themethodwillallowusto

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 63 9th-14th September 2012 Córdoba-Spain more accurately study plantͲP. cinnamomi interactions in plants, and to be particularly useful in naturallyinfectedmaterial.  +Poster52 HistologicalchangesofQuercusilexseedlingsinfectedbyPhytophthora cinnamomi Redondo M.A. 1, PérezͲSierra A. 1, AbadͲCampos P. 1, GarcíaͲJiménez J. 1, Solla A.2, Reig J. 3, GarcíaͲBreijoF.1,3 1Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia,Spain; 2IngenieríaForestalydelMedioNatural.UniversidaddeExtremadura.AvenidaVirgen delPuerto2,10600Plasencia,Spain; 3JardíBotànicdelaUniversitatdeValència,C/Quart80,46008 Valencia,Spain.EͲmail:[email protected] Since the early 1980s, severe decline and occasional sudden death of extensive areas of holm oak (Quercusilex)andcorkoak(Q.suber)woodlandsinthesouthwestoftheIberianPeninsulahavebeen associatedtothedamagecausedbyPhytophthoracinnamomi,analienandinvasivepathogeninfecting rootsofmanywoodyspecies.Theobjectiveofthisworkwastoperformhistologicalstudiesofholmoak infectedbyP.cinnamomi.Toachievethis,Q.ilexsubsp.ballotaacornswerecollectedinExtremadura (Spain) and germinated in sterile vermiculite. FiveͲweekͲold seedlings were inoculated by immersing theminflaskswithP.cinnamomicolonisedagarandsoilextractsolution.Rootsectionswereobtained every 12 hours, during 7 days. Root tissue was fixed with FAA and Karnovsky fixative and processed afterwards using different microscopic techniques. Low temperature scanning electron microscopy (LTSEM) showed hyphae and encysted zoospores 24 h after inoculation. Root sections (10Ͳ15 µm) treated with calcofluor white were observed under epifluorescence microscopy and P. cinnamomi hyphaecoveringrootsurfaceandgoingprogressivelythroughcortextissuewerealsoobserved.Roots sections (8Ͳ10 m) stained with safraninͲfast green and observed under light microscopy showed hyphaeontheexternalroottissue24hafterinoculation.Lightmicroscopywasalsousedwith2µmroot sectionsstainedwithtoluidineblueandallowedthedetectionofP.cinnamomihyphaepenetratingthe parenchyma tissue. Finally, 80 nm root slices were obtained and examined through transmission electron microscopy (TEM). P. cinnamomi penetrated the cell walls forming haustorialͲlike structures andalsogrewthroughintercellularspaces.  +Poster14 QuickdisseminationofPhytophthoracinnamomithreatensbiodiversityina WorldHeritageSite(DoñanaBiologicalReserve,SWSpain) Paolo De Vita1, Luis V. García2, Cristina Ramo3, Maria S. Serrano1, Cristina Aponte2 and M. EsperanzaSánchez,1 1Dpto.Agronomía,ETSIAM,UniversidaddeCórdoba,POBox3048,CórdobaEͲ14080,Spain2InstitutodeRecursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, PO Box 1052, Sevilla EͲ41080, Spain. 3Estación Biológica de Doñana(EBD),CSIC,P.O.Box1056,41080,Sevilla,Spain.EͲmail:[email protected] ScatteredbigtreesplayamainroleinmaintainingbiodiversityinsavannahͲlikeecosytems.Inthisstudy weanalyzethecaseofaremnantcentenarianCorkoak(QuercussuberL.)populationintheDoñana Biological Reserve (DBR, SW Spain), a Biosphere Reserve. Previous studies demonstrated that it was threatenedbyherbivorousandnestingwadingbirdsproliferation[1].Severalsuddendiebackeventsnot related to any of previously reported causes lead us to investigate the potential role of pathogenic oomycetes.

64 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Along four years of study period (2008Ͳ2011) tree rizosphere was increasingly being colonized by Phytophthora cinnamomi. We found that 2010 late winter/ early spring rainfall values exceeded all previous(32yr)recordsandsignificantlyextendedtheperiodwithflooding/highsoilmoisturetowards warmermonths.Theseoutstandingclimaticconditionsseemtohavefavouredthemassivespreadof thisinvasivewaterͲdependentpathogen. On the other hand, we found a significant correlation between the occurrence of P. cinnamomi in 2008/9andtreecrownhealthstatusinlate2010,suggestingadelaybetweenpathogenarrivalandthe appearanceofcrownsymptoms. Weanalyzedfutureperspectivesforpathogenspreadinganddiscussedthefeasibilityofimplementing currently available control measures in the context of a highly protected biodiversity reserve. We conclude that only individual treatments could allow for simultaneously save infected trees, prevent infectionsonhealthytreesandavoidanychemicalreleasetotheenvironment. [1] García, L.V.,Ramo, C., Aponte, C. Moreno,A., Dominguez, M. T., GómezͲAparicio, L., Redondo, R and MarañónT. Protected wading bird species threaten relict centennial cork oaks in a Mediterranean Biosphere Reserve:aconservationmanagementconflict.BiologicalConservation144764–771(2011).   

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 65 9th-14th September 2012 Córdoba-Spain

                                   SESSION7 MANAGEMENTANDCONTROL     

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 67 9th-14th September 2012 Córdoba-Spain

AchronicleoftheimpactsofsuddenoakdeathinCalifornia:Fifteenyearsof invasion SusanJ.Frankel United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Urban Ecosystems and Social Dynamics Program, 800 Buchanan Street, Albany, CA, 94710, USA. EͲmail: [email protected] More than fifteen years after the first observations of sudden oak death, Phytophthora ramorum continuestospreadincommunities,parks,forestsandnurseriesinCalifornia.IntheUnitedStates,well over$100millionhasbeenexpendedforregulationenforcement,research,managementandeducation to combat this exotic, quarantine pathogen.Are these investments justified?This paper utilizes researchfindings,legislativeandmediaactivity,fundinghistoryandanecdotestodisplaytheimpactsof suddenoakdeathandchroniclethemultitudeofwaysthismicrobehasdamagedtheenvironment.The pathogenhaskilledmillionsoftanoak,Notholithocarpusdensiflorusandcoastliveoak,Quercusagrifolia over hundreds of square miles. Tree mortality is scattered over lands in a range of uses: wilderness, residentialproperty,roadsides,parks,commercialforestandtribalgatheringlands.However,overtime, suddenoak deathͲinducedtreemortalityfluctuateswidelyinextentandappearance.Theeconomic valueoflossesfromimpairedecologicalservicesandpropertydamagearedifficulttoestimate.The socialimpactsareintangibleandtransient.Asaresult,theimportanceofsuddenoakdeathisviewed differentlybyvariousinterestgroups.ThereactionstosuddenoakdeathreflecthowAmericansvalues treesanddemonstratesthechallengesofaddressingtreepathogens.  MonitoringtheeffectivenessofPhytophthoraramorumeradicationtreatments inOregonTanoakForests Ellen Michaels Goheen1 Alan Kanaskie2, Everett Hansen3, Wendy Sutton3, Paul Reeser3, and NancyOsterbauer4 1USDAForestService,PacificNorthwestRegionFHP,SouthwestOregonForestInsectandDiseaseService Center,2606OldStageRoad,CentralPoint,OR97502USA;2OregonDepartmentofForestry,Salem,OR USA;3OregonStateUniversity,Corvallis,ORUSA;4OregonDepartmentofAgriculture,SalemORUSA.EͲ mail:[email protected] Phytophthoraramorum,thecauseofsuddenoakdeath,wasfirstdiscoveredinOregonforestsinJuly 2001. An aggressive eradication treatment program consisting of cutting and burning infected and exposedhostplants,andwherepossible,injectingherbicide,wasimmediatelyputintoplaceonalllands where it was found. To monitor the effectiveness of treatments we are revisiting treated sites and samplingsoilandvegetationonfixedͲareaplotscenteredonstumpsofinfectedtrees.Weestablished 145plotsin2008Ͳ2009and143plotsin2010.109oftheseplotswerevisitedinbothtimeperiods. Phytophthoraramorumwasnotrecoveredfromsoilorvegetationon74plotssampledin2008Ͳ2009. FortyͲsevenplotsyieldedP.ramorumfromsoilsonly.Thepathogenwaspresentinsoilandvegetation on 18 plots, and was recovered from vegetation only on six plots. In 2010, P. ramorum was not recoveredfromsoilorvegetationon90oftheplotssampled.ThirtyͲsixplotsyieldedP.ramorumfrom soilonly,ontenplotsthepathogenwaspresentinsoilandvegetation,andonsevenplots,P.ramorum wasrecoveredfromvegetationonly.Allpositivevegetationsampleswerefromtanoakin2008Ͳ2009. TwoP.ramorumͲpositivesamplesofOregonmyrtlewerecollectedin2010samplesalongwithinfected tanoaksprouts. Analysiscontinuesonthesedata.Ofparticularinterestishowdifferentcomponentsofthetreatment prescriptionsand/orabundanceandcompositionofpostͲtreatmentvegetationaffectpathogensurvival anddiseasedevelopment.Thesedataarealsobeingusedtoinform2012sampling.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 69 9th-14th September 2012 Córdoba-Spain ManagingsuddenoakdeathinOregonforests,2001Ͳ2011 Alan Kanaskie1, Michael McWilliams1, Stacy Savona1, Everett Hansen2, Wendy Sutton2, Paul Reeser2,EllenMichaelsGoheen3,DanHilburn4andNancyOsterbauer4 1OregonDept.ofForestry,2600StateStreet,Salem,Oregon,USA;2OregonStateUniversityDept.Botany andPlantPathology,Corvallis,Oregon97331,USA;3USDAForestService,PacificNorthwestRegionFHP, SouthwestOregonForestInsectandDiseaseServiceCenter,2606OldStageRoad,CentralPoint,Oregon, USA;4OregonDepartmentofAgriculture,Salem,Oregon,USA.EͲmail:[email protected] SuddenOakDeath,causedbyPhytophthoraramorum,islethaltotanoak(Notholithocarpusdensiflorus) andthreatensthisspeciesthroughoutitsrangeinOregon.Thediseasewasfirstdiscoveredincoastal southwest Oregon forests in July 2001. An interagency team attempted to eradicate the pathogen through a program of early detection surveys followed by destruction of infected and nearby host plants.Eradicationtreatmentseliminateddiseasefrommanyinfestedsitesbutthediseasecontinuedto spreadslowlyinapredominantlynorthwarddirection.Duringthe10Ͳyearperiod,thediseasespread from the initial infestations southward 1.9 km, and northward and eastward 27.9 km and 7.6 km, respectively.We attribute continued spread of sudden oak death to the slow development of symptoms in infected trees which hinders early detection, and to delays in completing eradication treatmentswhichallowdiseasespreadfromknowninfestations. Amarkedincreaseindiseasein2010and2011indicatedthateradicationcostsonprivatelandswould exceedavailableorexpectedfunds.Inearly2012theOregonStatequarantineregulationswererevised toreflectthefinancialrealityofmanagingsuddenoakdeath.Theinitialgoalofcompleteeradicationin CurryCountyforestsisnowconsideredunachievable.Ourgoalnowistoslowfurtherdiseasespread by:1)earlydetectionandrapideradicationofnewinfestationsthatareepidemiologicallyimportant;2) reducing inoculum levels wherever practical through costͲshare projects and best management practices, and; 3) improved education and outreach to prevent spread by humans.Lessons learned duringtheOregoneradicationeffortarediscussed.  MitigatingagainstdispersalofPhytophthoraspp.onforestproduce IanHood1,MargaretDick1,NatalijaArhipova2,JudyGardner1,PamTaylor1 1Scion (New Zealand Forest Research Institute), Private Bag 3020, Rotorua 3046, New Zealand; 2DepartmentofForestMycologyandPathology,SwedishUniversityofAgriculturalSciences,Box7026, 75007Uppsala,Sweden. In the past two decades a disturbing number of serious new Phytophthora diseases have been recognised around the world. These have generally been the result of a new association between a species of Phytophthora, and a host that has not previously been encountered. Both described Phytophthoraspecies,andthosethatwereunrecognisedpriortotheemergenceofthenewdisease, havebeenimplicated.Oftentheoriginofanincursionisnotknown,howeverthemovementoftree products pose a potential risk for such introductions through the international trade of raw forest products.Withincreasingglobalisationoftradethereisconcomitantconcernthatmanymorediseases causedbyPhytophthoraspecieswillbediscoveredastheseorganismsaredispersedbothnationallyand internationally. The potential for elimination of propagules of Phytophthora spp. from forest produce has been examined.SporesofPhytophthoraspecieswereappliedinaqueoussuspensiontothebarkonwood segments at densities of 350Ͳ550/cm2, incubated at five temperatures likely to be encountered in transit.Materialwastestedforsurvivaloftheinoculumatsuccessiveintervalsthereafter.Theefficacy of the fumigants methyl bromide, phosphine and sulfuryl fluoride on the elimination of surface contaminationwasalsotested. Theextentofpossiblenaturalcontaminationofforestproduceremainstobedeterminedbutitappears 70 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain likelythatPhytophthoraspp.surfaceͲcontaminatingproductsleavingtheforestwillsurviveforonlya shortperiodoftime.  SurvivalanderadicationofPhytophthoracinnamomifromblackgravel graveyardsitesintheEucalyptusmarginata(jarrah)forest MichaelCrone1,JenMcComb1,PhilipO’Brien1,VickiStokes2IanColquhoun2andGilesHardy1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia. 2Alcoa of Australia, Ltd, Hun Location, Huntley Mine Site, Pinjarrah Refinery Access Road, Pinjarrah, WA 6208, Australia. EͲmail: [email protected] Phytophthoracinnamomiisknowntosurvivemorethan50yearsonimpactedsitesintheEucalyptus marginataforest.Oneofthemostseverelyimpactedlandscapeswithinthisareaarethe‘blackgravel’ sitesandpersistenceofthepathogenhasmadetheseareasextremelydifficulttorehabilitate.Previous research has shown that P. cinnamomi is a poor competitive saprophyte so it was postulated that completeremovalofthevegetationwillkillthepathogen.Eradicationexperimentsonblackgravelsites investigatedthelengthoftimeP.cinnamomicansurviveinthesoilwithoutlivingplanttissue.Results encouragetheviewthatthepathogencanbeeliminatedfrominfestedsitesasrecoveriesdecreased significantly two years after removal of living plants. Annual and herbaceous perennials play an unexpectedly important role in the disease cycle and must be eliminated if eradication is to be successful.  +Poster80 InvestigationsoncontrolmeasuresforPhytophthoraramorumand Phytophthorakernoviaeinheritagegardensandparks ErikaF.Wedgwood1,DavidLockley1,JudithTurner2,GilliThorp2andBéatriceHenricot3 1ADASUKLtd.,ADASBoxworth,Boxworth,Cambridge,CB234NN;2TheFoodandEnvironmentResearch Agency, Sand Hutton, York, YO41 1LZ; 3The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB.EͲmail:[email protected] InBritain,Phytophthoraramorumand,toalesserextent,Phytophthorakernoviae,havecauseddieͲback of invasive Rhododendron ponticum in woodlands, Vaccinium myrtillus () in heathland and ornamentalplantsinnurseriesandgardens.PlantationsofLarixkaempferi(Japaneselarch)havebeen severelyaffectedbyP.ramorumandhavebeencutdownprematurelytoreducetheriskofpathogen spread.Theaimofthisproject [1] istodeveloppracticalapproachesformanagingbothpathogensin heritagegardensandparks. Approachesbeingtestedinclude: 1) Treeinjection:Thefungicidesmandipropamid,mefenoxamandpotassiumphosphitewereinjected into Magnoliaandforestrylarch treesatinfectedlocationsin SouthWest England.Leaveswere assayedforresiduesandarebeingmonitoredforthepresenceofbothpathogens. 2) Soil/leaflitterdisinfestation:Productscontainingdazomet,mustardmeal,Trichodermaharzianum TͲ22orGliocladiumcatenulatumJ1446havebeenincorporatedintosoilbeforereͲplanting.Inother plots, mulches of woven groundͲcover material, bark chips, wool waste mats, copper hydroxide treated mats and heatͲtreated wood shavings have been placed around rhododendron plants to preventthesplashͲupofinfestedsoil. 3) Fungicideapplications:Basedondetachedleafassays,severalfungicideswereselectedforefficacy and tested on new plantings of rhododendron and pieris. Applications with products containing ametoctradin+dimethomorph,benthiavalicarbͲisopropyl+mancozeb,fluopicolide+propamocarb

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 71 9th-14th September 2012 Córdoba-Spain hydrochlorideormetalaxylͲM+mancozebweremadein2011underconditionsofnaturalinfection byP.ramorumandP.kernoviae. 4) Susceptibilityperiodsandsusceptiblehosts:Fieldobservationsandadeskstudyarebeingcarried outtoaidplantingdecisions. Alltheexperimentsarecurrentlybeingassessedandresultswillbepresented. [1] Key Research Findings from research commissioned from 1st April 2009 in support of the 5Ͳyear Defra “Phytophthora Disease Management Programme”. Project Code PH0604. www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/phytophthora/documents/prPkResearchJan12.pdf                                         72 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

                                  SESSION8 MANAGEMENTANDCONTROLINAUSTRALIA   

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 73 9th-14th September 2012 Córdoba-Spain

ThestateofPhytophthorascienceandmanagementinnaturalecosystemsis Australasia 1 1,2 GilesHardy ,NariWilliams  1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Scion, New Zealand Research Institute Ltd., 49 Sala St., PrivateBag3020,Rotorua3046,NewZealand.EͲmail:[email protected] Since the last IUFRO held in New Zealand 2010 there has been significant activity with regards to research and management of Phytophthora species in natural and periͲurban forest, woodland and heathland ecosystems in Australasia. For example, numerous new Phytophthora species have been describedwithanumberofothersinprogress.TherearenumerousstablehybridPhytophthoraspecies beingfoundandquestionsarebeingaskedabouttheirroleinnaturalecosystems.Nurseriescontinueto playaroleinthedisseminationofPhytophthoraspecies.ContainmentanderadicationofP.cinnamomi at a management level has occurred for the first time in a range of diverse plant communities and varyingsoiltypesinWesternAustralia.Thisclearlyshowsthateradicationisaviableoption,although goodhygienemeasuresstillremainextremelyimportantinreducingspreadintodiseaseͲfreeareas.The sequencingoftheP.cinnamomigenomehasbeencompleted.ResearchisonͲgoingondetermininghow phosphiteinducesdefencemechanismsinplantsatamolecularandbiochemicallevel.Theinteraction betweendroughtandP.cinnamomiisbeingstudied,particularlywithregardstoprojectedwarmingand dryinginthenextfewdecadesbyallclimatemodelsforsouthernAustralia.Communityengagement and participation remains high, although onͲgoing funding remains an issue and will be one of the challengesforthefuture.TheseactivitiesclearlyindicatethatPhytophthoradiseasesstillremainakey concernintheAustralasiancontext.Theseandotheractivitieswillbeaddressedinmoredetailatthe meetinginSpain.  Acomparisonbetweenliquidphosphiteinjectionsandnovelsolublephosphite andnutrientimplantstocontrolPhytophthoracinnamomiinBanksiagrandis andEucalyptusmarginata PeterScott1,PaulBarber1,2,GilesHardy1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, MurdochUniversity,Perth,WA,Australia;2ArborcarbonPOBox1065WillageeCentral,WA,Australia.EͲ mail:[email protected] SteminjectionswithphosphiteliquidprotectB.grandisandE.marginatafromP.cinnamomiforatleast fouryears[1].However,steminjectionofphosphiteislabourintensiveandrequirestraining,specialised equipment,andthemixingofchemicals.Therecentdevelopmentofsolublephosphiteimplantswhich can be quickly inserted into stems, overcomes the need for training and the use of specialised equipment. Systemic nutrient implants and injections have been effectively used to correct nutrient deficiencies in ornamental and horticultural plants and can help increase tree vigour to pests and pathogenattack.However,solubleimplantsofphosphiteandnutrientshaveneverbeentrialledforthe control of Phytophthora. This study aimed to determine if liquid phosphite, soluble implants of phosphitealone,orcombinationsofmacroandmicronutrientswithinimplantsinsertedintothetrunks ofthetreescouldcontrollesiondevelopmentcausedbyP.cinnamomi.InB.grandisandE.marginata, phosphite liquid and soluble phosphite implants significantly reduced lesion length compared to the controlandapplicationofnutrientimplants.InB.grandisandE.marginata,nutrientimplantsreduced significantlytheaveragelesionlengthcomparedtothecontrol.Resultsshowthatbothphosphiteliquid andimplantsareeffectiveatcontrollinglesionextensioninB.grandisandE.marginata,causedbyP. cinnamomi.Stemtreatmentwithsolublephosphiteimplantswillfacilitatetherapidtreatmentoftrees, and control of P. cinnamomi, in diseased areas. In addition, the uptake is passive, there is likely less damagetointernalstemtissues,andlessriskfromphytotoxicityduetoslowreleaseofthephosphite 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 75 9th-14th September 2012 Córdoba-Spain comparedtotheliquidtreatments. [1]Shearer,B.L.,Fairman,R.G.andGrant,M.J.EffectiveconcentrationofphosphiteincontrollingPhytophthora cinnamomifollowingsteminjectionofBanksiaspeciesandEucalyptusmarginata.ForestPathology,36119Ͳ135 (2006).  CommunityinvolvementinPhytophthoradiebackmanagementͲlookingback andforward IanColquhoun1,ChrisDunne1,andJoannaYoung2 1DiebackWorkingGroup;2Environmentalconsultant ThesouthwestcornerofWesternAustraliaisinternationallyrecognisedasabiodiversityhotspot.The federalandstategovernmentsrecognisePhytophthoracinnamomiasoneofthebiggestthreatstothis biodiversity.ThecommunityhasbeingplayinganimportantroleinthemanagementofPhytophthora dieback since 1993.By the early 1990s the State Government environment department and large miningcompanieswereroutinelyimplementingprescriptionstominimisethespreadandimpactofP. cinnamomi.Theseprescriptionswerebasedonnearly30yearsofresearchthathaddiscoveredthatthis introduced pathogenspreadsduringsoilmovementandinthe surfacerunoffofwaterfrominfested sites.ThesuccessfuluseofphosphitetoprotectsusceptibleplantsfromP.cinnamomihadalsobeen demonstrated. Meanwhile, no management of Phytophthora dieback was taking place in natural ecosystems being managed by other state government departments, local governments and private landowners.The spread of disease in these ecosystems was termed ‘inadvertent’Ͳ‘inadvertent’ becausethelandmanagersdidnotknowaboutthediseaseorhowtominimiseitsspreadandimpact.It wasthecommunitythatmobilisedtoaddressthisknowledgegap.In1993and1994theeducationof twolocalgovernmentswascompleted.In1995thecommunityͲbasedDiebackWorkingGroupformed and the program to facilitate the adoption of Phytophthora management policies and prescriptions commenced in earnest.Nineteen years later no management plan for a local government bushland reserve would be submitted without Phytophthora dieback management being addressed.Project Dieback was launched in 2004 to ensure integrated management of threats to biodiversity at the regional scale regardless of land tenure and to address gaps in strategic, regional, dieback planning. CommunityhasguidedandembarkedonprotectingnativevegetationfromPhytophthorainfestationin a number of regional priority areas.The talk will focus on the list of successes, the reasons for the successesbutalsohighlightthecurrentgapsthatstillneedtobeplugged–ourworkisnotdone!    

76 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

SuccessfulcontainmentanderadicationofPhytophthoracinnamomiata managementlevelfromdiversenaturalecosystemsinWesternAustralia 1 2 2 2 2 ChrisDunne ,ReneeHartley,WilliamDunstan ,PeterScott ,TrudyPaap ,GilesHardy 1Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia; 2Centre for Phytophthora Science and Management, School of Biological SciencesandBiotechnology,MurdochUniversity,Perth,WA,Australia.EͲmail:[email protected] Here we demonstrate that management scale containment and eradication can be achieved for PhytophthoradiebackinfestationsinthreedifferentnativeplantcommunitiesinWesternAustralia.The communities include: (1) a Kwongan vegetation type on a soil varying from sandy to exposed rocky subsurfacetoaclayabovearocksubsurface,(2)aProteaceousheathlandonadeepsandprofile,and (3)aKwonganBanksiawoodlandonadeepsandoverasandyloamͲclay.Allofthesecommunitiesare highly impacted by P. cinnamomi resulting in substantial loss of biodiversity assets. The successful approach taken involved the following tasks: risk assessment of the project goals and proposed techniques,implementationofhygieneplans,extensiveandintensivesoilandplantsamplingandinsitu baitingtoaccuratelymaptheoccurrenceofthepathogen,detailedhydrologicalcharacterisationusing remotesensingtechniques,2Dhydraulicmodelling,developmentofhydrologicalengineeringoptions, catchmentmodelling,installationoffencestoreduceanimalvectoring,herbicideapplicationstoremove livinghostsupportforthepathogen,phosphitefoliarsprays,fumigationwithmethamsodiumandonͲ goingmonitoringofthesitestodemonstratethesuccessoftheapproachtaken.Preventionoffurther spreadthroughthesehighprioritynaturalecosystemsisnowofhighpriority.Thisprojecthasinvolved partnershipsbetweengovernmentandnonͲgovernmentagencies,industry,researchersandcommunity groups. These partnerships have included the construction of hygiene infrastructure around priority NationalParksandtheengagementofkeystakeholdersinthemanagementofPhytophthoraDieback. The approach described has huge potential for the eradication and containment of other soilͲborne Phytophthoraspeciesaroundtheworld. DunstanWA,RudmanT,ShearerBL,MooreNA,PaapT,CalverMC,DellB,HardyGESJContainmentandspot eradication of a highly destructive, invasive plant pathogen (Phytophthora cinnamomi) in natural ecosystems. BiologicalInvasions,12913Ͳ925(2010). 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 77 9th-14th September 2012 Córdoba-Spain

                         POSTERS

     

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 79 9th-14th September 2012 Córdoba-Spain

Poster1 AssessmentofthepresenceofoomycetesinforestnurseriesinEasternSpain AbadͲCampos P.1, Puértolas1 A., Ortega2 A., Guirao2 P., León1 M., GarcíaͲJiménez1 J., PérezͲ Sierra1A. 1Grupo de Investigación en Hongos Fitopatógenos, Instituto Agroforestal Mediterráneo, Universitat PolitècnicadeValència.CaminodeVeras/n.46022ͲValencia(Spain);2Dpto.ProducciónVegetal,Escuela Politécnica Superior de Orihuela. Carretera de Beniel km 3,2. 03312Ͳ Orihuela (Spain). Email: [email protected] Sanitaryqualityofseedlingsisoneoftheseveralfactorsinvolvedinthesurvivalofplantsinthefield.An extensivesurveywasconductedinforestnurseriesthroughouttheeasternIberianPeninsulainorderto assess the presence of oomycetes and plant pathogenic fungi in plant material to be used in reforestationprograms.Plantsshowingdiseasesymptomssuchasdieback,wilting,chlorosis,leafspots, discoloration of needles, aborted buds, defoliation and / or stunting were collected as well as the substrate contained in their pots. Asymptomatic plants were also randomly sampled. Isolation from plantmaterialwasperformedontoCMAͲPARPBHandPDAS.Applebaitingmethodwasusedtorecover oomycetesfromsoilsamples..Afterincubationat25ºCinthedark,hyphaltipsweretransferredtoPDA and V8ͲAgar media for further studies and conserved on OA medium. Phytophthora and Pythium isolates were identified based on morphological, physiological and molecular information among the following hosts: Pinus halepensis, P. nigra P. pinea, P. pinaster, P. sylvestris Arbutus unedo Ceratonia siliquaFraxinusornusQuercusilexsubs.BallotaSorbusdomesticaandtheshrubspeciesCistusalbidus, Myrtus communis Pistacia lentiscus Viburnum lantana Viburnum tinus. The oomycetes Phytophthora cactorum,P.citrophthora,P.cryptogea,P.nicotianae,P.plurivora,andseveralisolatesofPythiumwere identified from affected roots and substrate. At the moment no link has been found between the Phytophthoraspeciesisolatedinthesesurveyswiththosedetectedinthenaturalecosystemsstudiedin EasternSpain.  Poster2 EffectofthreecontroltreatmentsonthesurvivalofQuercusilexseedlings infectedwithPhytophthoracinnamomi AngelAcedo,EnriqueCardillo,IsmaelNúñez InstituteofCork,WoodandCharcoal(IPROCOR),ExtremaduraGovernment,CallePamplonas/n.Apdo. 437MéridaBadajoz.EͲmail:[email protected] Phytophthora cinnamomi is an invasive root pathogen that causes decline and mortality in main evergreenoaksspeciesinSpain.Severalfungicidetreatmentshavebeentestedbothinvitro[1]andin vivo[2]againstP.cinnamomiandchemicaltreatmentcouldplayamajorroleinfuturecontrolstrategies forPhytophthorarootrot. Holmoak(Quercusilex)seedlings15monthͲoldcultivatedingreenhouseweretreatedwithpotassium phosphonateappliedtothestem(300µL2.5%/plant+surfactant),solublesiliconsoildrench(75ml2% SiO2/plant)andgypsumamendment(5%p/p)beforebeinginoculatedwithachlamydosporesuspension ofaP.cinnamomiisolatewithprovenvirulence.Pottingmediawerekeptmoistforoptimalinfection and eventually flooded with tap water during 5 days. Mortality was registered during 12 weeks. Mortality was modeled with generalized linear model and treatment effects were compared by devianceanalysis.Nomortalityoccurredbeforetheplantswereflooded.InoculationwithP.cinnamomi reducedsurvivalofplantsfrom95%to78%,howevernoneofthetreatmentsusedwasabletoreduce themortalityandsurvivaltimeintheinoculatedplants.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 81 9th-14th September 2012 Córdoba-Spain [1]Bekker,T.F.,Kaiser,C.,VanDerMerwe,R.andLabugchagne,N.InͲvitroinhibitionofmycelialgrowthofseveral phytopathogenicfungibysolublesilicon.S.A.J.PlantSoil,26169Ͳ172(2006). [2] Serrano M. S., De Vita, P., FernándezͲRebollo, P. and Sánchez, M. E. Calcium fertilizers induce soil suppressivenesstoPhytophthoracinnamomirootrotofQuercusilex.EuropeanJournalofPlantPathology,132 271Ͳ279(2012).  Poster3 Pythiaceousandfungalspeciesisolatedfromconiferousanddeciduous seedlingsinsomeTurkishnurseries A.G.Aday2,A.Lehtijärvi1,H.T.DoŒmuƔͲLehtijärvi1 1SüleymanDemirelUniversity,FacultyofForestry,32260Isparta,Turkey;2SüleymanDemirelUniversity, YeniƔarbademliVocationalSchool,32280Isparta,Turkey.EͲmail:[email protected] Turkish private and state owned forest nurseries have been responsible for the supply of increasing numbers of seedlings for afforestation. The most important phytopathological problems in forest nurseriesaremainlycausedbyrootrotfungiandPythiaceousspecieslikePhytophthora,Phytopythium andPythium,whichbringaboutsevereeconomicallossesinseedlingproduction[1]. Inthisstudy,forestnurseriesofDenizli,7zmir,Adapazar,BursaandMuŒlaProvinceswereinvestigated for the presence of root rot fungi and Phytophthora, Phytopythium and Pythium species. For this purposepottedandbarerootedseedlingsshowingcollarrot,chlorosis,wiltinganddiebacksymptoms and also soils of coniferous and deciduous trees species were sampled. Isolations from symptomatic rootswereperformedonselectivePDAmedium.Soilsampleswerebaitedwithcarnation,andyoung leavesofrhododendronandcorkoak.Infectedleaveswereplacedontopetridishescontainingselective PARPNHagar.Identificationofisolateswasperformedbothbasedoncolonypatterns,growthrates,and morphologicalfeaturesandmolecularmethods[2].Internaltranscribedspacersequencesofribosomal DNA,820bplong,wereamplifiedusingtheITS1andITS4primerpair.Abiesbornmülleriana,Quercus virginiana,Thujaoccidentalis,Pinussylvestris,Quercussuber,Platanusorientalis,Buxussempervirens, Laurusnobilis,CasteneasativaseedlingswerefoundtobeinfectedbyrootrotfungiandPythiaceous species. Fusarium oxysporum, F. moniliforme, Fusarium spp. Rhizoctonia solani Kühn., Alternaria spp. Cylindrocarpon destructans were the main fungal species commonly isolated from seedlings. Beside thesefungalspeciesPythiumultimum,Pythiumirregulare,Phytopythiumvexans,Phytopythiumlitorale, Phytophthoracactorum,P.citricolaandP.plurivorawereidentifiedsofar.Morphologicalidentifications andITSregionsequencecomparisonsofmorePytiaceausspeciesarestillgoingon. [1]Gardner,J.F.,Dick,M.A.,Bulman,L.S.Detectionofdiseaseinforestnurseries.CommercialinConfidence ClientReportNo.40490.(2006). [2]Lilja,A.,Kokkola,M.,Hantula,J.,Parikka,P.Phytophthoraspp.anewthreattotreeseedlingsandtrees.In: Solheim,H.&Hietala,A.M.(eds.).ForestpathologyresearchintheNordicandBalticcountries2005.Proceedings fromtheSNSmeetinginForestPathologyatSkogbruketsKursinstitutt,Biri,Norway,28Ͳ31August2005.Aktuelt fraSkogforskningen1/06:48Ͳ51.(2006). Poster4 Phytophthora bilorbang prov. nom., a new species associated with declining Rubusanglocandicans(blackberry)inWesternAustralia.S.Aghighi,G.Hardy,J.K. Scott,T.Burgess SeeSession5  

82 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster5 NatureofPhytophthorainoculuminflowingsurfacewaters.K.Aram,D.M.Rizzo SeeSession3  Poster6 CharacterisationofthetwoinformallydesignatedITSClade6taxaPhytophthora taxonForestsoilandP.sp.hungarica JózsefBakonyi1,ZoltánÁrpádNagy1,TreenaBurgess2,AndrásSzigethy1,JanNechwatal3,András Koltay4,StephenWoodward5,LassaadBelbahri6,ThomasJung7 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottóstr.15,HͲ1022Budapest,Hungary;2CentreforPhytophthoraScienceandManagement,Schoolof Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia;3InstituteforPlantProtection,BavarianStateResearchCenterforAgriculture,LangePoint10, DͲ85354Freising,Germany; 4ForestResearchInstitute,Hegyaljastr.18.,HͲ3232Mátrafüred,Hungary; 5InstituteofBiologicalandEnvironmentalSciences,UniversityofAberdeen,St.MacharDrive,Aberdeen AB243UU,Scotland,UK; 6InstituteofBiology,LaboratoryofSoilBiology,UniversityofNeuchâtel,CHͲ 2009 Neuchâtel, Switzerland; 7Phytophthora Research and Consultancy, Thomastrasse 75, DͲ83098 Brannenburg,Germany.EͲmail:[email protected] Phytophthora ITS Clade 6 contains numerous informally designated taxa and recently described new species. We report here on the characterisation of the two informally designated taxa P. taxon ForestsoilandP.sp.hungarica.ThefirstcultureofP.taxonForestsoilwascollectedfromsoilofanoakͲ Carpinusforestin1998andpartiallycharacterisedlater[1].Subsequently,afewisolatesfromaldersoil with identical ITS sequences to P. t. Forestsoil were reported as P. sp. sylvatica and P. sp. HͲ6/02 at Genbankin2007.Atthesametimeotherisolatesfromaldersoil,differingfromP.t.Forestsoilandits synonyms in their colony pattern on carrot agar (CA) and at the same 4 positions in their ITS, were named P. sp. hungarica, P. sp. HͲ7/02 and P. sp. HͲ8/02. Additional ‘hungarica’ isolates were then collected in Alaska [2], also from alder soils or nearby waterways. In our detailed study, the only consistentmorphologicaldifferencebetween‘Forestsoil’and‘hungarica’wasstilltheculturepatternon CA.Bothtaxashowedsimilargrowthratesandcardinaltemperatures,producedsimilarsporangia,were homothallic with mostly paragynous antheridia and aplerotic oospores often with several ooplasts. Concatenatedanalysesusing4nuclearand2mitochondrialgenesequenceswereinconcordancewith the morphological and physiological features supporting the grouping of ‘Forestsoil’ and ‘hungarica’ isolatesinto2verycloselyrelatedbutdistinctclades.Theseresultsmighthelptounravelthetaxonomic andphylogeneticpositionoftheseinformallydesignatedtaxa. [1] Brasier, C.M., Cooke, D.E.L., Duncan, J.M. and Hansen, E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides–P. megasperma ITS Clade 6, which tend to be highͲ temperaturetolerantandeitherinbreedingorsterile.Mycol.Res.107277–90(2003). [2]Adams,G.C.,Catal,M.andTrummer,L.DistributionandseverityofalderPhytophthorainAlaska.In:Frankel, S.J., Kliejunas, J.T. and Palmieri, K.M. (tech. coords.) Proceedings of the Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSWͲGTRͲ229. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific SouthwestResearchStation.29–49(2010).      6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 83 9th-14th September 2012 Córdoba-Spain Poster7 PopulationfluctuationofPhytophthorasppinstreamsandtheirpossibleroleas earlycolonizers. YilmazBalci University of Maryland, Department of Plant Science and Landscape Architecture, College Park, MD, USA. ThepopulationfluctuationofPhytophthorawasquantifiedforaoneͲyearperiodintwostreams.The PaintBranchcreek(PB)andComcastCentercreek(CC),partoftheAnacostiawatershedinMaryland, weresampled.TheCCcreekwasconsiderablysmallerandisatributaryofPB.Streamsdifferedinboth theirsizeandtheamountofwateravailable.Everyweekfortwodays(MondayandWednesday)1L water sample was collected twice at 8 AM and 2 PM.Of the 1 L sample, two or three 200 ml subsampleswerefilteredthrougha3ʅmporesize9cmdiameternitrocelluloseMilliporemembrane filter and placed on clarified V8 juice based PARPNH growth media selective for isolation of Phytophthora spp.After two days of incubation in darkness at room temperature, colonies were counted. Streams differed significantly in Phytophthora colony numbers.The smaller CC stream had almosttwiceasmanycoloniescomparedtoPBstream.However,therewasnosignificantdifference betweenthesamplesthatwerecollectedduringthemorning(8am)orafternoon(2pm).Asignificant decrease of population of Phytophthora was found with increasing temperatures in both streams. Sampling month played a significant role in Phytophthora colony numbers. In both streams June, October and November had the greatest number of colony counts.When live and dead leaf baits (leaves were oven dried for one week) of various plants were deployed at CC stream. Overall, more Phytophthoracolonieswereisolatedfromlivecomparedtodeadleaves.However,withredmaple(Acer rubrum)andredoak(Quercusrubra),deadandliveleafbaitswereequallycolonizedbyPhytophthora spp.  Poster8 PhytophthoraspeciesassociatedwithdiseaseinperiͲurbanwoodlandand forestecosystems PaulBarber1,2,TreenaBurgess2,TrudyPaap2,GilesHardy2 1Arborcarbon PO Box 1065 Willagee Central, WA, Australia; 2Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia.EͲmail:gͲ[email protected] Perth,thecapitalcityofWesternAustralia,issituatedonariverwithnumerousbays.TheperiͲurban environmentextendsalongthecoastfor100kmnorthandsouthofthecity.Withintheregionisa fragmented landscape of suburbs, parks and remnant woodlands. The Eucalyptus gomphocephala woodland south of Perth is classified within the periͲurban environment.Numerous Phytophthora specieshavebeenisolatedfromdeadanddyingendemictrees.Themostfrequentlyisolatedspeciesis P. multivora (65%), followed by P. aff. arenaria (21%); P. palmivora, P. syringae, P. inundata, P. aff. humicola,P.nicotianaeandP.sp.ohioensishavealsobeenisolated,althoughrarely.P.multivoraandP. aff. arenaria have both been isolated from dying E. marginata (jarrah), E. gomphocephala (tuart), Corymbiacalophylla(marri),C.ficifolia(redfloweringgum)andAgonisflexuosa(WApeppermint).While P.multivoraiscommonlyencounteredinlessimpactedecosystems,theotherspeciesfoundintheperiͲ urban environment (P. inundata and P. nicotianae) are rarely or never isolated. In the riparian ecosystem,P.aff.humicolahasbeenisolatedfromdyingCasuarinaobesa.Theknowledgeaboutthe impact of these species on our remnant trees is lacking. Further research is required on the origin, pathogenicityandcontrolofthesespeciestodelivereffectivemanagementstrategies.

84 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster9 AspeciesconceptforPhytophthorataxonAgathis(PTA)—causalagentofroot andcollarrotofAgathisaustralisinNewZealand. S. E. Bellgard, B. S. Weira, P. R. Johnston,D.Park,D.J.Than,N.Anand,S.R.Pennycook SeeSession5  Poster10 DiversityofoomycetesdetectedinthelaurelforestinTenerife(CanaryIslands) BeltránA.1,LeónM.1,AbadͲCamposP.1,SiverioF.2,GalloL.2,PérezͲSierraA.1 1Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia,Spain;2InstitutoCanariodeInvestigacionesAgrarias,Ctra.deElBoqueróns/n,ValleGuerra,La Laguna,38270Tenerife.EͲmail:[email protected] Thelaurelforest(laurisilva)isauniquetypeofvegetationfoundontheCanaryIslands,Madeiraandthe Azores.Itisfoundinareaswithhighhumidityandrelativelystableandmildtemperatures.Thistypeof forestisauniqueecosystem,centreofplantdiversity,andofgreatimportanceforconservation.The objective of this study was to investigate the presence of oomycetes that could be threatening the healthofthelaurisilvavegetationintheAnagaRuralPark(14419ha)atthenorthͲeasternendofthe IslandofTenerife.Asurveywascarriedoutduringautumn2011andsamplesofrootsandsoilwere collectedfromsymptomaticandasymptomatictreesandshrubs(Ocoteafoetens,Arbutuscanariensis, ViburnumrigidumandPerseaindica)in22differentlocationsintheAnagaRuralPark.Directisolation fromrootswasperformedontoPARPHandavocadoleaveswereusedasbaitsforsoilisolation.Sixty eightoomyceteisolateswereobtainedandgroupedonthebasisofthemorphologyoftheirvegetative and reproductive structures. The ITS region of the ribosomal DNA of isolates from each group was amplified and sequenced with the primers ITS4 and ITS6. Sequences obtained were compared with sequences in GenBank. Phytophthora multivora was the only Phytophthora sp. detected in this preliminarysurvey.FivedifferentPythiumspp.weredetected:P.diclinum,P.heterotallicum,P.litorale, P.mamillatum,P.mercurialeandP.vexans.ThreePythiumspp.couldnotbeidentifiedonthebasisof theirmorphologyandsequences.Thisisthefirstdetectionoftheseoomycetesinthelaurelforestinthe Canary Islands. Further work to study the pathogenicity of these oomycetes is needed in order to evaluatetheriskthattheymightposetothelaurelforest.  Poster11 DiversityanddistributionofPhytophthoraspeciesinassociationwithwater qualityandthehealthoftreesinfragmentedriparianecosystems TreenaBurgess,MichaelKunzinger,DianeWhite,AlanLymberyandGilesHardy Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, MurdochUniversity,Perth,WA,Australia.EͲmail:[email protected] TheriparianzoneinwesternAustraliaisdominatedbyEucalyptusrudisinasimilarmannertoAlnusspp. inEurope.Forthelast20yearsthehealthofthesetreeshavebeendeclining.Thisisattributedtoan endemic leaf sucking Psyllid, however contributing factors could be an increase in the salinity of the waterwaysorthepresenceofarootpathogen,bothofwhichwouldreducethehealthofthetrees.We sampled25sitesalongdifferentriversandstreamsinthesouthwestofWesternAustralia.Ateachsite werecordedtreehealth,determinedwaterqualityandfilteredwaterfortheisolationofpythiaceous oomycetes.Therewasconsiderablevariationinwaterquality(pHandsalinity)andthehealthofthe

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 85 9th-14th September 2012 Córdoba-Spain adjacent E. rudus, however the poor health was not related to low water quality.There was also considerablevariationinthenumberofcolonyformingunits(from1.33to90LͲ1),theproportionof PhytophthoracomparedtoPythiumisolates(from0Ͳ100%)andthespeciesbiodiversity.Ingeneral,far more isolates were obtained from low quality water, except for when the pH was greater than 8.5. Water quality did not effect the proportion of Phytophthora isolates.Phytophthora species isolated included P. thermophila, P. fluvialis, P. amnicola and hybrids between these species.Additionally, numerousisolatesofP.taxonsalixsoilwereobtained.Remnantsitesclosertotheurbanareacontained predominantlyP.thermophilawhileP.taxonsalixsoilpredominatedonthemoresoutherlysitesfrom remnants within agricultural zones.The link between tree health, water quality and associated pythiaceouspopulationswasnotestablishedinthisstudy.  Poster12 SpatialpatternsofholmandcorkoakdeclineinExtremadura,Spain.E.Cardillo,A. Acedo,C.Perez SeeSession5  Poster13 NextGenerationSequencingshowsPhytophthoraspeciesdiversityinsoil samplesofMacaronesianlaurelforestsfromtheCanaryIslands CatalàS.,BeltránA.,PérezͲSierraA.,AbadͲCamposP. Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia,Spain.Email:[email protected] Laurel forests (also called laurisilva) are exclusive of the Macaronesian biogeographical region, which comprisesthreearchipielagos:Madeira,AzoresandCanaryIslands.Themainvegetationofthelaurisilva in the Canary Islands is dominated by tree and shrub species with laurelͲshaped leaves, like Ocotea foetens, Arbutus canariensis, Viburnum rigidum, Myrica faya or Persea indica, which are developed under high humid conditions. The geographical isolation of the volcanic islands has stimulated the emergence of numerous endemic organisms. However, little is known about the biodiversity of soil microorganisms.SoilDNAwasextractedfromtensamplesfromdifferentlocationsintheAnagaRural Park (Tenerife). ITS1 amplicons were obtained through a nested PCR using PhytophthoraͲspecific primers18Ph2Fand5.8SͲ1R[1]inPCR1andfusionprimersbasedonITS6inPCR2,andpyrosequenced onaRocheJuniorGSplatform(454LifeSciences).Sixofthesamplesproducedamplificationsignal.The results obtained in this work will bring light into the diversity of Phytophthora spp. in this unique ecosystem. [1] Scibetta, S., Schena, L., Chimento, A., Cacciola, S. O. and Cooke, D. E. L.A molecular method to assess Phytophthoradiversityinenvironmentalsamples.J.Microbiol.Meth.,88356Ͳ360(2012).         86 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster14 Quick dissemination of Phytophthora cinnamomi threatens biodiversity in a WorldHeritageSite(DoñanaBiologicalReserve,SWSpain).P.DeVita,L.V.García, C.Ramo,M.S.Serrano,C.Aponte,M.E.Sánchez SeeSession6  Poster15 InfluenceofbirdfaecesinthebehaviouroftherootrotofQuercussubercaused byPhytophthoracinnamomiatDoñanaBiologicalReserve(SWSpain).P.DeVita, M.S.Serrano,L.V.García,C.Ramo,M.E.Sánchez SeeSession3  Poster16 AirborneinfectionsofPhytophthoracitrophthoraoncitrusinSicily DePatrizioA.FaeddaR.PaneA.CacciolaS.O. DipartimentodiGestionedeiSistemiAgroalimentarieAmbientali,UniversityofCatania,95123Catania, Italy. Citrus species native to the farͲeast of Asia have been introduced into the Mediterranean area as cultivatedplantssincetimeimmemorialandaregrownonalargescalefortheirfruits,andpresently theycharacterizetheSicilianlandscape.Twoexceptionalclimaticevents,ahailstormont7thMarch, 2012 and on 9th March hurricane Athos, with blasts of wind with a speed of 80Ͳ100 km/h, hit the southernͲeastcoastalareaofSicily.Asaconsequence,severefruitbrownrotinfectionswereobserved on the higher part of the canopy up to 3.4 m above soil level in citrus groves. Fruit symptoms were associatedwithleafblightandseveredefoliationofthetrees.Inthepast,thesekindsofaerialinfections ofcitrusbrownrotinSicilyhadbeenattributedtoPhytophthorahybernalisonthebasisofsymptomatic diagnosis. However, a survey of citrus orchards affected by these exceptional climatic events using moleculardiagnosticmethodsdemonstratedthatthecausalagentofthisepidemicburstofbrownrot wasactuallyP.citrophthora(Smith&Smith)Leonian.ThisspeciesisendemicincitrusorchardsinSicily andisthemajorcausalagentoftrunkgummosis,rootrotandoccasionalepidemicoutbreaksoffruit brown rot of citrus occurring from late autumn to early spring, which is the rainy period in the Mediterraneanclimate.P.citrophthoraistypicallyasoilͲbornepathogenandusuallyinfectsfruitsofthe lowerpartofthecanopynearthesoilupto1m.  Poster17 ITSbasedidentificationandphylogenyofPhytophthoraspp.detectedinUK gardens DentonG.1,DentonJ.1,WaghornI.1,ArcherS.2andHenricotB.1 1TheRoyalHorticulturalSociety,Wisley,Woking,Surrey.GU236QB;2ImperialCollege,London.EͲmail: [email protected] ManystudiesofPhytophthoraspecieshavebeenconductedincommercialsettings,suchasnurseries, andwildhabitats,oftenforgettingourownbackgardens.Gardensareuniqueenvironmentswithplants beingamixtureofnativesandnonͲnativesfromaroundtheworld.Thecurrentworkwilldetectand

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 87 9th-14th September 2012 Córdoba-Spain identifythePhytophthoraspeciespresentinthesemicrohabitats.Additionally,thisartificialmixtureof plantspeciesenablesinvestigationintothepotentialhostrangeofPhytophthoraspeciesonbothnative andnonͲnativeplants.Environmentalsamples,fromUKgardens,weresurveyedduring2006to2009for thepresenceofPhytophthoraspecies,comparingapplebaitingwithanestedPCRprotocolbasedonthe ITSregion[1].TheITSregionhasbecomeincreasinglyusedforidentificationofPhytophthoraspeciesvia directsequencing,developmentofarrays,realͲtimePCRandusedinmanyphylogeneticstudies.TheITS region from the recovered isolates was sequenced and phylogenetic analysis was undertaken of the amplicons from both cultures and nested PCR. Phylogenetic analysis, incorporating host and morphological data, will be presented. Through baiting the species P. cactorum, P. cinnamomi, P. citrophthora,P.cryptogea,P.gonapodyides,P.plurivoraandP.niederhauseriiwereidentified.Withthe nestedPCRawiderrangeofPhytophthoraspeciesweredetected,P.alni,P.austrocedri,P.cambivora, P.hibernalis,P.megasperma,P.porri,P.quercinaandP.syringaewereadditionallyidentified.Thiswill bethefirststudyofUKgardenspresentingspeciesidentificationandphylogeneticanalysis. [1]Cooke,D.E.L.,Drenth,A.,Duncan,J.M.,Wagels,G.andBrasier,C.M.AmolecularphylogenyofPhytophthora andrelatedOomycetes.FungalGeneticsandBiology3017Ͳ32(2000).  Poster18 PathogenicityofPhytophthoraspeciesonLiquidambarorientalisandCastanea sativaseedlings H.T.DoŒmuƔͲLehtijärvi1,A.G.Aday2,A.Lehtijärvi1andT.Jung3 1SüleymanDemirelUniversity,FacultyofForestry,32260Isparta,Turkey;2SüleymanDemirelUniversity, YeniƔarbademli Vocational School, 32280 Isparta, Turkey; 3 Phytophthora Research and Consultancy, Brannenburg,Germany.EͲmail:[email protected] LiquidambarorientalisisoneoftheendemictreespecieswhichisnativetotheeasternMediterranean RegionandCastaneasativaistheeconomicallyimportanttreespecieswidelygrowingfromtheBlack seacoasttoMarmaraRegionandwesternAnatolia.Thisstudywasperformedtotestthepathogenicity ofPhytophthoraandPhytopythiumisolatesobtainedfromsoilsamplesofbothtreespecies[2].Forthis purpose,Pyhtophthoracactorum,P.plurivora,P.citricola,Phytopythiumvexans,Phytopythiumcitrinum andPhytopythiumlitoraleisolateswereinoculatedtoQuercussuberandQuercusroburseedlingsusing twodifferentmethods[1].Inthefirstmethod,isolatesweregrowninfinevermiculiteandmilletseeds moistenedwithcarrotbrothandtheinoculawereplacedinsideglasstubesneartheseedlings.Inthe second inoculation method, Phytophthora and Phytopythium isolates were grown on carrot agar and wereinoculatedunderthebarkofrepresentedseedlings.Theinoculatedseedlingswereincubatedat 20°Cinagrowthchamberfor3months[1].Aftertheincubationperiodmortality,infectionincidence, and lesion length under the bark were examined. Random reisolations were made using selective PARPNHͲagarmediatoconfirmPhytophthoraandPhytopythiumspeciesfromthelesions.Asaresultof thefirsttest,mortalityobservedonbothQuercusspeciesinoculatedwithPhytopythiumisolateswas lower than that for Phytophthora isolates. P. cactorum was the most aggressive species within all Phytophthoraspeciestested.Inthesecondpathogenicitytrial,averagemortalityandinfectionincidence onbothhostsweresimilarlyhigherwhentheseedlingswereinoculatedwithP.cactorum,P.citricola andP.plurivora,respectively.EventhoughthePhytopythiumspecieswerefoundtobelessaggressive theresultsindicatedthat bothPhytophthoraandPhytopythium isolateswerepathogenic onQuercus speciestested. [1]Jung,T.,Blaschke,H.,andNeumann,P.Isolation,identificationandpathogenicityofPhytophthoraspeciesfrom decliningoakstandsEuropeanJournalofForestPathology,26253Ͳ272(1996). [2]DoŒmuƔͲLehtijarvi,H.T.,Aday,A.G,andJung,T.PhytophthoraspeciesfromdecliningLiquidambarorientalis andCastaneasativatreesinsoutheasternpartofTurkey.COSTActionMeeting21Ͳ22November,Budapest,32pp. (2011). 

88 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster19 PhytophthoraipomoeaecausingblightonIpomoeaeorizabensisinMichoacan, Mexico SylviaFernándezͲPavía1,GerardoRodríguezͲAlvarado1,NuriaGómezͲDorantes1andHildaSilvaͲ Rojas2 1LaboratoriodePatologíaVegetal,InstitutodeInvestigacionesAgropecuariasyForestales,Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 carr. MoreliaͲZinapécuaro, Tarímbaro, Michoacán, 58880; 2ProduccióndeSemillas,ColegiodePostgraduadosKm.36.5Carr.MéxicoͲTexcoco,Montecillo, México,56230.EͲmail:[email protected] SeveralwildspeciesofIpomoeagrowinMichoacan,Mexicoforests.Ipomoeaorizabensisplantswith blightedleavesandpetioleswereobservedinapineͲoakforestlocatedinCharo,Michoacan.Diseased leaves wereplaced in a humidity chamber to induce sporulation. Isolates were obtained on ryeagar selective medium, transferring sporangia from sporulating lesions with a piece of agar to rye agar selective medium. A Phytophthora sp. was consistently isolated from blighted leaves. Species identificationwasbasedonsporangialandgametangialcharacteristicsofthreeculturesgrownonrye agar. Sporangia production was achieved placing mycelial discs in sterile soil extract. Sporangia were mainlyellipsoidbutoccasionallyovoid,semipapillated,anddeciduouswithashortpedicel.Theisolates were homothallic with smooth walled and aplerotic oospores. Genotypic analysis for the allozymes PeptidaseandGlucose6Ͳphosphateisomeraseindicatedthattheisolatesbelongedtoonegenotype 96/96 (Pep) and 108/108 (Gpi). Morphological characteristics correspond to the species P. ipomoeae Flier&Grünwald.ThisspecieshasbeenreportedcausingblightonIpomoeaeonlyincentralMexico.To confirmtheidentityofthepathogen,sequencesoftheinternaltranscribedspacers(ITS)wereobtained from two isolates. The ITS sequences that were obtained shared 100% similarity with strains of P. ipomoeaefromcentralMexico.Pathogenicitytestsareunderway.  Poster20 ResearchdrivingmanagementandpolicyͲmakingonSuddenOakDeathin California M.Garbelotto,S.Mascheretti,andD.Schmidt ForestPathologyandMycologyLaboratory,UniversityofCaliforniaBerkeley,54MulfordHall,Berkeley CA94720,USA. Webrieflypresentresultsfromdifferentstudiesthatarejustifyingspecificdiseasemanagementoptions andpoliciestocurtailthespreadofSuddenOakDeathinCalifornia. 1)ͲYearlytreatmentswiththephosphonateAgrifoshasreducedmortalityrateoftanoaksthreefoldin approximately1000studiedtreesfrom32studyplotsacrosstheState 2)ͲSelectiveremovalofbaylaurels10maroundoakshassignificantlyreduced,butnoteliminated,the number of instances in which oaks are subject to inoculum levels sufficient to cause their infection. Removalofbaysto20m,however,reducesthatnumberofinstancestozero 3)ͲCutsonlargebranchesandtrunksaretentimesmorelikelytobecomeinfectedthanunwounded trees right after the pruning, however after four months, pruned and unͲpruned large branches are comparableinsusceptibility 4)ͲRemovalofallorganicmatter,soil,andplantdebrisuntiltoolsarevisuallycleanreducesinfectivityof toolstozero,withouttheneedforchemicaltreatments 5)–Compostingwillkillthepathogen,butsomecompostscanbeinfectedoncetheybecomeold,if exposedtohighinoculumlevels 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 89 9th-14th September 2012 Córdoba-Spain 6)ͲPopulationgeneticsanalysesshowthat;a)Ͳaccidentalintroductionsofthepathogenfrominfected nurseryplantstothelandscapewereoccurringasrecentlyas2006inmultiplelocations,andb)Ͳlarge wildinfestationsarethemostlikelysourcesoffurtherinfestationsinCalifornia TheimplicationsofthesefindingsfordiseasemanagementandpolicyͲmakingwillbediscussed.  Poster21 Phytophthoraacerina,anewspeciesfromtheP.citricolacomplexcausingaerial cankersonAcerpseudoplatanusinItaly.B.Ginetti,S.Moricca,A.Ragazzi,T.Jung SeeSession5  Poster22 ReducingthespreadofPhytophthoraramorumontheRedwoodNatureTrail, CurryCountyOregon:Acasestudy EllenMichaelsGoheen1,PaulReeser2andWendySutton2 1USDAForestService,PacificNorthwestRegionFHP,SouthwestOregonForestInsectandDiseaseService Center,2606OldStageRoad,CentralPoint,OR97502USA;2OregonStateUniversity,Corvallis,ORUSA. EͲmail:[email protected] In August 2009, a tanoak adjacent to a popular hiking trail was confirmed infected by Phytophthora ramorum. The trail was immediately closed to the public. An eradication treatment consisting of injectedherbicideandcutting,piling,andburningtanoaksandotherselectedhostsina100mradius aroundtheinfectedtanoakwascompletedbyDecember2009. Closeto490moftraillieswithinorontheboundaryofthetreatmentareawhileapproximately60mof trail passes through the infested zone. To limit the number of P. ramorum spores in soil and the potentialforsporesplashdispersal,a4ͲinchthicklayerofThujaplicataheartwoodchipswasplacedon thetrailinJuly2010.Thetrailwasthenreopenedtopublicuse. Soil samples were collected at 11 locations on the trail four times prior to chip treatment and three timesafterchiptreatment.Phytophthoraramorumwasrecoveredfromatleastoneofthe11samples onallsamplingoccasionsexceptinJuly2010andJune2011.ThenumberofP.ramorumͲpositivesoil samples was 2/11, 5/11, and 6/11 beforeͲchip treatment and 1/11 and 1/11 samples afterͲchip treatment.AllP.ramorumͲpositivesampleswerefoundwithinapproximately8moftheinfectedtree. Phytophthora ramorum’s presence in trail soil appears to have been reduced in the year after chip treatment.Recently,additionalP.ramoruminfectionshavebeendetectednearthetrailandduetouse, chip depth has also been greatly reduced. Additional treatments will be done and monitoring will continue.  Poster23 SpatialpatternsofPhytophthoracinnamomiindecliningMediterraneanforests: implicationsfortreespeciesregeneration.L.GómezͲAparicio,B.Ibáñez,M.S.Serrano, P.DeVita,J.M.Ávila,I.M.PérezͲRamos,L.V.García,M.E.Sánchez,T.Marañón SeeSession3 

90 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster24 HostandhabitatindexforPhytophthoraspeciesinOregonforests (32species!) EverettHansen,PaulReeser,WendySutton,andLauraSims Department of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331. EͲmail: [email protected] Phytophthoraspeciesareabundantinstreamsinhealthyforestsandwidespreadinforestsoilscausing cryptic diseases, in addition to their more traditional roles as aggressive pathogens. We compiled existingOregonrecordsfromavailablesourcesofreliablyidentifiedPhytophthoraspeciesfromforests and forest trees and summarized the results by host and habitat (Forest Phytophthoras, http://www.forestphytophthoras.org/). Details of documented isolates including locations, available cultures,Genbankacquisitionnumbers,andcitationsareintheaccompanyinginteractivedatabase. Thirty two Phytophthora species have been identified associated with 25 host species from Oregon forestsorforesttrees.Thistotalincludes19speciesrecoveredfromforeststreamsand19fromforest soils, generally in the absence of noticeable disease on associated vegetation. A total of 29 Phytophthoraspecieswereidentifiedfromthevariousenvironmentsinforests.Fourteenspeciescame from trees or forest shrubs growing in cultivated and urban environments. Only three species were uniquetothelatter,however,includingP.ilicis,fromcultivatedholly(Ilex),andP.sansomeanaandP. taxonceanothusfromforestnurseries.Threespecies,P.gonapodyides,P.taxonoaksoil,andP.taxon salixsoilwererecoveredfromstreamsinallsurveyedcounties.Themostwidespreadspeciescausing root disease or bole cankers of trees was P. lateralis on PortͲOrfordͲcedar in landscape plantings throughout the state as well as on forest trees in its limited native range. P. cambivora and P. cinnamomiwerewidespreadbutuncommononanumberofforesttrees.  Poster25 CharacterizationofPhytophthoraalniisolatesfromAlnusglutinosainCastillay León,Spain Haque,M.M.,Hidalgo,E.,deLucas,A.I.andDiez,J.J. SustainableForestManagementResearchInstitute,UniversityofValladolidͲINIA.AvenidadeMadrid,44, 34071Palencia(Spain).EͲmail:[email protected] Extensivediebackandmortalityofalder(Alnusspp.)reportedfromseveralEuropeancountrieshasalso beenobservedinSpainin2009.Surveyswereconductedtocollectinformationondiseasesymptoms andpossiblecausesofdeclineofAlnusglutinosagrowingonriverbanksofCastillayLeón,Spain,in2010 and2011.Isolateswereobtainedfromnecroticbarkatcollarandlowerstemsofthediseasedalders. Morphologicalandmolecularcharacteristicsoftheselectedisolatestogetherwiththeirphysiologywere studied.TheisolateswerehomothallicandproducedoogoniaonV8juiceagar(V8A)withsingleortwoͲ celled amphigynous and paragynous antheridia having smooth to ornamented walls and bullate protuberances with a large quantity of aborted oospores. Long sporangiophores were found bearing terminalnonͲpapillate,ellipsoidtoovoidsporangia.Colonygrowthpatternsdevelopedoncarrotagar (CA)andV8juiceagarshowedirregulartouniformradialgrowthhavingappressedtoslightlywoolly aerialovergrowth.Colonygrowthratestodifferenttemperature,pHandosmotic potentialvariedas cultured on several growth media. ITS DNA region was sequenced, and compared with GenBank showingidentitywithP.alni,andconfirmingthemorphologicalandphysiologicalidentificationofthe pathogenisolated.Complementarymolecularstudiesareundergoinginordertoidentifythepathogen atsubspecieslevel.  6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 91 9th-14th September 2012 Córdoba-Spain Poster26 PersistenceofPhytophthoraramorumoninfestedlarchsites AnnaR.Harris1,2,SuzanneSancisiͲFrey1andJoanWebber1 1ForestResearch,AliceHoltLodge,Farnham,Surrey,GU104LH,UK;2DepartmentofBiologicalSciences, ImperialCollege,LondonSW72AZ,UK. Phytophthoraramorumemergedinthe1990salmostsimultaneouslyinbothEuropeandNorthAmerica. ItwasfirstreportedintheUKin2002,buttreeinfectionswerecomparativelyrareuntil2009.Then,a completelyunanticipatedchangeoccurredwithP.ramorumtransferringtocommerciallygrownlarch causingalandscapeͲscaleepidemic.LarchisbothafoliarhostandacankerhosttoP.ramorum.Asingle infected needle can generate hundreds, even thousands of sporangia, and chlamydospores are also produced.Astheneedlesfall,thelitterlayerunderinfectedtreesbecomesareservoirofP.ramorum inoculumavailabletoinfectnewplantings. This study analysed the persistence of P. ramorum on a site in south west England, where stands of Japanese larch (Larix kaempferi) and European larch (L. decidua) showed disease symptoms.All the treeswerefelled,theneachstandwassurveyedsystematicallyandbothneedleͲlitterandsoilsamples removedandbaited.Atotalof180samplesweretakenfromtheJapaneselarchstandand132fromthe Europeanlarchstand.Oneyearlater,thesurveywasrepeatedontheclearedJapaneselarchstand. Two clear results emerged: (1) Much higher levels of P. ramorum were detected under the felled JapaneselarchcomparedwiththeEuropeanlarch(67%and2%respectively);(2)Ayearafterfelling, levelsofP.ramorumhadreducedmoderatelyinthefelledJapaneselarchstand.Thefindingssupport fieldobservationsthatdiseasedevelopmentonEuropeanlarchislessthanonJapanese.Alsoneedlesof Japanese larch usually support the highest levels of sporulation, consistent with the finding that P. ramorumwasmuchmoreprevalentinfallenneedlesunderthishostspecies.  Poster27 ComparativesporulationofPhytophthoraramorumonlarch,rhododendronand baylaurel AnnaHarris1,2andJoanWebber1 1ForestResearch,AliceHoltLodge,Farnham,Surrey,GU104LH,UK;2DepartmentofBiologicalSciences, ImperialCollege,LondonSW72AZ,UK. In Britain, Phytophthora ramorum has been recorded infecting plants since 2003, but tree infections werecomparativelyrareuntil2009whenthepathogenwasfoundkillingcommerciallygrownJapanese larch(Larixkaempferi)andcausingalandscapeͲscaleepidemicinsouthwestEngland.Thislarchspecies isbothafoliarhostandacankerhosttoP.ramorumandinitialstudiesshowedthatasingleinfected needleofJapaneselarchcouldgeneratehundreds,eventhousandsofsporangia,suggestingthisspecies has considerable potential to drive epidemics.However, the sporulation capability of other larch speciesgrowninBritain,suchasEuropean(L.decidua)andhybdridlarch(L.xeurolepis),isunknown. To evaluate the spore producing potential of foliage of the three species of BritishͲgrown larch and comparewithotherknownsporulatinghosts(egUmbellulariacalifonicaandRhododendronponticum), laboratory tests were carried out using shoots of Japanese larch, hybrid larch and European larch challengedwithzoosporessuspensionsofP.ramorum(EU1lineage).Thesetestswerecarriedoutat differenttimesofyearandhaveshownthatsporulationpotentialvarieswithlarchspecies,pathogen genotypeandalsowiththeageofthefoliage.Japaneselarchgenerallysupportedthehighestlevelsof sporulation,evenexceedingthatonU.californica.Sporulationonlarchneedlescanalsooccurinthe absenceofanysymptomsparticularlyearlyintheseasonandinthefield;symptomsoninfectedneedles only become visibletowardstheendoftheseasonjustbeforetheyareshed. 92 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster28 PhytophthorapinifoundonthujainNorway MariaLuzHerrero,VencheTalgø,MayBenteBrurberg,KariØrstad,ErlingFløistad,andArne Stensvand BioforskͲNorwegianInstituteforAgriculturalandEnvironmentalResearch(Bioforsk),PlantHealthand PlantProtectionDivision,Høgskoleveien7,1432Ås,Norway.EͲmail:[email protected] InOctober2011,wereceivedathuja(Thujaoccidentalis‘Smaragd’)withpartlydeadfoliageatourplant clinic. It was approximately a meter high and was one of 45 plants that had been established in a hedgerow in Oslo in April 2011. By July 2011, five plants had to be replaced due to severe disease symptoms.Theplantshadbeenimportedviaagardencenter. Therewasnocankersymptominthe stembaseoftheplantwereceived,buttherootshadtypicaldiebacksymptoms;finerootswereabsent andtherootswereclearlydiscoloredbelowthebark.APhytophthorasp.wasisolatedfromtheroots.It wasidentifiedasP.pinibyITSsequencing.Thisspecieswasfirstdescribedin1925,isolatedfromroots ofPinusresinosainMinnesota,USA.LaterthespecieswasmergedwithP.citricola,buthasrecently beensegregatedagainfromtheP.citricolacomplex[1].IthasmostlybeenreportedfromUSA,butalso fromnurseriesinEurope.AmongotherhostsithasbeenreportedfromFagussylvatica,Rhododendron sp.,andThujasp.Ithasalsobeenisolatedfromstreamsandirrigationwater[1,2].Apathogenicitytest wasstartedon27March2012. [1] Hong, C., Gallegly, M. E., Richardson, P. A. and Kong, P. Phytophthora pini Leonian resurrected to distinct speciesstatus.Mycologia,103351Ͳ360(2011). [2]Jung,T.andBurgessT.I.ReͲevaluationofPhytophthoracitricolaisolatesfrommultiplewoodyhostsinEurope andNorthAmericarevealsanewspecies,Phytophthoraplurivorasp.nov.Persoonia,2295–110(2009).  Poster29 DiseasemanagementofPhytophthoraramoruminaresearchquarantine nurseryatNORSͲDUC Sheila JohnsonͲBrousseau1, Timothy Widmer2, Kathleen Kosta3, Glenn Copeland1, Karen Suslow4,AurelioPosadas5,RussBulluck6,WolfgangSchweigkofler1andSibdasGhosh1 1Department of Natural Sciences and Mathematics, Dominican University of California, 50 Acacia Avenue, San Rafael, California 94901, USA; 2Foreign Disease and Weed Science Research Unit, USDAͲ ARS,1301DittoAvenue,FortDetrick,MD21702,USA;3CaliforniaDepartmentofFoodandAgriculture, 1220NStreet,Sacramento,California95814,USA; 4HinesNurseriesLLC,8633WintersRoad,Winters, California95694,USA;5NationalPlantBoard,P.O.Box847,ElkGrove,California95759,USA;6Centerfor PlantHealthScienceandTechnology,USDAͲAPHISͲPPQ,1730VarsityDrive,Raleigh,NC27606,USA.EͲ mail:[email protected] SuddenOakDeath,causedbyPhytophthoraramorumWerres,DeCock&Manin`tVeld,isamongthe mostimportantemergingforestdiseaseswithpotentiallydevastatingeffectsontemperateforests.The nursery trade is a factor in the longͲrange spread of P. ramorum. To address threats posed by plant tradeandaidindevelopinganenvironmentallyͲsustainablenurseryindustry,theNationalOrnamentals Research Site at Dominican University of California (NORSͲDUC) was developed (www.dominican.edu/norsduc). NORSͲDUC is a sophisticated field nursery designed to contain quarantinedpathogensforthepurposeofconductingresearchinasafeenvironmentthatreflectsan authenticnurserysetting.ResearchcurrentlyfocusesonP.ramorumandisconductedbyaconsortium ofP.ramorumexperts.NORSͲDUCoffersanunparalleledopportunitytostudytheepidemiologyofP. ramorum diseases of ornamentals that has not been accomplished previously. First results from researchonthedisinfectionofP.ramorumfromfieldsoilsusingsteamsterilizationandbiocontrolusing anewTrichodermaisolatewereeffectiveandthesemethodsarebeingreviewedbyUSDAAPHISforsoil

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 93 9th-14th September 2012 Córdoba-Spain treatmentininfectedcommercialnurseries.Additionalresearchisadvancingourunderstandingofthe affect of fungicides on symptom development and P. ramorum lifestages. Upcoming research will contributetoourunderstandingofdiseaseepidemiologyinnurseriestoprovidemeaningfuldatatoaid design of effective pest management programs. NORSͲDUC is expected to continue contributing towardssolutionsforcontainment,remediation,anderadicationofquarantinepathogensinnurseries, reducingtheriskoflongͲrangespreadofpeststhroughinfestednurserystockshipments.  Poster30 HeatͲtreatedJapaneselarch(Larixkeampferi)woodchipscancounter persistenceofPhytophthoraramorum MinaKalantarzadeh1,2,DulcieMulholland1,MosesLangat1,TonyHutchings2,FransdeLeij3and JoanWebber2 1DepartmentofChemistry,UniversityofSurrey,Guildford,Surrey,GU27XH,UK;2ForestResearch,Alice HoltLodge,Farnham,Surrey,GU104LH,UK;3CCureSolutions,AliceHoltLodge,Farnham,SurreyGU10 4LH,UK. Phytophthoraramorumisthecausalagentof‘suddenoakdeath’inNorthAmerica.IntheBritishIslesit infects primarily rhododendron but since 2009 has spread to Japanese larch infecting and killing thousandsoftrees[1].Novelmethodsarebeingsoughttocombatthediseaseincludingthepotentialof woodchipmulchestoreducethesurvivalandspreadofthepathogen.Previousstudieshaveshown that heating wood shavings obtained from a variety of tree species causes the shavings to become highly antiͲmicrobial, with activity against both bacteria and fungi [2].The aim of this study was to investigatetheantimicrobialactivityofheattreatedwoodmaterialsagainstP.ramorumfocussingon themostfrequentlyinfectedhosts,rhododendronandlarch. SamplesofJapaneselarchandrhododendronwoodwerechippedandheatͲtreatedat140oCforthree days.GCͲMSanalysisofmethanolcrudeextractofpreͲandpostͲheatedchipsidentifiedantiͲmicrobial chemicals,particularlyinthelarch,thatcouldhaveactivityagainstP.ramorum.Totestthis,colonised leaf disks of rhododendron were treated with the methanol crude extract derived from the heated woodchips and it prevented any growth of P. ramorum, including chlamydospore germination. Subsequently,treatedanduntreatedwoodchipsweretestedinamicroͲcosmsystem,bychallenging withzoosporesofP.ramorum.ItwasfoundthattheeffectivenessoftheantiͲmicrobialactionofthe woodchipsalteredwithwoodtypeandpathogengenotype.However,theapproachshowspromisefor reducingspread/persistenceofP.ramorumonaffectedsiteswiththetreatedchipsusedasapathogenͲ suppressivemulchingardensandareaswithlimitedinfection. [1]Webber,J.F.,Mullett,M.,Brasier,C.M.DiebackandmortalityofplantationJapaneselarch(Larixkaempferi) associated with infection by Phytophthora ramorum. New Disease Reports 22 19 (2010). [http://dx.doi.org/10.5197/j.2044Ͳ0588.2010.022.019] [2]DeLeij,FranciscusandMinaKalantarzadeh.”Antimicrobialmaterial.”USpatent0034289A1.09Feb2009.  Poster31 DevelopmentofmolecularmarkersandprobesfordetectionofP.ramorum,P. nicotianae,P.citricola,P.fragariaeandP.cactorum KopinaM.,SurinaT. AllͲRussian Plant Quarantine Center, Russia, Moscow region. EͲmail:[email protected], [email protected] Phytophthoradiseasesaresomeofthemostdangerousdiseasesoftreesandshrubsincludingraspberry andstrawberry.Rootrotofraspberryandstrawberry,causedbyP.fragariae,andsuddenoakdeath, 94 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain caused by P. ramorum should be given particular attention. These pathogens are regulated as quarantinepestsinmanycountries,includingRussia. Laboratorydiagnosisoftheseoomycetesiscomplicatedduetosimilarityofsymptomscausedbythe pathogens as well as due to variability of their morphological characteristics. The importance and practical relevance of this study lies in the necessity for developing and further improving molecular methodsfordiagnosingPhytophthoradiseases. IndevelopingrealͲtimePCR,weselectedprimersandprobesusing˄ptgene[1].Nucleotidesequences of Phytophthora spp.˄pt gene were picked out from the Genʦank and sequencing of purecultures fromtheAllͲRussianPlantQuarantineCenterReferenceCollection. For diagnosing sudden oak death, we selected P. ramorum Ͳ specific PramF and PramR primers, and PramPprobemarkedwithMGBfluorescentdye. IndevelopingmultiplexrealͲtimePCRfordifferentiatingamongmajorcausalagentsofraspberryand strawberry root rot, we selected universal primers for Phytophthora spp., and probes marked with TAMRAfluorescentdyespecificforP.cactorum,P.fragariae,P.nicotianae,P.citricola. Primers and probes marked with various fluorescent dyes allowed realͲtime PCR for detection and identificationofthefouroomycetesspeciesinasingletube.Selectedprimers(PramF,PramR)andthe probePramPdidnotcrossreactwithothercloselyͲrelatedPhypophthoraspp.causingtreediseases. [1]SchenaL.,Duncan,J.M.andCooke,D.E.L.DevelopmentandapplicationofaPCRͲbased`moleculartoolbox' fortheidentificationofPhytophthoraspeciesdamagingforestsandnaturalecosystems.PlantPathology,5764Ͳ75 (2007).  Poster32 Seasonal variation of inoculum density and species composition of soilborne PhytophthorasinaninfectedblackwalnutstandinHungary.J.Kovács,F.Lakatos,I. Szabó SeeSession3  Poster33 Fluorescentinsituhybridization(FISH)assayasatooltomicroscopicallyview Phytophthoracinnamomigrowthwithinplanttissues.A.Li,M.Crone,P.Adams,S. Fenwick,N.Williams,G.Hardy SeeSession6  Poster34 EarlyPhytophthoraspp.detectionbyqPCR NicolaLuchi1,DuccioMigliorini1,2,PaoloCapretti2andAlbertoSantini1 1InstituteforPlantProtection–C.N.R.ViaMadonnadelPiano,1050019Sestof.noItaly;2DiBAͲPlant Protection,UniversityofFlorence. One of the main European nursery poles for ornamental plants is located in Pistoia, Tuscany, Italy, wherenurseriesarespreadovermorethan5300hectares.Theproductionisexclusivelydevotedtothe production of plants in pots. In average, 80% of plant obtained by Pistoia’s nurseries is exported to foreigncountries.Forthisreasontheproductionofhealthymaterialisfundamental,inordertoavoid thespreadofnastypathogensallovertheworld.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 95 9th-14th September 2012 Córdoba-Spain Amongthediseasesaffectingplantsinnursery,therootrotsareoneofthemostimportant,particularly thosecausedbyPhytophthoraspecies.Sincethisclassofpathogensishardtoisolate,andremainsalive inthesoilforlongtimeperiodsbeforecausingsymptoms,theavailabilityofanearlydetectiontoolisof primaryconcerntopreventtheriskofspreadofpathogens. AimofthisworkwastodeveloparealtimePCRassaytodetectandquantifyPhytophthoraspp.from plantandsoilsamplescollectedinnurseriesinTuscany.Thesurveywascarriedoutbycollectingplants inpotsandsoilsamples.IsolationonselectivemediaaccordingtoMoralejoetal[1]andDNAextraction wereperformedonleaves,rootsandsoilofbothsymptomaticandasymptomaticsamples. ThesensitivityandspecificityofrealtimePCRapproachmakepossibletodetectthepresenceofsmall amountofPhytophthoraDNAinsoilandplantsamplesevenbeforesymptomsoccur. TheuseofthismoleculartoolwillpreventthespreadofhitchͲhikerpathogensbyasymptomaticplants inanthropicandnaturalecosystems. [1]Moralejo,E.,PérezͲSierra,A.,Álvarez,L.A.Belbahri,L.,Lefort,F.andDescals,E.MultiplealienPhytophthora taxadiscoveredondiseasedornamentalplantsinSpain.PlantPathology,58100Ͳ110(2009).  Poster35 DiversityofPhytophthoraspeciesinforestecosystemsofBulgaria Aneta Lyubenova1, Kaloyan Kostov1, Ivaylo Tsvetkov2, Tomasz Oszako3, Malgorzata Borys3, KatarzynaSikora3,ThomasJung4,5,SlavtchoSlavov1 1AgroBioInstitute, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; 2Forestry Research Institute, 132 St. KlimentOhridskiblvd.,1756Sofia,Bulgaria; 3ForestResearchInstitute–IBL,ul.BraciLesnej3,Sekocin Stary,0509–Raszyn,Poland;4PhytophthoraResearchandConsultancy,Thomastrasse75,Brannenburg, Germany; 5IBB/CGB, Plant and Animal Genomic Group, Laboratory of Molecular Biotechnology and Phytopathology,UniversityofAlgarve,8005Ͳ139Faro,Portugal.EͲmail:[email protected] ThefungusͲlikeorganismsfromthegenusPhytophthoracurrentlyincludemorethan100species,many of which are destructive plant pathogens. The most aggressive Phytophthora species are now acknowledgedascausalagentsinseveraldevastatingdeclinesofforesttreesinEurope,Australiaand theUSA.Therefore,Phytophthorasurveysarecarriedoutbyscientistsandforestservicesinmostofthe European countries. Despite the fact that Bulgaria is rich of natural ecosystems comprehensive informationabouttheoccurrenceanddiversityofPhytophthoraspeciesinforestsandforestnurseriesis stillmissing.Thepurposeofthisstudyistofillinthisgapbydetectingand identifyingPhytophthora pathogenspotentiallydangerousfortheBulgarianforestsecosystems.Sampleswereprimarilycollected from regions that are close to the country borders and areas along major transportation roads, as Phytophthora pathogens are known to be distributed via trading, transportation and other human activities. The focus of our study was on known hosts of Phytophthora such as oak, sweet chestnut, alder,spruceetc.growinginforestecosystemsandnurseries.Morethan100samplesofrhizosphere soilandplanttissuefromtreeswithtypicaldiseasesymptomshavebeencollectedandexaminedforthe presenceofPhytophthora.SeveralPhytophthoraisolateswereobtainedandtheirspeciesidentitywas determined on the basis of their morphological, cultural and molecular characteristics. Up to now P. cryptogea,P.cambivora,P.plurivoraandP.rosacearumweredetected.      

96 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster36 DeterminationoftheminimumthresholdofPhytophthoracinnamomiinoculum forinfectionofQuercusssp. LauraMartín,MaríaSocorroSerrano,MaríaEsperanzaSánchez Agronomy Department, University of Córdoba.Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain. EͲ mail:[email protected] TherootrotduetoPhytophthoracinnamomiisthemaincauseofthemassivedeathofHolmandcork oaks affecting rangeland ecosystems in the south of the Iberian Peninsula. The knowledge of the minimumlevelofinoculumofthepathogeninthesoilforinfectionoftreerootsisacrucialpointforrisk assessment.TodeterminethisminimumlevelofinoculumforinfectionofQuercusilexspp.ballotaand Q.suberroots,18monthsͲoldseedingswereplantedinasubstratepreviouslyinfestedwithaqueous suspensionsofchlamydosporesoftwodifferentisolatesofP.cinnamomi(PE90andPA25isolatedfrom roots of Holm and cork oaks, respectively) in increasing concentrations (0, 0.6, 6, 60, 600 and 6000 chlamydosporespergramofdrysoil).Tenplants(repetitions)wereplantedperinoculumconcentration and species of Quercus. All the plants were incubated in airͲconditioned greenhouse at 25Ͳ10º C day/night, maintaining soil flooding for 2 days per week. Weekly, severity of foliar symptoms is evaluated on a 0Ͳ4 scale (0 = 0Ͳ10% of symptomatic tissue, 4 = dead tissue) and at the end of the experiment, the severity of radical symptoms will be assessed following the same scale. The results obtainedforbothspeciesofQuercuswillbediscussedatthemeeting.  Poster37 CouldclimatechangeinfluencethesurvivalofQuercusilexseedlings germinatinginPhytophthorainfestedsoils? JorgeMartínͲGarcía1,TamaraCorcobado1,AlejandroSolla1andStephenWoodward2 1IngenieríaForestalydelMedioNatural.UniversidaddeExtremadura.Av.VirgendelPuerto2,10600 Plasencia, Spain; 2Institute of Biological and Environmental Sciences, Department of Plant and Soil Sciences.UniversityofAberdeen.CruickshankBuilding,St.MacharDrive,AB243UU,Aberdeen,Scotland, UK.EͲmail:[email protected] Holm oak “dehesas” areamongst the most representative forest ecosytems in the Iberian Peninsula. OverthelastthreedecadesaseriousforestdeclineassociatedwithseveralspeciesofPhytophthorahas been observed. Although previous reports describe the pathogenicity of different species of Phytophthora to Quercus spp. in this ecosystem [1], empirical evidence concerning the possible responsesofPhytophthoraspeciestoclimatechangearelacking.Anincreaseintemperaturebetween2 Ͳ4.5ºC(withamostlikelyvalueof3ºC)isexpectedinthe21stcentury[2],whichwillleadtochanging interactionsbetweenvegetationandpathogensandtoavarietyofforesthealthproblems.Theaimof thisworkwastodeterminewhetheranincreaseintemperatureswouldinfluencethegerminationand survival of Quercus ilex seedlings growing in Phytophthora infested soils. Acorns of Quercus ilex (provenance: Malpartida de Plasencia, Spain) were stored at 4º C before sowing. Inocula of P. cinnamomi,P.gonapodyides,P.quercinaandP.psychrophilawereraisedonvermiculiteͲoatͲV8juice mediumat20ºCfor6weeks.Fourhundredacornsweresownininfestedsoilswitheachofthefour Phytophthora species separately, plus a control treatment of nonͲinfested soil. Two temperature treatments were used: 17 or 20º C with the same photoperiod (n = 40 replicates/treatment). Germination, mortality rates, plant growth (aboveͲground part and root system) and photosynthetic capacitydatawillbepresented. [1]Sánchez,M.E.,Andicoberry,S.andTrapero,A.PathogenicityofthreePhytophthoraspp.causinglateseedling rotofQuercusilexssp.ballota.For.Path.,35115–125(2005).

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 97 9th-14th September 2012 Córdoba-Spain [2]IPCC.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelon ClimateChange,2007.Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.TignorandH.L.Miller (eds.).CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA(2007).  Poster38 AnewmethodtoquantifyzoosporechemoͲattraction.N.S.MassolaJR.,R.Dalio,F. Fleischmann,W.Osswald SeeSession6  Poster39 Cryptogeinandcapsiceinelicitdefenceresponsesincorkoak Clara Medeira1, Virgínia Quartin1,2, Isabel Maia1, Inês Diniz1,3, Mª Céu Matos1, José Nobre Semedo1, Paula ScottiͲCampos1, José Ramalho2, Isabel Pais1, Paula Ramos1, Elvira Melo1, AntónioLeitão2andAlfredoCravador3 1Instituto Nacional de Recursos Biológicos / Instituto Nacional de Investigação Agrária, Quinta do Marquês, 2784Ͳ505 Oeiras, Portugal; 2Centro de Ecofisiologia, Bioquímica e Biotecnologia Vegetal / Instituto de Investigação Científica Tropical, Quinta do Marquês, 2784Ͳ505ͲOeiras; 3IBB/CGB, UniversidadedoAlgarve,CampusdeGambelas,8005Ͳ139Faro,Portugal. Cork oak (Quercus suber) decline in Iberian Peninsula stands is associated with infection by Phytophthora cinnamomi. Most Phytophthora species secrete elicitins, which can enhance defence reactionsagainstsomepathogens. This work recently published onͲline [1], is the first to report a potentially protective role of PhytophthoraͲderivedelicitinsagainstP.infectioninaFagaceae(Q.suber).Ithighlightstheeffectof cryptogeinandcapsicein(secretedbyP.cryptogaeandP.capsici,respectively)ontheinfectionofQ. suberrootsbyP.cinnamomi. CytologicalandphysiologicaleffectsofthetwoelicitinsoncorkoakrootinfectionbyP.cinnamomiwere evaluated.Theprogressionofthepathogeninroottissueanditseffectsontotalfattyacid(TFA)ofroots andleaveswereanalysedinseedlings.Netphotosynthesis(Pn),stomatalconductance(gs),chlorophylla fluorescence (quantum yield of linear electron transport e, photochemical quenching qP, nonͲ photochemicalquenchingNPQ)andcarotenoiddeterminationswerecarriedoutin4ͲmonthͲoldplants. InelicitinͲtreatedroots,2daysafterinoculation,thepathogenwasmainlyrestrictedtotheintercellular spaces of the cortical parenchyma, and did not reach the vascular cylinder of roots. Electron dense materialsaccumulatedintheintercellularspacesofthecortexnexttodisorganizedhyphae,suggesting to be related with defence reactions. Cryptogein (or its interaction with P. cinnamomi) induced enhancedlipidsynthesisinleaves.P.cinnamomidecreasedPn,gs, e,andqP,whereaselicitintreated plantsdisplayedvaluessimilartocontrols.Resultsindicatedaresistanceresponseofcorkoakagainst thisoomycete,inducedbytheelicitins. [1]Medeira,C.,Quartin,V.,Maia,I.,Diniz,I.,Matos,M.C.,Semedo,J.,Campos,P.,Ramalho,J.,Pais,I.,Ramos,P., Melo, E., Leitão, A., Cravador, A. Cryptogein and capsicein promote defence responses and photosynthesis protectioninQuercussuberagainstPhytophthoracinnamomiinfection.EuropeanJournalofPlantPathologyDOI 10.1007/s10658Ͳ012Ͳ9972(2012).   

98 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

 Poster40 PhytophthoraspeciesinSerbia.I.Milenkovic,N.Keca,J.Nowakowska,K.Sikora,M. Borys,T.Oszako,T.Jung SeeSession5  Poster41 SusceptibilityofQuercusilextomixedinfectionsbymultiplePhytophthora species JavierMiranda1,TamaraCorcobado1,ThomasJung1,2,JorgeMartínͲGarcía1,AnaPérezͲSierra3, PalomaAbadͲCampos3andAlejandroSolla1 1Ingeniería Forestal y del Medio Natural. Universidad de Extremadura. Avenida Virgen del Puerto 2, 10600 Plasencia, Spain; 2Phytophthora Research and Consultancy, Thomastrasse 75, 83098 Brannenburg, Germany; 3Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, CaminodelaVeras/n,46022Valencia,Spain.EͲmail:[email protected] Oak decline in Iberia is a complex phenomenon that requires the combination of several factors to occur. Although declining trees are often damaged by several pathogenic oomycetes [1, 2] the interactionamongtheseorganismshasstillnotbeeninvestigated.Thepresentstudyaimstodetermine under greenhouse conditions whether possible interactions among different species of Phytophthora mighthavesignificantsynergisticeffectsonQuercusilexdecline.Thematerialcomprised1ͲyearͲoldQ. ilexseedlingsgrownfromacornsofasingletree(MalpartidadePlasencia,Spain),andsinglestrainsofP. cinnamomi(C),P.gonapodyides(G)andP.quercina(Q)isolatedfromrhizospheresoilofdecliningQ.ilex trees.InoculawerepreparedbygrowingthePhytophthorastrainsinvermiculiteͲoatseedsͲV8juice mediumat20ºCfor6weeks.RepeatedinoculationswereperformedinDecember2011andinJanuary 2012,sothatninecombinations(CC,GG,QQ,CG,CQ,GC,GQ,QC,QG)plusacontroltreatmentofnonͲ inoculatedseedlingsweretested(n=22seedlings).Allplantsweresubmittedtoaregimeoftwodays waterloggingperweek.MortalityratesinApril2012were100,36,9,95,95,64,50,86,9,and0%for CC,GG,QQ,CG,CQ,GC,GQ,QC,QGandcontroltreatments,respectively.InoculationofC,GorQdid notenhanceplantresistancetoasecondinoculation,andnosynergismorantagonismeffectsamong Phytopthora species were observed. As a preliminary conclusion, highest mortality of seedlings does occurwhenP.cinnamomiispresent,irrespectivelyoftheinoculationdate. [1] Corcobado, T., Cubera, E., PérezͲSierra, A., Jung, T. and Solla, A. First report of Phytophthora gonapodyides involvedinthedeclineofQuercusilexinxericconditionsinSpain.NewDiseaseReports,2233Ͳ33(2010). [2] PérezͲSierra, A., LópezͲGarcía, C., León, M., GarcíaͲJiménez, J., AbadͲCampos, P. and Jung T. Detection of Phytophthoraspp.onQuercusspp.intheNaturalParkCarrascardelaFontRoja(preliminary).Proceedingsofthe COST Action FP0801 “Established and Emerging Phytophthora: Increasing threats to Woodland and Forest EcosystemsinEurope”(2011).      

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 99 9th-14th September 2012 Córdoba-Spain  Poster42 EffectofPhytophthoraquercina,P.gonapodyidesandP.cinnamomion germinationofQuercusilexacornsandseedlingestablishmentininfestedsoils Alejandro Solla1, Javier Miranda1, Tamara Corcobado1, Jorge MartínͲGarcía1, Elena Cubera1, AndreaPérez1andThomasJung1,2 1Ingeniería Forestal y del Medio Natural. Universidad de Extremadura. Avenida Virgen del Puerto 2, 10600 Plasencia, Spain; 2Phytophthora Research and Consultancy, Thomastrasse 75, 83098 Brannenburg,Germany.EͲmail:[email protected] InIberia,severalspeciesofPhytophthoraareinvolvedinthedeclineofQuercusilex.ThepathogenP. cinnamomi is the most frequent species isolated, whereas P. quercina and P. gonapodyides are less detected[1].Naturalregenerationofdecliningholmoaksisamaingoalfortheforestadministration, butnoinformationisavailableabouttheviabilityofgerminatingacornsandsubsequentestablishment ofseedlingsininfestedsoils.Previousresearchreported100%mortalityofQ.ilexseedlingswhenpreͲ germinatedseedswereplacedintosoilsinfestedwithP.cinnamomi[2].Ourobjectivesweretoquantify the establishment of Q. ilex through acorns directly sown into infested soils, and to detect possible differencesbetweendifferenttreeprovenances.InDecember2011,acornswerecollectedandstoredat 4ºCfortwomonths,andthenweresown1cmdeepintoamixtureofsandand(1:1)containing inoculum of the three pathogens, separately. NonͲinfested soil mixture was used as control. The presenceofP.cinnamomisignificantlyreducedQ.ilexgermination,andafterwardscausedabout50%of seedlingmortality(60dpi).ThepresenceofP.quercinaandP.gonapodyidesdidnotaltergermination butsignificantlyreducedfinerootgrowthandthetaprootlengthincomparisontoplantsgrowingin nonͲinfested soil. Several traits assessed among the plants from different provenances revealed interesting Phytophthora spp. x plant origin interactions. It is concluded that the presence of Phytophthoraspp.isclearlyalimitingfactorinnaturalregenerationprocesses. [1] Corcobado, T., Cubera, E., PérezͲSierra, A., Jung T. and Solla A. First report of Phytophthora gonapodyides involvedinthedeclineofQuercusilexinxericconditionsinSpain.NewDiseaseReports,2233Ͳ33(2010). [2]RodríguezͲMolina,M.C.,TorresͲVila,L.M.,BlancoͲSantos,A.,PaloͲNúñez,E.J.andTorresͲÁlvarez,E.Viability ofholmandcorkoakseedlingsfromacornssowninsoilsnaturallyinfectedwithPhytophthoracinnamomi.Forest Pathology,32365–372(2002).  Poster43 InvitroinhibitionofmycelialgrowthofPhytophthoracinnamomibypelletsof brassicas MoralesͲRodríguez,M.C.,PicónͲToro,J.,Palo,C.,Palo,E.J.,García,A.andRodríguezͲMolina, M.C. CentrodeInvestigaciónAgraria"FincaLaOrdenͲValdesequera",GobiernoExtremadura,FincaLaOrden, 06187Guadajira(Badajoz),Spain.EͲmail:[email protected] Phytophthoracinnamomiisconsideredoneofthemainagentinvolvedinoakdecline,aphytosanitary problem currently affecting Spanish forests and dehesas (Mediterranean open woodlands). Biofumigationisanenvironmentallyfriendlymethodofcontrollingsoilpathogens,soitmaybeavalid alternative to chemical use in agroforestry and dehesas and also economically viable. The hydrolysis productsofglucosinolatesinthebrassicastissuesarepotentiallyusefultocontrolfungalpathogens.In thisinvitrostudytherewasevaluatedtheeffectofthepelletsofbrassicas(BioFence®)ontheinhibition ofmycelialgrowthofP.cinnamomi.Eightbiofumigantconcentrationsweretested(5,7.5,10,12.5,15, 20,40and60mg;40%humidity)ontenisolatesofP.cinnamomitocalculatebyProbitanalysistheEC50 100 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

andEC90.PlugsofPDAwithactivelygrowingmyceliumwerecutandtransferredtothecentreofpetri platescontainingPARPͲV8juiceagar.Allplateswereincubatedat25°Cfor24hbeforebeingexposedto thebiofumigantmaterial.Biofumigantmaterialwasplacedonthecoverofpetriplateandtheplates wereincubatedinvertedinthedarkat25°Cfor72h.Afterthattime,radialgrowthwasmeasuredtaking twoperpendiculardiametermeasurementsforeachcolony.Allisolatesassayedshowedtobehighly susceptibletotheeffectofbiofumigantalthoughdifferedintheirsusceptibility,withEC50valuesranging 5.59 and 14.65 mg/plate and EC90 values ranging 14.97 and 28.10 mg/plate. This biofumigant is presented as an option for P. cinnamomi control although bioassays under controlled conditions are necessarybeforeusingatoakdeclinesites.  Poster44 PCRdetectionofPhytophthoraramorumfromwoodytissue BrendanMoreland,JohnPollock,RhondaSwan,AlistairMcCracken,MarkWilson,ColinFleming Applied Plant Science and Biometrics Division, AgriͲFood and Biosciences Institute, Newforge Lane, BelfastBT95PX,UK.EͲmail:[email protected] RapidandaccuratedetectionofPhytophthoraramorumfromadvisoryandquarantinesamplesisakey stepinmanagingthespreadofthispathogen.Alongwithstandardculturingmethods,PCRandrealtime PCRareeffectivetoolsforconfirminginfection,butinthecaseofwoodyhostssuchaslarch(Larixsp) thesemethodscanhavealowsuccessrate,givingrisetofalsenegativesanddelaysinmanagingdisease outbreaks. Comparison of different target genes were made including the use of the Elicitin gene and the ITS region.SignificantdifferenceswerefoundintheCTvaluesgainedfromthetwoassayscompared. ArangeofalternativeextractionprotocolsandcommercialkitsweretestedwithvaryingdegreesofPCR inhibitorremoval.Onekitconsistentlyoutperformedtheothers.Furtheroptimisationofthiskitwas carriedoutbymodificationofprotocolsandproportionsofreagents.Additionalcomponentswerealso testedfortheireffectivenessinconjunctionwiththepreferredextractionkit.Significantimprovements wereachievedbytheadoptionofthesechanges,resultinginaprotocolwithimproveddetectionrates throughincreasedefficiencyofextractionfromdifficulttissues. Comprehensive testing of available PCR reagents also resulted in improved detection of target. An increaseinsensitivitywasachievedandasignificantreductioninfalsenegativesbeingreported.  Poster45 PhytophthoraplurivoraandPhytophthoramultivoraintheCzechRepublic– comparisonofdistributionandpathogenicitytoforesttrees MarcelaMrázková1,Karelerný1,2,VeronikaStrnadová1,VladimírHolub1,BoženaGregorová1, MichalTomšovský3,MatĢjPánek1,3,LudmilaHavrdová1,2,ŠárkaGabrielová1,MarkétaHejná1 1Silva Tarouca Research Institute for Landscape and Ornamental Gardening, publ. res. inst., KvĢtnové nám.391,25203,Prƽhonice,CzechRepublic;2CzechUniversityofLifeSciences,FFWS,Kamýcká129,165 21, Praha, Czech Republic; 3Mendel University in Brno, FFWT, ZemĢdĢlská 3, 613 00, Brno, Czech Republic.EͲmail:[email protected] The two new pathogens – Phytophthora plurivora and P. multivora – were described in P. citricola complex[1,2].P.plurivoraiswidespreadinforest,semiͲnaturalecosystemsandnurseriesacrossEurope [1],whereasP.multivoraisresponsiblefordamagesinnaturalecosystemsinWesternAustralia[2],but itwasfoundinEurope[1]andalsointheCzechRepublic.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 101 9th-14th September 2012 Córdoba-Spain It was found out, that P. plurivora predominated over P. multivora (4/5 of isolates came under P. plurivora)intheinvestigatedareaanditwasdistributedinbroadspectrumofaltitude(162–611m a.s.l.).Theotherspecieswasrarelyfoundandonlyinthelowest(upto216ma.s.l.)andmostwarm locations.Bothspecieswerefoundinnurseries,parks,forestandriparianstandsandwereisolatedfrom oak, alder,  and rhododendron. Moreover, P. plurivora was acquired from 13 other hosts. The morphologicalanalysisrevealedthatCzechisolatesofP.multivoradifferedfromtheAustralianonesby thinner oospore wall and lower OWI. Likely, it can be an adaptation to the more friendly climate in CentralEuropeincomparisonwithWesternAustralia. Thepathogenicitytestwith6nativeforesttrees(beech,oak,etc.)revealedthatP.plurivoraismore aggressive than P. multivora, but P. multivora also posed an important risk to European forests. SubstratespecificitywasdetectedinP.plurivora–theisolatesfromforeststreesweremoreaggressive tothemthantheisolatesfromericaceousplants.Likely,thebothsubpopulations(inanthropogenous andnaturalstands)werepartiallyisolatedandspecialisedtotheaccessiblehosts. [1]Jung,T.andBurgess,T.I.ReͲevaluationofPhytophthoracitricolaisolatesfrommultiplewoodyhostsinEurope andNorthAmericarevealsanewspecies,Phytophthoraplurivorasp.nov.Persoonia2295–110(2009). [2]Scott,P.M.,Burgess,T.I.,Barber,P.A.,Shearer,B.L.,Stukely,M.J.C.,Hardy,G.E.StJ.andJung,T.Phytophthora multivorasp.nov.,anewspeciesrecoveredfromdecliningEucalyptus,Banksia,Agonisandotherplantspeciesin WesternAustralia.Persoonia221–13(2009).  Poster46 OomycetesurveyattwocorkoakstandsatAlentejo.Correlationwiththe decliningcondition DinaNeves1*,CristianaMaia1,SusanaDurães1,AlfredoCravador2 1Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, 8005Ͳ139 Faro, Portugal, 2IBBͲInstitute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, PlantandAnimalGenomicGroup,UniversityofAlgarve,CampusdeGambelas,8005Ͳ139Faro,Portugal. EͲmail:[email protected] The aim of this work is to make a survey for the presence of phytopathogens in cork oak roots and associatedsoilintypicalproductiveMontadoEcosystems.Itispartofawiderintegrativestudyaiming to assess the risk and the ecological sustainability of these ecosystems (RESCOEͲPTDC/BIAͲ BEC/102834/2008). Two typical montados in Alto Alentejo, Herdade do Freixo do Meio (FM) and GouveiadeBaixo(GB)wereselectedandineachonetwosubͲareasdefinedaccordingtocontrasting tree aerial aspect: subͲarea A with healthy, and subͲarea B with declining cork oak trees and/or associatedtreemortality.IneachsubͲarea10healthyand10decliningtrees,wereselected.Thetrees werelabelled,photographedandGPSlocatedinordertoallowtheireasyidentificationthroughoutthe project.Theirsymptomswereevaluatedandthetreesrankedaccordingtotheirdegreeofdefoliation: Class0=nosymptoms(1Ͳ10%ofdefoliation);Class1=11Ͳ25%;Class2=26Ͳ60%;Class3=61Ͳ90%; Class 4 = 91Ͳ100% and trees that have died suddenly with or without leaf loss. This work has been carriedoutsinceOctober2010,andsamplesarecollectedeveryautumnandSpring.Soilsamplesfrom therhizosphereofeachselectedtreewerecollected.Theisolationoftheoomyceteswasachievedby usingbiologicalbaits,suchasyoungleavesofQ.suberandQ.ilex.Briefly,1000mlofsoilfromeach sample were baited with cork oak leaves. Necrosed leaves were cut, plated in selective medium (NARPH).Theneachcolonywasobservedinalightmicroscopeandtheonesthatweremorphologically distinctweretransferredtoNARPHordirectlytoV8agar(V8A)tobeidentified.Severaloomyceteswere identifiedbyITSsequencing.P.cinnamomiwasisolatedfrom73.3%and6,7%,GBBandFMBsamples respectively. Six Pythium species were also isolated, of which only Pythium spiculum is known to be pathogenicforcorkoak,toalessextentthenP.cinnamomi.Py.spiculumwasisolatedfromGBAand GBBsubͲareas.TheseresultsshowthatP.cinnamomiistheonlyaggressivesoilbornpathogenpresent indecliningareas.Thehealthystateofthetreesappearstocorrelatewithitspresence.Theaverage 102 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain degree of defoliation has increased in all subͲareas over time. P. cinnamomi, is an exotic highly aggressive pathogen that has not coͲevolved with cork oaks, and therefore the trees have limited defensesagainstit.Thus,wewouldexpecttreesfromsubͲareasBtocontinuetodecline.  Poster47 LookingforanewquickandeffectivemethodofPhytophthoraidentificationin environmentalsamples JustynaNowakowska1,KatarzynaSikora1,TadeuszMalewski2,PeterBonants3,CorSchoen3and TomaszOszako1 1Forest Research Institute, ul. Braci LeƑnej 3, 05Ͳ090 Sħkocin Stary, Poland; 2Museum and Institute of Zoology (PAN) ul. Wilcza 64, 00Ͳ679 Warszawa, Poland; 3Plant Research International, Droevendaalsesteeg16708PBWageningen,TheNetherlands. Contemporary forest protection needs a rapid and reliable method ofidentification of new invasive species both in nurseries and forest stands. Analysis of soil and water samples supplied a significant informationaboutoccurrenceoffinerootpathogensinPoland.Traditionalbaitingandmorphological observations complement with physiological test and DNA analysis. Designing of real time probes specific to pathogen has advantages in nursery trials or pathological tests worth considering. So far specific probes designed for P. plurivora, P. cactorum, P. alni , P. cambivora,P. quercina and P. pseudosyringae were successfully tested. Two more probes prepared for P. citrophthora and P. cryptogea need to be improved as they are not specific and cross with other Phytophthora species. Some new techniques like Padlock probe amplification followed by microͲarray analysis, Fluidigm amplificationfollowedby454sequencingandLuminexmultiplexanalysisaretestedorareunderstudy.  Poster48 TheoccurrenceofPhytophthoraspeciesinEuropeanEcologicalNetwork NATURA2000inPoland Ireneusz Olejarski1, Katarzyna Kubiak1, Justyna Nowakowska1, Thomas Jung2,3 and Tomasz Oszako1 1ForestResearchInstitute,ul.BraciLeƑnej3,05Ͳ090SħkocinStary,Poland;2PhytophthoraResearchand Consultancy, Thomastrasse 75, Brannenburg, Germany; 3IBB/CGB, Plant and Animal Genomic Group, Laboratory of Molecular Biotechnology and Phytopathology, University of Algarve, 8005Ͳ139 Faro, Portugal. The research was done in Western (along Oder river) and WestͲCentral (Krotoszyn Plateau) parts of Poland.DNAwasextracteddirectlyfromsoilsamples(preͲincubationmethod)andfromwater(which wasfirstfiltered).InoakstandsPhytophthoraquercinaandP.plurivorawerethemostcommonspecies causingdamagedtofineroots.P.cactorumandP.pseudosyringaeweredetected,too.Thisputthenew lightonoakdeclinephenomenonwhichhasbeenoccurringintheseregionssincethe80’s.  Poster49 Roads and streams are not significant pathways for SOD spread in tanoak forests.E.Peterson,J.Hulbert,E.Hansen SeeSession3  6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 103 9th-14th September 2012 Córdoba-Spain Poster50 Ecophysiologicalreactionsofalder(Alnusspp.)aftertheinfectionwith Phytophthoraalnissp.alniinthefieldandduringcontrolledgreenͲhouse conditions HardyPfanzandJanneMombour InstitutfürAngewandteBotanik,UniversitätDuisburgͲEssen,CampusEssen,45117Essen,Germany.EͲ mail:hardy.pfanz@uniͲdue.de The new hybrid Phytophthora alni sp. nov. is spreading in Germany. Along rivers and creeks, surrounding bogs and lakes Alnus glutinosa is showing the classic symptoms of leaf desiccation and crown defoliation as well as stem cankers and bleeding. Many of the infected trees die within the followingyears.TostudytheecophysiologicaleffectsofP.alnionA.glutinosaexperimentswithintact twigs,intactdetachedleavesandseedlingswereperformedinthefieldaswellasinthelaboratory.It wasshownthatinfectedtreeshavelessandsmallerleaveswithaclearlyreducedchlorophyllcontent. Photosyntheticcapacity,measuredeitheraselectrontransportcapacity(ETR)viaChlͲfluorescenceorby CO2 gas exchange was clearly reduced in infected trees. Also corticular photosynthesis was affected aroundartificialinoculationsofstems.Followinganatomicalchangesaroundtheinoculation,alsothe chlorophyllcontentoftheinnerbarkwasdrasticallyreduced.ETRmeasurementsunderlinedthisfact. Field observations showed a dramatic spreading of the stem infection within months. Absorptivity measurementsshowedclearchangesinlightabsorptionofinfectedanduninfectedtissuesofthestems. Whenseedlingsordetachedtwigswerefedwithextractsfrominfectedtrees,leafwiltingwasobserved.  Poster51 PhytophthoraramorumandP.lateralisinNorthernIreland.L.Quinn,A.Mccracken, B.Moreland SeeSession5  Poster52 Histological changes of Quercus ilex seedlings infected by Phytophthora cinnamomi. M.A. Redondo, A. PérezͲSierra, P. AbadͲCampos, J. GarcíaͲJiménez, A. Solla, J. Reig,F.GarcíaͲBreijo SeeSession6  Poster53 AnewPhytophthoraspeciesinITSClade2killingCeanothusgrownfor rehabilitationofdisturbedforestsites PaulW.Reeser1,WendySutton1,EverettM.Hansen1,andEllenM.Goheen2 1Department of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331 USA, [email protected]and2USDAForestService,ForestHealthProtection,Medford,ORUSA. ThreespeciesofPhytophthora,comprisingP.cactorum,P.pini,andanundescribedspeciesrelatedtoP. himalsilva and P. citrophthora, were isolated from stems and roots of dying Ceanothus plants (C. sanguineus,C.integerrimusandC.velutinus)beinggrownatanativeplantnurseryfortransplantingtoa 104 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain mine rehabilitation site in the Siskiyou Mountains of Oregon, USA. Ceanothus is a genus comprising around 60 species of small trees and shrubs which are important components of many wildland ecosystemsinNorthAmerica.Of20symptomaticCeanothusplantssampled,oneplantyieldedP.pini,2 plants yielded P. cactorum, and 12 plants yielded the undescribed species. Pathogenicity testing is underway, but it was evident from a subsequent nursery visit that damage was severe and cultural practices favored Phytophthora infection. To prevent similar occurrences in the future, native plant nurseries (making unregulated inͲState sales) must conform to the same Best Management Practices currently used by many larger nurseries (certified for interstate shipping) to assure production of diseasefreeplantingstock.Botanistschargedwithforestrestorationmustdemandhealthystockfrom nurseriesinthesamemannerasregenerationforestersnowdemandqualityfromforesttreenurseries.  Poster54 Phytophthora ITS Clade 3 expands to include a sixth new species, P. taxon pluvialis.P.W.Reeser,W.Sutton,E.M.Hansen SeeSession5  Poster55 Evaluation of biofumigant plants for control of Quercus root rot caused by Phytophthoracinnamomiinrangelandecosystems PedroRíos1,SaraObregón2,AntoniodeHaro2,PilarFernández3andMariaEsperanzaSánchez1 1Agronomy Department, University of Córdoba, Spain; 2Institute of Sustainable AgricultureͲCSIC, Córdoba,Spain;3ForestryDepartment,UniversityofCórdoba,Spain.EͲmail:[email protected] RootrotcausedbyPhytophthoracinnamomiisthemostseriousdiseaseaffectingQuercusilexandQ. suberinoakrangelandecosystemsinsouthernSpain.Asuitablestrategyfordiseasecontrolinthese seminaturalecosystemsistheuseofbiofumigantcropsabletoinhibitP.cinnamomiinfections.Effects of two different genotypes of three potential biofumigant species (Brassica carinata, B. juncea, B. napus)onpathogenmycelialgrowthhavebeenstudied.Freshplantmaterialwascollectedatdifferent phenological stages (stem extension and flowering) and macerate for direct testing, or collected and lyophilizedbeforetesting.CulturesofthepathogenplatedonCarrotͲAgarmediawereexposedtoplant material(freshorlyophilizedandrehydrated)atdifferentdoses:0g(control),5g,10gand20gper plateandincubatedingrowthchamberat25ºCinthedark.Fourdifferentreplicateswerepreparedfor biofumigant plant material and dose.Two colony radiuses were daily measured. Data obtained were analyzed(ANOVA)andaveragevaluescomparedamongthemandwithcontrolsbyTukey’stest.Atthe sametime,glucosinolatecontentisbeinganalyzedforeachspecies,genotypeandphenologytestedby EUreferencemethod(HPLCofdesulphoglucosinolates). All biofumigant treatments reduced mycelial growth of P. cinnamomi, but complete suppression was reached by all doses of both genotypes of B. carinata and B. juncea. A higher number of potentially biofumigantplantsshouldbetestedinordertochoosethemosteffectiveonesfortestingtheirabilityto decreasetheinoculumpotentialforrootinfectionsinartificiallyandnaturallyinfestedsoils.     

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 105 9th-14th September 2012 Córdoba-Spain Poster56 VariationinpathogenicityofPhytophthoralateralisandinteractionswithits hostChamaecyparislawsoniana. C.Robin1,W.Sutton2,P.Reeser2,E.Hansen2 1INRA, UMR 1202, Forest Disease Ecology team, 69 Route d’Arcachon, 33612 Cestas Cedex, France; 2OregonStateUniversity,DepartmentofBotanyandPlantPathology,CorvallisOR97331,USA.EͲmail: [email protected] PhytophthoralateralisisaninvasivepathogenwhichhashadasevereimpactinOregonandCalifornia andwhichisnowadaysreportedinEurope(firstinFranceandtheNetherlands[1],theninScotland). Additionally, in 2008, P. lateralis was detected in soil of natural old growth forests of C. obtusa in Taiwan,inagreementwithapossibleAsiaticoriginforthisspecies. Theprincipalhost,Chamaecyparsislawsoniana,ofP.lateralisisverycommoninEuropeandgrownin nurseries,wherethediseasecanspreadveryeasilyasobservedinOregoninthe50s.P.lateralisisthus consideredasahighriskspecieswhichshouldbeconsideredwithcautionandforwhichweneedto developmanagementmethods. Severalcedartreesthathavesurvivednaturalepidemicsorinartificiallyinfestedraisedbedshavebeen tested for their resistance to P. lateralis using different inoculation procedures [2]. A program was initiatedbyUSDAForestServiceincooperationwithOregonStateUniversitytoderivebenefitsofthis geneticresistancewhichappearedtooccurinC.lawsonianaandtouseresistanttreesinseedorchards. WecarriedoutartificialinoculationsofC.lawsonianatreeswithFrench,TaiwanandAmericanisolates. Differences in aggressiveness between P. lateralis isolates were expressed with the stemͲwound inoculationtechniqueandtherootdiptest.Specificgenotypexgenotypeinteractionswillbeanalysed with an inoculation test of five progenies of resistant or susceptible parents. This study should offer interestinginsightsintothedurabilityofresistanceinC.lawsonianatrees. [1]Robin,C.,PiouD.,FeauN.,DouzonG.,SchenkN.andHansenE.M.RootandaerialinfectionsofChamaecyparis lawsonianabyPhytophthoralateralis:anewthreatforEuropeancountries.ForestPathology,41417–424(2011). [2]Hansen,E.M.,Hamm,P.B.andRoth,L.F.TestingPortͲOrfordͲCedarforresistancetoPhytophthora.Plant Disease,73791Ͳ794(1989).  Poster57 EvaluationoffungalsecondarymetabolitesagainstPhytophthoraspp. B.Scanu1,B.Linaldeddu1,A.Franceschini1,A.Evidente2andL.Maddau1 1DipartimentodiAgraria,SezionediPatologiavegetaleedEntomologia,UniversitàdiSassari,ViaE.De Nicola 9, 07100 Sassari, Italy; 2Dipartimento di Scienza del Suolo, della Pianta, dell’Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy. EͲmail: [email protected] Phytophthora is the major genus within the Oomycota and it is considered one of the most serious threatsforforestandnaturalecosystemsonaglobalscale.Withinthediseasemanagementstrategies, there is a need for new effective compounds owing to the development of fungicide resistance by pathogens and adverse effects on environmental ecosystems. Bioactive secondary metabolites of microbialorigin,whichhavehistoricallybeenofgreatimportanceinmedicineandagriculture,couldbe expected to overcome these critical points. In this study, seven bioactive metabolites produced by phytopathogenicfungiand/orbiocontrolagentswereexaminedagainstseveralpathogenicspeciesof PhytophthoraisolatedinnaturalecosystemsinSardinia(Italy).Theeffectsofthesemetaboliteswere assessed in vitro on mycelial growth, sporulation, oospores formation and zoospores motility. The fungicide metalaxylͲM (48% active ingredient) was used as positive control. All metabolites were 106 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

assayed at increasing concentrations and EC50 values were evaluated. Interestingly, mycelial growth inhibition was observedwith sphaeropsidin A, which showed to be the most active metabolites. The EC50 forsphaeropsidinAwasranging1Ͳ10µg/mLdependingonthePhytophthoraspecies,anditwas tenfold higher than that of metalaxylͲM in some species. The EC50 for the other metabolites tested exceeded 100 µg/mL. Although the chemical control of these pathogens is impractical in natural ecosystems, our results may provide a basis for the development of new compounds that may have usefulapplicationsinagricultureandnurseries.  Poster58 EvidenceoflipophilicphytotoxicmetabolitesproducedbyPhytophthoraspp. involvedinchestnutinkdisease B.Scanu,B.Linaldeddu,A.FranceschiniandL.Maddau DipartimentodiAgraria,SezionediPatologiavegetaleedEntomologia,UniversitàdiSassari,ViaE.De Nicola1,07100Sassari,Italy.EͲmail:[email protected] SeveralspeciesofPhytophthorahavebeenproventobeinvolvedinthechestnutinkdisease.Thenature ofsymptomscausedbythesepathogenssuggeststhatphytotoxicmetabolitesmightbeinvolvedinthe host–pathogen interaction. Furthermore, Phytophthora species are known to secrete proteins which play a key role in the hostͲpathogen interaction. Three selected isolates of P. cambivora, P. gonapodyides and P. pseudosyringae were examined for their ability to produce in vitro phytotoxic secondarymetabolites.CulturesweregrowninRouxbottlescontainingadefinedliquidmedium,and incubated in steady conditions at 21°C at the dark. After 30 days cultures were filtered using MFͲ Millipore™membranefilters.Inordertoobtaintheactivelypophiliccompounds,culturefiltrateswere extracted exhaustively with ethyl acetate. Culture filtrates and organic extracts along with the exhausted aqueous phase were tested on 20 daysͲold tomato cuttings. Culture filtrates induced symptomsofwiltingafter3daysfromthetreatmentupto10%dilution.Allorganicextractsresulted activeinthebioassaytrials,suggestingthatlipophilicmetabolitescouldbeinvolvedinhostͲpathogens interactioninadditiontohydrophilicmetabolites.Theisolationandpurificationofvirulencefactorsof these Phytophthora species are in progress. To our knowledge, this is the first report regarding the productionoflipophiliccompoundsbyPhytophthoraspecies.  Poster59 PhytophthoraspeciesoccurringindecliningoakecosystemsinSardinia(Italy) B.Scanu1,B.Linaldeddu1,T.Jung1,2,L.Maddau1andA.Franceschini1 1DipartimentodiAgraria,SezionediPatologiavegetaleedEntomologia,UniversitàdiSassari,ViaE.De Nicola 9, 07100 Sassari, Italy; 2Phytophthora Research and Consultancy, Thomastrasse 75, DͲ83098 Brannenburg,Germany.EͲmail:[email protected] Quercus ilex and Quercus suber are the main forest species in Sardinia. Since 2009 a survey on the occurrence of Phytophthora species has been conducted in ten oak stands. Rhizosphere soil samples werecollectedfromsymptomaticoaktreesandbaitedusingoakleaflets.Inaddition,barksampleswere takenfromlesionsandcankerspresentonstems.IsolationsweremadeusingSMAselectivemediumfor Phytophthora. Isolates were identified based on morphological characters, growth rates, cardinal temperaturesforgrowthandITSsequenceanalysis.SixPhytophthoraspecieswereidentified,including P. cinnamomi, P. citrophthora, P. cryptogea, P. gonapodyides, P. psychrophila and P. quercina. Two unusualPhytophthoraspeciesarestillinphaseofidentificationsincetheirmorphologicalandmolecular propertiesdidnotmatchanyformallydescribedspeciesorinformallydesignatedtaxon.Phytophthora cinnamomiwasthemostfrequentlyisolatedspecies.Itwasparticularlyfoundassociatedwithsevere declineofQ.subertrees.TheoakͲspecificP.quercinawasdetectedonlyatonesitewhereitwascausing 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 107 9th-14th September 2012 Córdoba-Spain extensive dieback of Q. ilex trees. The isolations of P. citrophthora, P. cryptogea and P. psychrophila fromrhizospheresoilrepresentthefirstrecordsofthesespeciesinQ.ilexandQ.suberstandsinItaly. Pathogenicitytestsareinprogressinordertoassessthesusceptibilityofbothoakspeciestoalleight Phytophthoraspecies/taxa.TheoccurrenceofsomeunidentifiedPhytophthoraspp.suggeststhatmany aspects related to diversity of Phytophthora in Sardinia and their role in the decline of oaks remain unexploredandfurtherresearchisurgentlyrequired.  Poster60 Development,comparisonandvalidationofaRealͲTimePCRtoolforthe detectionofPhytophthoralateralis Schenck,N.1,Fourrier,C.1,Robin,C.2,andIoos,R.1 1ANSES,LaboratoiredelaSantédesVégétaux,Unitédemycologie,IFR110,DomainedePixérécourt,BP 90059,54220Malzéville,France;2UMR1202BIOGECO,INRA69routed’Arcachon,33612CestasCedex France. OutbreaksofPhytophthoralateraliswererecentlyidentifiedinnorthͲwesternFrance(Brittany)onPortͲ OrfordCedartrees(Chamaecyparislawsoniana) plantedashedgerowsinthe1970s[1]. Thissoiland airborneaggressiveoomyceterepresentsanewandseriousthreattoEuropeancountries. Therefore,rapid,specificandsensitivedetectionofthepathogenisessential.Anewinplantadetection protocol based on realͲtime polymerase chain reaction was developed. A P. lateralisͲspecific combinationofprimersandhydrolysisprobehasbeendesignedintheRASͲYptgene,inregionsshowing interspecificpolymorphisms[2].Thisnewtestprovedtobesensitiveandhighlyspecificsinceitdoesnot crossreactwiththecloselyrelatedspeciesP.ramorum.Therelativeaccuracy,specificityandsensitivity ofthisnewtoolwillbeevaluatedincomparisonwithapreviouslypublishedconventionalPCRtestand withisolationfollowedbymorphologicalidentification. [1] Robin, C., Piou, D., Feau, N., Douzon, G., Schenck, N. and Hansen, E. Root and aerial infections of ChamaecyparislawsoniabyPhytophthoralateralis:anewthreatforEuropeancountries.ForestPathology,inpress (2010). [2] Ioos, R., Andrieux, A., Marçais, B. and Frey, P. Genetic characterization of the hybrid Phytophthora alni as inferredfromnuclearandmitochondrialDNAanalyses.FungalGen.Biol.,43511Ͳ529.(2006).  Poster61 DifferentialsusceptibilityofthecommonestAndalusianmorphotypesofHolm oaktoPhytophthoracinnamomi MaríaSocorroSerrano1,PaoloDeVita1,PilarFernández2,MaríaEsperanzaSánchez1 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestryDepartment,UniversityofCórdoba.Ctra.MadridͲCádizKm.396.14014Córdoba,Spain.EͲmail: [email protected] The high inter and intrapopulation variability in Quercus ilex subsp. ballota led to the description of different morphotypes for this oak supspecies. Seedlings of the four main morphotypes of Holm oak present in Andalusia (macrocarpa, expansa, microcarpa and rotundifolia) were checked for their susceptibilitytoP.cinnamomirootinfection.Seedlingswereproducedfromselectedacornspreviously characterized as belonging to the four morphotypes and also acorns from a natural hybrid Q. ilex ballotaͲQ.fagineawereincludedinartificialinoculationexperiments.Plantswereinfectedwithwater suspensionsofP.cinnamomichlamydosporesaddedtothesubstrate.Attheendoftheexperiments, theinfectedseedlingsshowedtheaerialsymptomsoftherootdisease:yellowing,wiltingandinsome cases crown defoliation. Root symptoms consisted in necrosis or absence of feeder 108 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain roots. The four morphotypes of Holm oak could be separated in three groups according with foliar symptomsdeveloped:verysusceptible(microcarpa),susceptible(expansa)andmoderatelysusceptible (rotundifoliaandmacrocarpa),buttherewerenogreatdifferencesinrootsymptoms,alwaysshowinga highdegreeofnecrosis.However,infectedhybridsexhibitedalowdegreeoffoliarandrootsymptoms and always significantly lower than infected Holm oak morphotypes. We concluded than Quercus speciesabletohybridizewithHolmoakandmoretoleranttoP.cinnamomirootinfection(suchasQ. faginea)shouldbeconsideredasgenitorsinfuturebreedingprogramsagainsttherootdisease. [1]Serrano,M.S.,DeVita,P.,Carbonero,M.D.,Fernández,F.,Fernández,P.andSánchez,M.E.Susceptibilityto Phytophthora cinnamomiof the commonest morphotypes of Holm oak in southern Spain. Forest Pathology doi:c10.1111/j.1439Ͳ0329.2011.00758.x(2012).  Poster62 EffectivenessofcalciumandpotassiumfertilizersforcontrolofQuercusilexroot rotcausedbyPhytophthoracinnamomi MaríaSocorroSerrano1,PaoloDeVita1,PilarFernández2,MaríaEsperanzaSánchez1 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestryDepartment,UniversityofCórdoba.Ctra.MadridͲCádizKm.396.14014Córdoba,Spain.EͲmail: [email protected] BasedontheobservationthattherootrotcausedbyP.cinnamomionQ.ilexhasalowincidenceand severityinsoilswithmediumͲhighCa2+content,theeffectivenessofdifferentCa2+andK+products(CaO, CaCO3, CaCl2, Ca(NO3)2, CaSO4, KOH, KNO3, KCl, KIO3 and K2SO4) on mycelial growth, sporangial and chlamydosporeproductionandsporangialgermination(productionofzoospores)ofP.cinnamomihas beentestedinvitro[1].AlthoughnoneoftheproductsinhibitedmycelialgrowthatpH~6,CaO,CaCO3, CaSO4, KOH and KIO3 effectively inhibited the sporangial production of the pathogen and therefore, zoosporeproduction,althoughnoneofthemwereaseffectiveininhibitingthegerminationofalready formed sporangia. CaO, CaCO3, K2SO4 and CaCl2 also inhibited the production of chlamydospores. Experimentsperformedinartificiallyinfestedsoilstreatedwiththemosteffectivecompoundsinthein 2+ + vitro experiments (CaO, CaCO3, CaSO4, KOH and KIO3) showed that, in general, Ca  and K  products induced a decrease in chlamydospore viability greater than registered innonͲamended soils. Additionally, greenhouse experiments usingthesameinfested soilsshowedasignificantreduction in theseverityofsymptomsofHolmoakseedlingsplantedinamendedsoilsincomparisonwithseedlings growing in infested but untreated soils [1]. These results suggested that the application of Ca2+ amendments(mainlyCaOandCaCO3,butalsoCaSO4),andevenKOHtothesoilinrangelandsaffected bythepathogencouldbeaneffectivetoolagainsttherootrot,decreasingtheincidenceofthisserious disease.Now,theseproductsarebeingtestedinfieldconditions. [1] Serrano M. S., De Vita, P., FernándezͲRebollo, P. and Sánchez, M. E. Calcium fertilizers induce soil suppressivenesstoPhytophthoracinnamomirootrotofQuercusilex.EuropeanJournalofPlantPathology132271Ͳ 279(2012).        6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 109 9th-14th September 2012 Córdoba-Spain Poster63 ProteomicsanalysisofresponsestoPhytophthoracinnamomiinHolmoak Besma Sghaier–Hammami, José Valero–Galvàn, Mª Cristina Romero–Rodríguez, Rafael Mª Navarro–CerrilloandJesúsJorrín–Novo University of Cordoba, Department of Biochemistry and Molecular Biology (http://www.uco.es/investiga/grupos/probiveag/)andDepartmentofForestry.EͲmail:[email protected] By using classical ecophysiology and biochemical techniques as well as the more recent –omics ones (proteomics, transcriptomics, and metabolomics) we do pretend to characterize natural variability as wellasresponsestobiotic(P.cinnamomi)andabioticstressesinHolmoak.Ourcurrentresearchand recent publications can be found at the web pages: http://www.uco.es/investiga/grupos/probiveag/; http://www.uco.es/restauracionforestal/.DatapresentedatthemeetingwillbefocusedontheHolm oakͲP.cinnamomiinteraction.  Poster64 AnoverviewofresearchactivitiesonSuddenOakDeath(Phytophthora ramorum)attheCanadianForestService:resultsandprogress SimonFrancisShamoun1andDannyRioux2 1NaturalResourcesCanada,CanadianForestService,PacificForestryCentre,506WestBurnsideRoad, Victoria,BCV8Z1M5Canada;2NaturalResourcesCanada,CanadianForestService,LaurentianForestry Centre,1055duP.E.P.S.,Québec,QCG1V4C7Canada. Phytophthora ramorum (Pr) is an invasive alien pathogen causing a devastating disease known as sudden oak death (SOD) (= ramorum bleeding canker) of oak and tanoak trees in native forests of CaliforniaandsouthwesternOregon(USA).Italsocausesramorumleafblightorramorumshootdieback of woody ornamentals, such as rhododendron and camellia, in forests, nurseries, and garden environments. This pathogen can infect more than 120 hosts, several of which being present in Canadianforestedandurbanareas.TheCanadianFoodInspectionAgencyhasdetectedPrinplantsfrom afewretailgardencentersintheVancouverandVictoriaareasofBC.Stricteradicationprotocolswere putintoeffecttopreventPrfromspreadingintothesurroundingenvironment.Researchactivitiesat theCanadianForestServicehavebeenmainlycarriedouttobetterunderstandthebiology,population genetics,andmitigationmeasurestohelpassesstheriskassociatedwithPrinCanada.Ourpresentation will summarize results on: 1) development of DNA markers to identify the Pr lineages; 2) efficacy of commercialbiocontrolproducts&fungicidesagainstPrlineages;3)assessmentoftheaggressiveness and phenotypic differences among lineages of Pr [1]; 4) evaluation of susceptibility of selected tree species common to eastern Canada to infection by Pr; [2]; 5) assessment of bioherbicidal efficacy of Chondrostereum purpureum registered product “Chontrol®” for control of tanoak and bay laurel resprouts in Oregon and California forests, respectively; and 6) research of putative resistance mechanismsintreestoPr. [1] Elliott, M., Sumampong, G., Varga, A., Shamoun, S. F., James, D., Masri, S. and Grunwald, N. J. Phenotypic differencesamongthreeclonallineagesofPhytophthoraramorum.ForestPathology,417Ͳ14(2011). [2]Jinek,A.,Simard,M.,Brière,S.C,Watson,A.K.,Tweddell,R.J.andRioux,D.Foliagesusceptibilityofsixeastern CanadianforesttreespeciestoPhytophthoraramorum.CanadianJournalofPlantPathology,3326Ͳ37(2011).   

110 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster65 FoliarinfectionofRhododendronbyzoosporesandcystsofPhytophthorapini Leonian SarahShay1,JoyceEberhart2,andJenniferParke1 1Dept. of Botany and Plant Pathology and 2Dept. of Forest Ecosytems and Society, Oregon State University,Corvallis,Oregon.EͲmail:[email protected] PhytophthorapiniLeonian,recentlyreͲestablishedfromP.citricolaI[1],isapathogenwithawiderange of forest and nursery hosts. It causes foliar infections in horticultural nurseries in Oregon, where recirculatingirrigationsystemsarecommon. Detachedleafassayswereconductedtodeterminetheimpactofinoculumdoseandzoosporeagitation ondevelopmentoffoliarinfectionofRhododendron.Woundedandnonwoundedleavesweredipped into suspensions of zoospores that were either untreated, mechanically agitated by vortexing, or pumpedthroughanirrigationsprayersystem.Diseaseseverity(lesionarea)andincidence(numberof lesionsperleafarea)weremeasuredoversevendays. Atinoculumlevelsof10,000propagules/mL,motilezoosporesinfectedbothwoundedandnonwounded leaves.Vortexingorpumpingresultedinzoosporeencystment,andinoculationwiththesetreatments caused disease almost exclusively on wounded leaves.Flow cytometry was used to distinguish propagule type present in motile, vortexed, and pumped inocula. SEM of leaves inoculated with encystedpropagulesshowedgerminatedcystswithhyphaegrowingoverandaroundstomatawithout enteringleaftissueuntilreachingawoundsite. These findings indicate the importance of zoospore motility in reaching suitable infection sites, and demonstrate the impact of zoospore encystment on disease development. This has implications for disease management in nurseries where pruning wounds are common and the pumping of infested irrigationwatermayinfluencezoosporemotility. [1]Hong,C.,Gallegly,M.E.,Richardson,P.A.,Kong,P.PhytophthorapiniLeonianresurrectedtodistinctspecies status.Mycologia103351Ͳ360(2011).  Poster66 Infectionofoak(Quercusrobur)andbeech(Fagussylvatica)seedlingsgrowing inelevatedCO2conditionswithpathogenicPhytophthoraspecies KatarzynaSikora,MartaSiebyųa,JustynaNowakowskaandTomaszOszako ForestResearchInstitute,ul.BraciLeƑnej3,05Ͳ090SħkocinStary,Poland. Upto1yearͲoldpottedoakandbeechseedlingsgrowingminimum6monthsingreenhousechambers under 400 ppm and 800 ppm of CO2 were infected via soil with P. quercina or P. plurivora and P. cactorum, respectively. Elevated CO2 concentration facilitated Phytophthora infections probably becauseofstimulatingfinerootsgrowth.Contemporaryclimaticchangesfacilitategrowthandinfection byOomyceteswhichmaycausemoredamagetothefutureforestecosystems.        6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 111 9th-14th September 2012 Córdoba-Spain Poster67 AnecologicalroleforPhytophthorataxonoaksoilinwesternOregon riparianecosystems LauraSimsandEverettHansen Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall,Corvallis Oregon97331,USA.[email protected] Phytophthora taxon oaksoil, an ITS clade 6 Phytophthora, was collected from 58 of 88 transects in western Oregon USA riparian alder ecosystems. From water and rhizosphere sampling between the monthsofJuneͲOctober2010,morethan500isolateswerecollected.Continuedsamplingin2011Ͳ12 revealed consistent high levels of this organism in water. Water samples containing P. taxon oaksoil werecollectedyearroundwithmoreisolatescollectedperliterduringthesummerandfallwhileleaves werefallingandaccumulatinginwaterways.ItwasfoundthatP.taxonoaksoilcansporulateandgrow on dried and fresh green alder leaves and petioles floated in water under laboratory conditions.P. taxonoaksoilwasalsoeasily,repeatedlyandfrequentlyisolatedfromfallenalderleavesbutonlyrarely fromnecroticfinerootsandneverfromattachedleavesabovethewaterline.Thecombinedevidence suggests P. taxon oaksoil is growing and sporulating from alder leaf debris in riparian ecosystems in westernOregondrivingupthenumberofpropagulesfoundinwater.Littleisknownabouttherolesof Phytophthora species in ecosystems beyond the aggressive pathogens, but it is likely that P. taxon oaksoil can use plant debris such as leaves as a carbon source and as a substrate for asexual reproduction.  Poster69 Asimple,rapidandinexpensivechemicalmethodforthedetectionphosphitein planttissue PatsyStasikowski1,DougClark1,JenMcComb1,BryanShearer2,PhilipO’Brien1,GilesHardy1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia. EͲmail: [email protected] Phosphite(phosphonate)iswidelyappliedtoplantcommunitiestocontrolthespreadandimpactof Phytophthora species in natural and periͲurban woodland and forest ecosystems. Determining (1) if phosphite applications have been successfully taken up in planta, (2) how phosphite is distributed aroundplantsacrossseasons,and(3)whenplantsneedtoberetreatedtomaintaineffectivepathogen controlisproblematicduetothetimeandcostsassociatedwithcurrentmethods.Thispaperdescribes adirectchemicalmethodofrapidlyandeffectivelyestimatingtheconcentrationofphosphiteinplant material using a silver nitrate reagent. Glass fiber filter papers (Whatman GF/B) are saturated with acidifiedsilvernitrate(1M)anddriedfor2hoursat600C.20uLofaPVPPtreatedaqueousplantextract isthenadsorbedontothefilterpaperandincubatedinthedarkatroomtemperaturefor1hour.The presenceofphosphiteintheextractreducesthesilverionstoelementalsilverresultinginagreyͲblack precipitatethatisclearlyvisible.Themethodwassuccessfullytestedontherootsandleavesofarange ofexoticandAustraliannativeplantsspeciesfromdifferentfamiliesandgenerawhichhadbeentreated with 0.3% phosphite. The method is rapid, sensitive and inexpensive, and can detect phosphite at concentrationsof1mMin20ulofaqueousextractfrom100mgoffreshplantmaterial,equivalentto 82 ug gͲ1 fresh weight, or 20 nmol phosphite per sample. The concentrations detected by the silver nitrate method equated well with the more expensive and less rapid HPLC method that we used to confirmtheaccuracyoftheassay.

112 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Poster70 CalciumsupplementationofsoilaugmentsthecontrolofPhytophthora cinnamomibyphosphite PatsyStasikowski1,JenMcComb1,BryanShearer2,PhilipO’Brien1,GilesHardy1 1Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA, Australia; 2Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia. EͲmail: [email protected] Foliarapplicationofphosphite,asystemicfungicide,toPhytophthoracinnamomiinfectedplantsresults inthecontrolofdiseasesymptomsandareductioninthespreadandimpactofthepathogenicinnative plantcommunities.CalciumionshavealsobeenshowntoaffecttheinteractionbetweenPhytophthora species and their plant hosts and to reduce the impact and spread of disease caused by soilͲborne Phytophthora species. Calcium may enhance plant defence mechanisms or interfere with sporangial production,zoosporereleaseandencystmentonplantroots.Phosphitehasbeenshowntohavesimilar effects.TheadditionofcalciumsaltstosoilinhibitstheinfectionofplantsbyP.cinnamomi,andthereis acorrelationbetweentheincidenceindiebackdiseasecausedbyP.cinnamomiinnaturalecosystems and the distribution of calcareous soil. This study used a susceptible Australian native plant species Banksialeptophilia,toinvestigatewhetherthediseasecontrolofP.cinnamomibyphosphitecouldbe augmented by soil supplementation with calcium sulphate. The results showed that the effects of applyingbothcalciumandphosphiteweresynergistic,andthattheadditionofcalciumsulphatetothe soil augmented and significantly prolonged the effect of foliar phosphite application. A mechanism involvingthedisruptionofintracellularcalciumsignaturescausedbyphosphiteinducedaccumulationof pyrophosphateinthecytosolofP.cinnamomiisdiscussed.  Poster71 PhytophthoraͲbaitinginNorwegianwaterways VencheTalgø,MariaLuzHerrero,MayBenteBrurberg,andArneStensvand BioforskͲNorwegian Institute for Agricultural and Environmental Research, Plant Health and Plant ProtectionDivision,Høgskoleveien7,1432Ås,Norway.EͲmail:[email protected] In2011,aPhytophthoraͲsurveywascarriedoutinsomeselectedlakes,riversandstreamsinsouthern Norway.Weusedrhododendronleavesfromthecv.‘Cunningham’sWhite’asbaits.Priortobaiting,all leavesweresurfacesterilizedwith70%ethanolandplacedinperforatedbags(2Ͳ3leavesperbag),each withastyrofoamfloatertokeepthebaitnearthesurface.Thebagswereanchoredtotheshoreandleft in the water for 6Ͳ8 days. All locations were recorded with a field mapping GPSͲdevice. At many locationstheleaveshaddarkand/orwatersoakedspotswhenremovedfromthewater.Smallsections fromtheleadingedgesofthespotsweredissectedandplatedonPhytophthoraͲselectivemedia(PARP or PARPH). We detected six Phytophthora spp.; P. gonapodyides, P. lacustris, P. plurivora, P. pseudosyringae,P.ramorum,andP.syringae.P.plurivoraisknowntodamagebeech(Fagussylvatica) andNorwaymaple(Acerplatanoides)onthewestcoastofNorway,P.ramorumhasmainlybeenfound outdoors on rhododendron, but is also confirmed on Pieris japonica, Viburnum spp., American oak (Quercussp.),and(Vacciniummyrtillus)inNorway.PathogenicityofallsixPhytophthoraspp. will be tested on beech in 2012, because PhytophthoraͲsymptoms have been found on beech in the areaswherewebaited.    6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 113 9th-14th September 2012 Córdoba-Spain Poster72 PhytophthoraontreesinNorway VencheTalgø,MariaLuzHerrero,MayBenteBrurberg,andArneStensvand BioforskͲNorwegian Institute for Agricultural and Environmental Research, Plant Health and Plant ProtectionDivision,Høgskoleveien7,1432Ås,Norway.EͲmail:[email protected] Duringthelastdecade,anumberofPhytophthoraspp.havebeendetectedfromdiseasedconiferand deciduous trees in landscape plantings, urban forests, and Christmas tree and bough plantations in Norway.WehavefoundP.megaspermaonsubalpinefir(Abieslasiocarpa)andlinden(Tiliasp.),aP. inundataͲlike species on nordmann fir (A. nordmanniana), P. plurivora on Norway maple (Acer platanoides) and beech (Fagus sylvatica), P. ramorum on oak (Quercus sp.), P. gonapodyides on grey alder(Alnusincana),andP.cambivoraonnoblefir(A.procera),subalpinefir,andbeech.Forsomeof these findings we have clear indications that this is a result of contaminated, imported plants, a worldwide trend. We find it alarming that some of these pathogens have been detected in urban forests,afirststeptowardsournaturalecosystems.  Poster73 Epidemiology of Phytophthora ramorum and Phytophthora kernoviae on VacciniuminthenaturalenvironmentintheUK.G.L.Thorp,J.A.Turner,P.Jennings SeeSession3  Poster74 SubspeciesidentificationofPhytophthoraalniinalderriparianstandsinthe CzechRepublic MichalTomšovský1,PetraŠtĢpánková2,Karelerný3 )Mendel University in Brno, Faculty of Forestry and Wood Technology Brno, Czech Republic; 2Mendel University in Brno, Faculty of Agronomy, Brno, Czech Republic; 3Silva Tarouca Research Institute for LandscapeandOrnamentalGardening,Prƽhonice,CzechRepublic. IntheCzechRepublic,Phytophthoraalniwasfirstlyconfirmedin2001.Sincethetime,thepathogenhas been spreading quickly and occupies almost all area of the country. The pathogen attacks Alnus glutinosaorA.incanatoalesserextentandcausesconsiderablelossesofaldertreesalonghundredsof kilometresofriverbanks[1].AimofourworkwastoperformtheidentificationoftheP.alniisolatesat subspecies level using PCR. The alleleͲspecific PCR primers focused on allele diversity of orthologs of ASFͲlike, TRP1, RASͲYpt, and GPA1 genes were selected for the identification [2]. The 88 % of 59 analysedisolatesbelongtoP.alnissp.alniwhile12%ofthatsareP.alnissp.uniformis. P.alnissp.multiformishasnotbeenrecordedinthecountrytillknow.Theresultsfollowexpectationsof moreeffectivespreadingofP.alnissp.alnibasedonitshigheraggressivenessandecologicaladvantage comparedtoremainingtwotaxa.Incomparison,thescattereddistributionofP.alnissp.uniformismay representtheremainsofitsformeroccurrence.Therefore,P.alnissp.uniformismaybeanindigenous subspeciesashypothesedinliterature[2]suppressedbythemoreaggressiverelatedtaxon. [1]erný,K.andStrnadová,V.Phytophthoraalderdecline:diseasesymptoms,causalagentanditsdistributionin theCzechRepublic.PlantProtect.Sci.,4612–18(2010). [2] Ioos, R., Andrieux, A., Marçais, B. and Frey, P. Genetic characterization of the natural hybrid species PhytophthoraalniasinferredfromnuclearandmitochondrialDNAanalyses.FungalGenetBiol.43511–529(2006).

114 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

POSTER75 ThepresenceofPhytophthoraramoruminGreece:Theriskofspreadintoforest ecosystems TsopelasP.1,SouliotiN.1,TjamosS.E.2PaplomatasE.J.2,andKulakiotuE.K.3 1Hellenic Agricultural Organization “Demeter”ͲInstitute of Mediterranean Forest Ecosystems, Terma Alkmanos,11528Athens,Greece; 2LaboratoryofPlantPathology,AgriculturalUniversityofAthens,75 Iera Odos, 11855 Athens, Greece; 3Directorate of Rural Economy and Veterinary of Thessaloniki. DepartmentofQuality&PhytosanitaryControl.63Papanastasiou,54453Thessaloniki,Greece. During2010Ͳ2011,inanationwidesurveyinGreece,Phytophthoraramorumwasdetectedindifferent areas of the country. It was isolated from symptomatic ornamental plants in nurseries only. IdentificationofthepathogenwasbasedonmorphologicalandphysiologicalcharactersaswellasDNA sequences. P. ramorum was initially detected in central Greece in 2010, on rhododendron plants imported from Belgium. In 2011 the pathogen was found in northern Greece also on rhododendron plants imported from Belgium and in two more localities in southern and central Greece on nursery plantsofviburnumandcamelliaproducedinthecountry. Weatherduringlatespringandsummerishotanddryinmostoftheareaswherenurseriesarelocated inGreece,thusitisnotfavourableforthespreadofP.ramorum;thisalsofacilitatescontrolmeasures. However,chlamydosporesofthepathogencansurvivehighsummertemperatures[2]andcancause new infections during autumn and spring. Greece has a range of climatic variations; there are many suitable habitats for the spread and establishment of the pathogen, including natural oak and beech forests in the highlands as well as maquis scrublands, with evergreen oaks and other hosts of P. ramorum.ThereisalsothepossibilityofsusceptiblehostsinconiferousforestsofGreece.Therecent outbreakofthediseaseinlarchplantationsofUK[1]showsthatthebehaviourofP.ramoruminnew environmentsisunpredictableandthisshouldmakeusparticularlycautious. [1]Brasier,C.andWebber,J.PlantPathology:Suddenlarchdeath.Nature,466824–825(2010). [2] Fichtner, E.J., Lynch, S.C. and Rizzo, D.M. Detection, Distribution, Sporulation, and Survival of Phytophthora ramoruminaCaliforniaRedwoodͲTanoakForestSoil.Phytopathology,971366Ͳ1375(2007).  Poster76 AFLP analysis reveals low genetic diversity of Phytophthora austrocedrae in Patagonia,Argentina.M.L.Vélez,M.P.A.Coetzee,M.J.Wingfield,M.Rajchenberg,A.G. Greslebin SeeSession1  Poster77 PhytophthoraspeciesfromnativeforestsofPatagonia M.L.Vélez,P.V.SilvaandA.G.Greslebin ProtecciónForestal,CentrodeInvestigaciónyExtensiónForestalAndinoPatagónico(CIEFAP).Consejo NacionaldeInvestigacionesCientíficasyTécnicas(CONICET).UniversidadNacionaldelaPatagoniaSJB (UNPSJB).Esquel,Argentina.EͲmail:[email protected] ThediversityandecologyofPhytophthoraspeciesinnaturalecosystemsarelittleknown.InArgentina, particularlyinPatagonia,thissubjecthasbeenpoorlystudied.Theaimofthisstudywastocontributeto theknowledgeofPhytophthoradiversityinPatagoniannativeforests.Sixteenstreamslocatedinmixed forestsdominatedbyNothofagusspp.andAustrocedruschilensiswerebaitedforPhytophthorausing 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 115 9th-14th September 2012 Córdoba-Spain pearsandfoliageofnativetreesandshrubs.Onehundredandfiftyisolateswereobtained.About10 morphospecieswerepreliminarilydiscriminated.Specieswereidentifiedbystudyingmorphologicaland growthcharactersaswellasITSregionsequencesofrDNA.ThemostfrequentlyisolatedspecieswasP. syringae(frequency54%,detectedin12streams),followedbyP.gonapodyides(25%,13streams)andP. taxonpgchlamydo(10%,6streams).P.taxonsyrchlamydo(frequency1,3%,2streams),anunidentified species, clearly differentiated from P. syringae by morphology but not by the ITS sequence which differedfromtheP.syringaereferencesequenceinonly2bases.Mostofotherspeciesareinclade6 and differ morphologically from P. gonapodyides and P. taxon pgchlamydo but the sequences of ITS regionswereinsufficienttosolvetheidentityoftheseisolateswhicharestillunderstudy.Differencesin the frequency of isolation of each species from each kind of bait were observed. A review of the Phytophthora species recorded in Patagonia together with short descriptions and a discussion about theirphylogenyispresented.  Poster78 PyrosequencingasatoolfordetectionofPhytophthoras:errorrateandriskof falseMOTU’s A.M.Vettraino1,P.Bonants2,A.Tomassini1,N.Bruni1,A.Vannini1 1Laboratory of Mycology and Forest Pathology, University of Tuscia, Via S. C. De Lellis, snc, 01100, ViterboͲItaly,email:[email protected];2ResearchInstituteforPlantProtection(IPOͲDLO),POBox9060, 6700GWWageningen,TheNetherlands The most widely used technique to identify Phytophthoras in environmental samples relies upon cultureͲbased morphological approaches (selective media and baiting techniques). Beside the high specificity, the low sensitivity coupled to long time required to achieve the results are the main bottleneckslimitingitsefficacy.Althoughseveralmolecular–basedapproachescancircumventmanyof thesedrawbacks,availablemoleculardetectionassaysforPhytophthoraspeciesdetectonlyoneorfew species.NextͲgenerationsequencing(NGS)technologiesofferanopportunitytoovercomemostofthe aboveͲdescribedlimitations.InthisstudypyrosequencingofpartialITSampliconswasusedtodescribe the structure of a DNA mix consisting in 8 Phytophthora spp. and Pythium vexans. Pyrosequencing resulted in 16 965 reads, specific for specimens present in the artificial sample. A cutͲoff of 98% is suggestedtoanalysesamplesnaturallyaffectedbyPhytiaceae,toabsorbsequencingerrorsandlimit theriskoffalseMOTUs.ThepyrosequencinganalysisinsilicooftheITSregionshowedPAisauseful moleculartoolfortherapiddetectionofPhytophthoraspp.However,itcannotprovidealoneallthe information need to understand the ecology of Phytophthoras but it can offer an opportunity to increase our understanding of this group of pathogens and their impact on natural and managed vegetationsystems.  POSTER79 BiodiversityofPhytophthoracommunityinacostaloakecosysteminItaly A.M.Vettraino,G.Natili,,A.Vannini Laboratory of Mycology and Forest Pathology, University of Tuscia, Via S. C. De Lellis, snc, 01100, ViterboͲItaly.EͲmail:[email protected] OakdeclineoccurswidelyinItalyfromnorthtosouthofthepeninsulainawiderangeofenvironmental conditions.In2002,Vettrainoetalreportedthepossibleassociationbetweendeclinedoakstandsand the presence of Phytophthora species. However so far, no particular attention has been paid to the characterization of Phytophthoras community in costal oak ecosystems characterized by seasonal floodingandsemipermanentpoolsoftemporarywaterformedbyoutcropsofgroundwater.In2012a surveywasconductedintheforestofPaloLaziale(latitude41°55’to41°56’Northandlongitude12°5’ 116 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain to12°6’West,7masl)incentralItaly.ThesiterepresentsoneofthelastresidualofTyrrhenianplain forest, which originally covered the coastal areas of Latium, dominated by Quercus ilex, Q. cerris, Q. pubescens and having Ulmus minor, Fraxinus angustifolia, F. ornus, Sorbus domestica, Pinus pinea as accessoryspecies Atotalof12Phytophthoraspp.havebeenrecovered.Basedonphylogeneticanalysisandmorphological and physiological analysis, ten species and one informally designated taxon have been described. AmongthemsomecommonlyrecordedspeciesinoakforestsaslikeasP.cryptogea,P.cinnamomi,P. gonapodyides,P.megasperma,P.plurivoraandsomerareandunespectedspecies(P.taxonoaksoil,P. psychrophila,P.multivoraP.rosacearum).TheidentificationoftwoadditionalPhytophthoraspeciesis ongoing. Vettraino,A.M.,Barzanti,G.P.,Bianco,M.C.,Ragazzi,A.,Capretti,P.,Paoletti,E.,Luisi,N.,Anselmi,N.AndA. Vannini.OccurrenceofPhytophthoraspeciesinoakstandsinItalyandtheirassociationwithdecliningoaktrees. ForestPathology,32,19–28(2002)  POSTER80 Investigations on control measures for Phytophthora ramorum and Phytophthorakernoviaeinheritagegardensandparks.E.F.Wedgwood,D.Lockley, J.Turner,G.Thorp,B.Henricot SeeSession7  POSTER81 PhytophthoraobscuraandthewidespreadbleedingcankerofAesculusin Europe N.J.Grünwald1,S.Werres2,E.M.Goss1,3,C.R.Taylor4andV.J.Fieland4 1HorticulturalCropsResearchLaboratory(HCRL),USDAARS,3420NWOrchardAve.,Corvallis,OR97330; 2JuliusKühnInstituteͲFederalResearchCentreforCultivatedPlants(JKI),9InstituteforPlantProtection in Horticulture and Forests, Messeweg 11/12, 38104 Braunschweig, Germany; 3Current address: DepartmentofPlantPathologyandEmergingPathogensInstitute,UniversityofFlorida,POBox110680, Gainesville, FL, 32611; 4Department of Botany and Plant Pathology, Oregon State University, 2082 CordleyHall,14Corvallis,OR97331. IntheearlyninetiesofthelastcenturyanunusualdeclineofAesculushippocastanumcouldbeobserved inthesouthernpartofGermany.Oldhorsechestnuttreesinpublicgreensshowedsymptomsincluding smallandpalegreenleavesandsevere“bleedingcankers”withacambiumnecrosismainlyonthestem. The Phytophthora isolates baited from soil samples around diseased horse chestnuts were originally thoughttobeP.syringaebutshowntobelongtothenewspeciesP.obscuraGrünwald&Werresafter recentreexamination.TheyareidenticaltoisolatesobtainedfromKalmialatifolialeavesandfromsoil underneath Pieris japonica in the USA. Phylogenetic analysis revealed that P. obscura is genetically closelyrelatedtoP.syringaeandP.austrocedrae.Togetherthesethreetaxadefineanewsubclade8d of Phytophthora. Koch’s postulates could be fullfilled with Kalmia latifolia. Controlled infection trials showedthatP.obscuraispathogeniconPieris,RhododendronandAesculushippocastanum. [1]Werres,S.,J.Richter,andI.Veser.Studiesondiseasedanddeadhorsechestnuts(AesculushippocastanumL.) inpublicgreenspaces.NachrichtenblattdesDeutschenPflanzenschutzdienstes,4781Ͳ85(1995). [2]GrünwaldN.J.,WerresS.,GossE.M.,TaylorC.R.andFielandV.J.Phytophthoraobscurasp.nov.,anewspecies of the novel Phytophthora subclade 8d. Article first published online: (2011) DOI:10.1111/j.1365Ͳ 3059.2011.02538.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365Ͳ3059.2011.02538.x/abstract 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 117 9th-14th September 2012 Córdoba-Spain POSTER82 VariabilityinresponsetoinfectionofPhytophthoracinnamomiindiferents familiesofQuercusilex IsabelLeónSánchez,JuanJoséGarcíaMartínez,ManuelFernándezMartínez,JavierVázquezͲ Piqué,AlfredoCravador,RaúlTapiasMartín UniversityofHuelva,Spain.EͲmail:[email protected] Oakdecline,adiseasecausedbyoomycetesofthegenusPhytophthora,causessubstantialyieldlosses throughouttheworld,particularlyinthesouthwestoftheIberianPeninsulawiththeveryaggressive species Phytophthora cinnamomi. In order to reduce the impact of that pathogen in Quercus ilex seedlings,priorityisgiventogeneticcontrolthroughmoreresistantprogeny.Tenplantsofeachfamily were tested. Measure of grown in new roots parameters were used as indicators of P. cinnamomi resistance. Resistance levels varied continuously across families from high to low values in all experiments,butfamilyrankingswereconsistentamongexperiments.ThenarrowͲsenseheritabilityof theresistancecharacterwashighatbothfamilies. TheresistanceofholmoaktoP.cinnamomiis undermoderategeneticcontrol.Selectionsoflineswithhighlevelsofresistancearefeasible,andsuch linescanbeusedinrehabilitationplantingsofholmoakforestsites.

POSTER83 CharacterisingthedistributionofPhytophthorataxonAgathis(PTA)inthebark, cambium,andwoodofdiseasedNewZealandkauri(Agathisaustralis). MoniqueP.Wheat1andStanleyE.Bellgard2 1Kauri Dieback Joint Agency: Private Bag 92300, Auckland 1142, New Zealand; 2Landcare Research: Private Bag 92170, Auckland Mail Centre, Auckland, 1142, New Zealand. EͲmail: [email protected] IncreasednumbersofstandingdeadkauriAgathisaustralisareresultingfromtheKauriDiebackdisease caused by the rootͲ and collar rot pathogen Phytophthora taxon Agathis (PTA) [1]. It is not known whetherPTAislikelytobefoundsystemicallyinkauri,andthusthetimbermaynotbeutilisedwithout someknowledgeoftheriskofspreadofthediseasetohealthykauri.Thisknowledgegaphasresultedin numerousenquiriestoascertainifdeadanddyingkauricanbeharvestedforthetreeshighlyvalued timber,forbothculturalandcommercialuse.Inordertoascertaintherisksassociatedwiththetimber beingapathwayforPTAspread,adirectplatingmethodhasbeendevisedtodetectthepresenceofPTA in the bark, cork cambium, sapwood and heartwood [2]. To augment the direct plating approach, commercialElisatestkits(e.g.PocketDiagnostic®)andaPTAͲspecific,RealTimePCRassaywillbeused tomapthepresenceofPTAinlateͲstage(chronicͲphase)diseasedtrees.Fromthisempiricaldata,aset of phytosanitary protocols will be developed to govern the utilisation or secure disposal of diseased kauritrees. [1]Beever,R.E.,Waipara,N.W.,Ramsfield,T.D.,Dick,M.A.andHorner,I.J.Kauri(Agathisaustralis)underthreat from Phytophthora? Proceedings 4th IUFRO Working Party 7Ͳ02Ͳ09 “Phytophthora in Forests and Natural Ecosystems”,26Ͳ31stAugust2007,Monterey,California,USA(2008). [2]Beever,R.E.,Bellgard,S.E.,Dick,M.A.,Horner,I.J.andRamsfield,T.D.DetectionofPhytophthorataxonAgathis (PTA):FinalReport.LandcareResearch,Auckland(2010). Acknowledgements.DrNicholasWaipara,StaceyHill,JeremyWarden(AucklandCouncil).DrPeterBuchanan,Elsa, Paderes,ChrisWinksandDanielThan(LandcareResearch).  

118 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

POSTER84 Phytophthoracinnamomiinfectionresultsinchangedpatternsoffineroot productioninScotspine EleniSiasou1,HelenaBraganca1,2andSteveWoodward1 1UniversityofAberdeen,InstituteofBiologicalandEnvironmentalSciences,CruickshankBuilding,AB24 3UU, Aberdeen, UK; 2National Research Institute for Agriculture and Fisheries, Av. Brasilia 1449Ͳ006, Lisbon,Portugal.EͲmail:[email protected] Climatechangescenariosforthenearfutureincludeahigherfrequencyofextremeevents,including floodsandstorms,drought,andabruptchangesbetweenwarmandcoldweatherconditions,coupled with a gradual increase in mean temperatures and changes in rainfall patterns. These factors will seriously impact hostͲparasite interactions at the individual tree, forest and landscape levels. Phytophthoraspp.arevirulentpathogensonawiderangeofplantspeciesandinvasionsinpreviously uncolonizedregionshavecausedmajorproblems.TheUKhasexperiencednumerousintroductionsof invasive alien Phytophthora spp. in recent years. Species in the P. citricola complex are present, for example. Moreover, P. cinnamomi was reported in Scots pine (Pinus sylvestris) forests in northern Scotland[1],althoughitsimpactintheseecosystemsisunclear. The impacts of Phytophthora citricola sensu lato and P. cinnamomi, inoculated independently or coͲ inoculated,onScotspineunderfloodingconditions,simulatingincreasedprecipitationduetoclimate change, were examined. Inoculation with P. citricola and P. cinnamomi, coupled with periodic inundation, led changes in several parameters measured. Root morphology, biomass, and disease severityontherootschangedwithtimefollowingtreatmentduringinteractionswithPhytophthoraspp., althoughveryfewplantswerekilledbythesetreatments. [1]Chavarriaga,D.,Bodles,W.J.A.,Leifert,C.,Belbahri,L.&Woodward,S.Phytophthoracinnamomiandotherfine rootpathogens:athreattonorthtemperatepineforests?FEMSMicrobiol.Letters276:67Ͳ74(2007).  POSTER85 PhytophthoraplurivoraandotherOomycotainanAberdeenshirewatershed DavidBelo1,DafniNianiaka1,PietervanWest2,LassaadBelbahri3,IvanBaccelli1,3,EleniSiasou1, SteveWoodward1 1University of Aberdeen, Institute of Biological and Environmental Sciences, Cruickshank Building, AberdeenAB243UU,UK; 2UniversityofAberdeen,InstituteofMedicalSciences,Foresterhill,Aberdeen AB25 2ZD, UK; 3Laboratory of Soil Biology,Institute of Biology, University of Neuchâtel, CHͲ2000 Neuchâtel,Switzerland Oomycota diversity present in the Waters of Feugh, Aberdeenshire was assessed using baiting with leaves, rice grains and green pepper. Oomycota were recovered from all 12 sites sampled, from the upper,openmoorland,downthroughforestedandagriculturalzones,toapointneartheconfluence with the River Dee. Isolates obtained were identified using morphological and molecular methods. Phytophthoraplurivorawaspresentinasectionoftheriversurroundedbypastureandcropland,with riparianwoodland.NumerousPythiumspecieswererecovered,mainlyPy.undulatumand,Py.diclinum. An unknown Pythium species was partially identified. The diversity of Saprolegniales included Saprolegnia diclina, S. hypogyna and Achlya colorata. A possible novel species of Pythiopsis and an unrecognized Oomycete were also detected. No direct influence of the surrounding land use on the distribution of these species was determined. Current work is focused on determining changes in Oomycota populations with time in Aberdeenshire watersheds and on the identities of the unknown species. 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 119 9th-14th September 2012 Córdoba-Spain POSTER86 Quantificationofinfectionandcolonizationofholmoak(Quercusilex)rootsby Phytophthoracinnamomiusinghistologicalmethods FranciscoJ.RuizͲGómez1*,RafaelSánchezͲCuesta1,RafaelM.NavarroͲCerrillo1,AlejandroPérezͲ deͲLuque2. 1EvaluaciónyRestauracióndeSistemasAgrícolasyForestales(RNM360).DepartamentodeIngeniería Forestal.E.T.S.IngenieríaAgronómicaydeMontes,UniversidaddeCórdoba.Córdoba,Spain;2Instituto de Investigación y Formación Agraria y Pesquera de AndalucíaͲIFAPA, Centro “Alameda del Obispo”, ÁreadeMejorayBiotecnología,Avda.MenédezPidals/n,POBox3092,Córdoba,14004Spain.EͲmail: [email protected] Phytophthora cinnamomi Rands. is an important pathogen widely distributed in the Northern Hemisphere,withabroadhostrange.Amongothersdiseases,itisknownforitsimportantcontribution, together with Pythium spiculum, to the rot root, this being considered a main factor involved in the declineofholmoakandcorkoak,themostimportanttreespeciesinthe“dehesa”ecosystemofSouthͲ WesternSpain.Thelifecycleofthesepathogensgreatlyhampersthestudyoftheinteractionwithin theirnaturalecosystem,beingnecessarythedevelopmentofexperimentsundercontrolledconditions inordertounveilthehostͲpathogeninteractionmechanisms.AnexperimentinoculatingP.cinnamomi (PeͲ90strain)inQuercusilexL.rootsgrowingoninertsubstratewascarriedout.Semithinrootsections of0.2µmthicknesswereobtainedandstainedwithToluidineBlueͲO(TBO).Imageswerecapturedand digitally treated to identify the areas corresponding to the different pathogen structures and plant tissues of the sections. Several areal indexes for extracellular, intracellular and survival pathogen structureswereobtainedandtheirtimelineevolutionandspatialdevelopmentwerecorrelatedwiththe visualobservationoftheinfectionandcolonizationprocess.P.cinnamomiexploreexternalroottissues throughtheapoplast,reachingparenchymatousandvasculartissuesofcentralcylinder,andusingthese lasttissuesfornutrientsupplyandtoextendintonewrootareas.Thestudiedindexeswouldbeauseful tool for studies focusing on differences between treatments or resistance levels, and the specific responsesofthehostagainstthepathogenaffectingP.cinnamomidevelopment.  POSTER87 NewhypothesisontheploidyofthehybridspeciesPhytophthoraalnisubsp. alni C.Husson,J.Aguayo,P.Frey,B.Marçais INRA, UMR1136 INRA Université de Lorraine "Interactions Arbres/MicroͲorganismes", IFR110 EFABA, CentreINRAdeNancy,54280Champenoux,France.EͲmail:[email protected] AlderdeclinecausedbythePhytophthoraalnicomplexisoneofthemostimportantdiseasesin naturalecosystemsinEuropeinthelast20years.TheemergenceofPhytophthoraalnisubsp. alni(Paa),thepathogenresponsiblefortheepidemics,islinkedtoaninterspecifichybridization event between two parental species: Phytophthora alni subsp. multiformis (Pam) and Phytophthora alni subsp. uniformis (Pau). One of these parental species, Pau that has been isolatedinseveralEuropeancountriesandinNorthAmerica,specificallyinAlaskaandOregon, isexotictoEuropeandadiploidspecies[1][2]. Pam possesses a polyploid genome and should normally be tetraploid [2]. In this study, our aim was to determine the ploidy of the hybrid species Paa by using flow cytometry and RealͲTime PCR. Firstly, flow cytometry analysis on suspensionsofzoosporesallowsustocomparethegenomesizeofthethreespecies.Secondly, we designed alleleͲspecific primers and probes in order to quantify the number of copy of

120 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain alleles from three single copy nuclear genes by using quantitative PCR. Both results are consistentandindicatethatPaashouldbeatriploidspecies. [1] Aguayo, J., Adams, G. C, Halkett, F., Catal, M., Husson, C., Nagy, Z. A., Frey, P. and Marçais, B. Genetic populationstructureindicatesthatPhytophthoraalnisubsp.uniformisisaninvasivespeciesinEurope.Submitted. [2] Ioos, R., Andrieux, A., Marçais, B. and Frey, P. Genetic characterization of the natural hybrid species PhytophthoraalniasinferredfromnuclearandmitochondrialDNAanalyses.FungalGeneticsandBiology,43511Ͳ 529(2006).                                    

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 121 9th-14th September 2012 Córdoba-Spain

                                    DISCUSSIONSESSION:ADAPTATIONANDEVOLUTION  MorphologicalandphysiologicaladaptabilityofthegenusPhytophthora ThomasJung  Fitness,selectionandevolutionarydivergenceinPhytophthora CliveBrasier  WhatisaPhytophthoraspecies? EverettHansen   6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 123 9th-14th September 2012 Córdoba-Spain

MorphologicalandphysiologicaladaptabilityofthegenusPhytophthora ThomasJung1,2 1PhytophthoraResearchandConsultancy,Thomastrasse75,DͲ83098Brannenburg,German;, 2Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, (IBB/CGB), Plant and Animal Genomic Group, Laboratório de Biotecnologia Molecular e Fitopatologia,University of Algarve, CampusdeGambelas,8005Ͳ139Faro,Portugal.EͲmail:dr.t.jung@tͲonline.de ThegenusPhytophthorashowsaremarkableadaptiveflexibilityunrivalledbyanyotheroomyceteor fungal genus: being outcrossing, inbreeding or sterile; having a partially saprophytic, necrotrophic or biotrophiclifestylewithnarrowtoverywidehostranges;formingvarioustypesoflongͲandshortterm restingstructures;producingsporangiathatcanbeeithercaducuousorpersistent,enablingairborne and/or soilborne spread, and that germinate either directly or indirectly; forming zoospores that following encystment either germinate directly or continue spreading via a secondary zoospore or a microsporangium;andhavinghighlydifferentcardinaltemperatures. Several wellͲstudied forest and aquatic Phytophthora species will be used as case studies to demonstrate the fineͲtuned and ongoing morphological, physiological and breeding strategy adaptationsofPhytophthorastotheecologicalconditionsdrivingtheirevolution,andtocorrectsome popularmisapprehensionsaboutsurvivalandecologyofPhytophthora. Mainlydrivenbytheprevailingfundingpoliciesandthepressuretopublishinscientificjournalswith highimpactfactorstheinterestsinmoleculardetectiontoolsandphylogeneticstudiesontheonehand andmorphological,physiologicalandecologicalstudiesontheotherhandhavedivergeddiametrically. Meanwhile, most Phytophthora research groups are lacking scientists able to recognise the specific morphologicalandphysiologicalfeaturesofdifferentPhytophthoraspeciesinordertounderstandwhat thephenotypecantellusabouttheirecologyandpathogenicityandgettoamorecompletepictureof theorganismswearedealingwith.NotbeforelongthePhytophthoracommunitywillrunoutofexperts able to teach the required skills to younger scientists with profound negative consequences to Phytophthora research in general. This presentation aims to stimulate an intense and possibly quite controversialdiscussion.  

          

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 125 9th-14th September 2012 Córdoba-Spain Fitness,selectionandevolutionarydivergenceinPhytophthora CliveBrasier Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK. EͲmail: [email protected] TodayweputalotofeffortintodemonstratingwherePhytophthorataxalieattheendsofthecladesin ourmolecularphylogenetictrees.ButtotrulyunderstandPhytophthoraphylogenyweneedtoevaluate theevolutionaryprocessesthatcausedrelatedtaxatodivergefromeachotherinthefirstplace:the processes that occurred at the nodes of the trees [1]. Similarly, we need to evaluate the microevolutionary processes that are leading to alterations in genetic structure, to reproductive isolationandperhapseventonewtaxainmodernPhytophthorapopulations.Suchprocessestendtobe genetically complex and quantitative and can therefore be more difficult to measure than DNA polymorphisms.Oftentheyfallmorewithintherealmofecologicalgeneticsthanpopulationgenetics [2]. They can involve studying the Phytophthora genetic system: the role of heterozygosity, chromosomal arrangements and patterns of outcrossing and inbreeding. They can involve understandingthecomponentsofadaptationandfitness;thebalanceofsexualversusasexualgrowth andreproduction;theroleofgeneflowbetweentheorganism’spathogenicandsaprotrophicphases; and the role of host specialization [3]. Particularly significant today are the influence of episodic selection events, such as sudden exposure of a Phytophthora to crop monoculture or to the nursery environment,oritssuddenintroductionintoanewbiogeographiczone.Sucheventscanbringabout rapidchangesinstructureandadaptationinPhytophthorapopulations,includingemergenceoffitted clonesandapotentialforrapidgeneticmodificationviainterspecifichybridization[4].Theseissueswill bediscussed.  [1]Brasier,C.M.(2009).Phytophthorabiodiversity:HowmanyPhytophthoraspeciesarethere?InPhytophthoras inForestsandNaturalEcosystems.Proc.4thIUFROWorkingParty7.02.09.GeneralTechnicalReportPSWͲGTRͲ 221.Albany,CA:USDAForestService,PacificSouthwestResearchStation,pp.101Ͳ115. [2] Brasier, C.M. (1998).Fitness, continuous variation and selection in fungal populations: an ecological perspective.In‘Thestructureoffungalpopulations’(J.Worrall,ed.)pp.289Ͳ318.KluwerAcademicPublishers, Boston&NewYork. [3]Brasier,C.M.(1983).ProblemsandprospectsinPhytophthoraresearch.In‘Phytophthora,ItsBiology,Ecology and Pathology’ (D.C. Erwin, P.H. Tsao, and S. BartnickiͲGarcia, Eds.) pp. 351Ͳ364.American Phytopathological Society,StPaul,Minnesota. [4] Brasier, C.M. (1995).Episodic selection as a force in fungal microevolution with special referencetoclonal speciationandhybridintrogression.CanadianJournalofBotany73,1213Ͳ1221

           126 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

WhatisaPhytophthoraspecies? EverettHansen Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall,Corvallis Oregon97331,USA.[email protected] What is a species? Why do we care? Phytophthora species have traditionally been defined by morphology and pathogenicity but we are all familiar with the challenges that morphological descriptionsplaceonidentification.Thebiologicalspeciesistheoperationalunitofevolutionandany moderndiscussionofspeciationandphylogeneticrelationshipsmustbebasedonthisconcept.Mayr defined biological species as groups of interbreeding populations reproductively isolated from other such populations. How should such zoologically based ideas be applied to uniparental and asexual organisms?Thekeyfeaturesofthisdefinitionareitsevolutionaryorientationanditspopulationbasis. Phytophthora species can be defined as groups of populations that share a common evolutionary lineageandhavemaintainedgeneticsimilarityinmorphology,physiology,andecologicalbehavior.Such adefinitionisimpractical,however,withouttoolstomeasuregeneflow.Molecularanalyticalmethods haveprovidedthetools,andincreasinglysophisticatedpopulationgeneticsandstatisticalanalysisnow allow hypothesis testing. A Phytophthora phylogeny based on biological species would seem to be within our grasp. Today’s reality, however, is still short of that goal. We now define “phylogenetic species”basedsolelyonDNAsequencesimilarityandaskhowmanybasepairdifferencesdoesittaketo makeanewspecies?Evenwhentimeandresourcesareavailableforathoroughpopulationstudy,we may be limited by gaps in our understanding of speciation processes in populations of clonal or inbreedingorganismsandtheseemingfluidityofhybridizationinsomegroups.

      

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 127 9th-14th September 2012 Córdoba-Spain

                                    DISCUSSIONSESSION:THENURSERYPATHWAY  ImportanceofthenurserypathwayforthespreadofinvasivePhytophthoraacrossEurope ThomasJung  PatternsofrepeatedintroductionsandmigrationsofP.ramoruminNorthAmerica NikGrünwald      6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 129 9th-14th September 2012 Córdoba-Spain

UbiquitiousPhytophthorainfestationsofforest,horticulturalandornamental nurseriesandplantingsdemonstratemajorfailureofplantbiosecurityinEurope ThomasJung123*,LezekOrlikowski4,BeatriceHenricot5,PalomaAbadͲCampos6,A.G.Aday7,Olga AguínCasal8,JozsefBakonyi9,SantaO.Cacciola10,ThomasCech11,TamaraCorcobado2,Alfredo Cravador3, Geoffrey Denton5, Stephanos Diamandis12, H.T. DoŒmuƔͲLehtijärvi7, Beatrice Ginetti13, Jarkko Hantula14, Günter Hartmann15, Maria Herrero16, Arja Lilja14, Marilia Horta3, Nenad Keca17, Volodymyr Kramarets18, Aneta Lyubenova19, Helena Machado20, Gaetano Magnano di San Lio10, Pedro J. Mansilla Vázquez8, Benoît Marçais21, Iryna Matsiakh18, Ivan Milenkovic17, Salvatore Moricca13, Jan Nechwatal22, Tomasz Oszako23, Antonella Pane10, Epaminondas J. Paplomatas24, Cristina Pintos Varela8, Cristina Rial Martínez8, Cécile Robin25, AnnaRytkönen14,MariaE.Sánchez26,BrunoScanu27,AlexandraSchlenzig28,JörgSchumacher29, Alejandro Solla2, Edmundo Sousa20, Venche Talgø16, Panagiotis Tsopelas30, Andrea Vannini31, AnnaM.Vettraino31,MarcelWenneker32andAnaPerézͲSierra6 1Phytophthora Research and Consultancy, Thomastrasse 75, DͲ83098 Brannenburg, Germany; 2IngenieríaTécnicaForestal,UniversidaddeExtremadura,AvenidaVirgendelPuerto2,10600Plasencia, Spain; 3Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, (IBB/CGB), Plant and Animal Genomic Group, Laboratório de Biotecnologia Molecular e Fitopatologia,University of Algarve, Campus de Gambelas, 8005Ͳ139 Faro, Portugal; 4Institute of Horticulture, Konstytucji 3 Maja 1/3, 96Ͳ100 Skierniewice, Poland;5Royal Horticultural Society, Wisley, Woking,SurreyGU236QB,UK;6GrupodeInvestigaciónenHongosFitopatógenos,InstitutoAgroforestal Mediterráneo, Universidad Politécnica de Valencia, Camino de Vera s/n,46022 Valencia, Spain;7Süleyman Demirel University, Faculty of Forestry, 32260 Isparta, Turkey; 8EXCMA, Diputación ProvincialdePontevedra,ServicioAgrario,EstaciónFitopatológia“doAreeiro”,SubidaalaRobledaS/N, 36153Pontevedera,Spain;9PlantProtectionInstitute,HungarianAcademyofSciences,HermanOttóút 15,1022Budapest,Hungary;10DepartmentofAgriͲFoodandEnvironmentalSystemsManagement,Plant PathologySection,UniversityofCatania,95123Catania,Italy;11FederalResearchandTrainingCentrefor Forests, Natural Hazards and Landscape (BFW), SeckendorffͲGudentͲWeg 8, AͲ1131 Vienna, Austria; 12NAGREFͲForestResearchInstitute,57006VassilikaͲThessaloniki,Greece;13DepartmentofAgricultural Biotechnology, Section of Plant Protection, University of Florence, Piazzale delle Cascine 28, IͲ50144 Florence,Italy;14FinnishForestResearchInstitute,VantaaResearchCentre,P.O.Box18,01301Vantaa, Finland ;15Lower Saxony Forest Reseach Station, Grätzelstrasse 2, DͲ37079 Göttingen, Germany;16NorwegianInstituteforAgriculturalandEnvironmentalResearch(Bioforsk),PlantHealthand PlantProtectionDivision,Høgskoleveien7,1432Ås,Norway;17FacultyofForestry,UniversityofBelgrade, Kneaza Viseslava 1, 11030 Belgrade, Serbia;  18National Forestry University of Ukraine, Forestry Department,GeneralChuprynkiStr.103,79057Lviv,Ukraine;19Agrobioinstitute,CentreofExcellencein Plant Biotechnology , 8 Dragan Tsankov Blvd.,1164 Sofia, Bulgaria; 20Instituto Nacional de Recursos Biológicos,UnidadedeSilviculturaeProdutosFlorestais,QuintadoMarquês,2780Ͳ159Oeira,Portugal; 21INRA, Nancy Universite´, UMR 1136 Interactions Arbres  Microorganismes, IFR 110, FͲ54280 Champenoux, France; 22Bavarian State Institute of Agriculture (LfL), DͲ85354 Freising, Germany; 23Department of Forest Phytopathology, Forest Research Institute, ul. Braci Lesnej 3, 05Ͳ090 Raszyn, Poland;24LaboratoryofPlantPathology,AgriculturalUniversityofAthens,75IeraOdos,11855Athens, Greece; 25INRA, UMR BioGeCo, 69 route d'Arcachon, 33612 Cestas Cedex, France; 26Departamento Agronomía,ETSIAM,UniversidaddeCórdoba.Apdo.3048,14080ͲCórdoba,Spain;27UniversityofSassari, DepartmentofPlantProtection,ViaEnricoDeNicola,9,07100–Sassari,Italy; 28ScottishGovernmentͲ SASA, Plant Health, Roddinglaw Rd, Edinburgh, EH12 9FJ, UK;29Forest Research Institute BadenͲ Wuerttemberg, Department of Forest Protection, Wonnhaldestrasse 4, DͲ79100 Freiburg, Germany; 30NAGREFͲInstitute of Mediterranean Forest Ecosystems, Terma Alkmanos, 11528 Athens, Greece;31DepartmentforInnovationin Biological,AgroͲFood andForestSystems,UniversityofTuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; 32Wageningen UR/Applied Plant Research, Sector Flower

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 131 9th-14th September 2012 Córdoba-Spain bulbs, Tree nursery & Fruit, Lingewal 1, 6668 LA Randwijk, 6670 AE Zetten, the Netherlands. EͲmail: dr.t.jung@tͲonline.de  LargeͲscalePhytophthorasurveysin(1)forestnurseries,advancedtreenurseries,horticulturalnurseries and ornamental nurseries and (2) forest, riparian, amenity, landscape and ornamental plantings and horticulturalplantationswereconductedby32researchgroupsin21Europeancountriesbetween1977 and2012withmostsurveysdatingfromafter2000.Overallcountriesandnurserytypes,1283outof 1620 nursery fields and container stands (79.2%) in 563 out of 601 nurseries (93.7%) were found infestedbyatotalof40differentspeciesanddesignatedtaxaofPhytophthora.Inmostnurserieshighly deleterioushostͲPhytophthoracombinationswerefound,eg.Alnusspp.andP.alni;Quercusspp.andP. cambivora,P.cinnamomi,P.quercinaand/orP.plurivora;CastaneasativaandP.cambivoraand/orP. cinnamomi; Fagus sylvatica and P. cactorum, P. cambivora and/or P. plurivora; Citrus spp. and P. citrophthoraand/orP.nicotianae;RhododendronandP.cinnamomi,P.plurivoraand/orP.ramorum. In contrast to many southern European nurseries where wilting and dieback symptoms were quite common, most of the infested plants in intensely managed nurseries in Central and Western Europe with regular applications of several fungicides and fungistatic chemicals appeared visually healthy underpinningtheuselessnessofinternationalplanthealthprotocolsthatareprimarilybasedonvisual inspections. Intheplantingsurveysatotalof48Phytophthorataxawererecoveredfrom1498ofthe2353tested plantings (63.6%) As with the nursery fields, plants were often infected by the most aggressive pathogens towards the respective host species. Infected plants often showed symptoms such as thinning,chlorosisanddiebackofthecrown,extensivefinerootlossesandcollarrot. TheaveragenumbersofPhytophthoraspecies/taxaperinfestednurseryandplantingwere1.8and1.4, respectively. ThirtyͲtwo of the Phytophthora species/taxa detected are considered exotic invasive species. Amongst them P. cactorum, P. cambivora, P. cinnamomi, P. cryptogea, P. plurivora and P. quercina are widespread in Europe and must be considered as well established in both nurseries/plantationsandmaturestands.SeveralPhytophthoraspecies/taxahavebeenfoundforthe firsttimeinEurope,ie.P.austrocedri,P.humicola,P.quercetorum,P.rosacearum,P.taxoncitricolaͲlike VandVI,andP.taxongregataͲlike;whileothershaveneveroronlyrarelyorregionallybeenrecorded frommaturestands,ie.P.kernoviae,P.lateralis,P.multivora,P.piniandP.ramorum.Theseapparently recent introductions demonstrate that alongside the exponentially increasing volume of imports of living plants from overseas to Europe the unintended introductions of Phytophthora species are also increasingdramatically. Accordingtoaconservativecalculation770000infestedforestplantingswithatotalareaof5.4milllion hectares have been established in Europe between 1990 and 2010. Millions of infested landscape plantingsandornamentalplantingsintheurbanͲforestinterfaceandtensofthousandsofkilometersof roadside and riparian plantings of infested advanced trees and shrubs are completing the dense networkofPhytophthorainfestationsacrossEurope. ThefindingsofthisandpreviousstudiesdemonstratemajorfailureofplantbiosecurityinEuropewhich willbediscussed.        

132 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

PatternsofrepeatedintroductionsandmigrationsofP.ramoruminNorth America NiklausJ.Grünwald HorticulturalCropsResearchLab,USDAAgriculturalResearchService,Corvallis,OR97330,USA P. ramorum has emerged repeatedly in North America and Europe despite concerted efforts to eradicate the pathogen [1]. Here, I explore the repeated emergence of P. ramorum in the US reconstructingthepatternandprocessofemergencesincediscoveryofthepathogeninNorthAmerica basedonresearchpublishedtodate.TheNA1clonallineagewasfirstintroducedintoCalifornia,most likely on nursery crops [2]. The pathogen subsequently migrated to Oregon, Washington and British Columbiavianurseryshipments[3].Furthermore,severalshipmentsfromtheWestcoastalsomoved the pathogen East to a range of States [3]. The EU1 clonal lineage was moved from Europe into the PacificNorthwest[4].FromitsinitialintroductiontoeitherBritishColumbiaorWashington,thislineage was further distributed to Oregon and California. The NA2 clone was first introduced into British Columbia or Washington and has to date only spread to California. Thus, the EU1 and NA1 clonal lineagesremainrestrictedtotheWestcoaststatesandprovinces,whiletheNA1lineageisnowfoundin manystatesintheEastandWest.Whilebothmatingtypeshavebeenfoundinnurseries,todatesexual reproduction has not been detected. It is apparent that the nursery shipments and imports are the causeforrepeatedintroductionsandmovementofthepathogenacrosscontinentalNorthAmerica. [1]Grünwald,N.J.,Garbelotto,M.,Goss,E.M.,Heungens,K.,andProspero,S.Emergenceofthesuddenoakdeath pathogenPhytophthoraramorum.TrendsinMicrobiology,20131Ͳ138(2012). [2] Mascheretti S., Croucher P.J.P., Vettraino A., Prospero S., Garbelotto M. Reconstruction of the Sudden Oak DeathepidemicinCaliforniathroughmicrosatelliteanalysisofthepathogenPhytophthoraramorum.Molecular Ecology17:2755Ͳ2768(2008). [3]Goss,E.M.,Larsen,M.,Chastagner,G.A.,Givens,D.R.,andGrünwald,N.J.Populationgeneticanalysisinfers migrationpathwaysofPhytophthoraramoruminUSnurseries.PLoSPathog5:e1000583(2009). [4]Goss,E.M.,Larsen,M.,Vercauteren,A.,Werres,S.,Heungens,K.andGrünwald,N.J.Phytophthoraramorumin Canada:EvidenceformigrationwithinNorthAmericaandfromEurope.Phytopathology101:166Ͳ171(2011).           

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 133 9th-14th September 2012 Córdoba-Spain

                                    DISCUSSIONSESSION:GEOGRAPHICORIGINSOFSPECIES  SearchingforPhytophthorasintheforestsofNepalandTaiwan AndreaVannini  VariationinPhytophthora:akeytohistoricalpathways? FransArentz  AretropicalforestsPhytophthorahotspots? YilmazBalci   6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 135 9th-14th September 2012 Córdoba-Spain

VariationinPhytophthora:akeytohistoricalpathways? FransArentz ConsultantForestPathologist,Yungaburra,Qld,Australia. Papua New Guinea (PNG) shares a suite of Phytophthora species with Australia and East Asia. It has beenpostulatedthatbothNewGuineaandEastAsialiewithinacentreoforiginforseveralofthese Phytophthora spp. [1]. Given that a number of these species are found in forests which have been minimallydisturbeduntilrecenttimes,thisraisesthequestionofpossiblepathwaysforthemovement ofPhytophthoraspp.intheregionandtheantiquityofthesepathways. In2011soilsamplingforPhytophthoraspp.wascarriedoutinforestsandagriculturalareasinaremote locationinPNG.SpeciesisolatedincludedP.cinnamomi,P.cryptogea,P.boehmeria,P.katsuraeandP. nicotianae.Therewasevidencetosuggestthatdifferentstrainsand/ormatingtypesofP.cinnamomi weremovedbetweenlocalitiesonexoticplantingstock,supportingpublishedobservationthatinfested nurserystockisamajorsourceofintroductionsofPhytophthoraintonewgeographicareas. Theresultsofthe2011surveyarereviewedinconjunctionwithfindingsofsurveysofPhytophthoraspp. carriedoutinPNGbetween1974and1986[2].Parametersexaminedincludedgeographicdistribution ofthePhytophthoraspp.,variabilitywithineachspeciesandhostassociations.Basedontheseresults, andtakingintoconsiderationthelikelypatternofearlyhumansettlementinthePacific4000yearsago, it is postulated that early settlers were instrumental in moving Phytophthora spp. together with domesticatedfoodplantsastheymigratedthroughtheregion. [1]Variousauthors. [2] Arentz, F. A key to Phytophthora species found in Papua New Guinea with notes on their distribution and morphology.PNGJ.Agric.For.Fish.,349Ͳ18(1986).                  

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 137 9th-14th September 2012 Córdoba-Spain AretropicalforestsPhytophthorahotspots? YilmazBalci University of Maryland, Department of Plant Science and Landscape Architecture, College Park, MD, USA. InanefforttodiscoverthespeciespresentintropicalrainforestsinLatinAmericatwoexpeditionswere conducted.FirststudysitewasinlowlandAmazoninIquitos,PeruandthesecondsiteatGrenadain WestIndies.Samplingconsistedofcollectionofforestsoil,necroticleafsamplesrecentlydroppedfrom the canopyandstreambaiting.Sampleswereidentifiedbasedonmorphologicalfeaturesaswellas multilocussequencing.SpeciesidentifiedfromthenecroticfoliagefromcanopyincludedP.heveaeand P.tropicalisforbothsites.However,inPeruoneandinGrenada,besideP.palmivora,twoothernew species were isolated.P. heveae and P. tropicalis were also found from soil samples in Peru.The greatestassemblageofspecieswasfoundinaquaticenvironments.P.tropicalis,P.heveae,P.palmivora, P.macrochlamydosporaandP.insolitawereidentifiedfromstreamsinGrenada.Additionally,inPeru, threenewspeciesandinGrenadafournewspecieswereidentified.InGrenada,P.palmivoraandP. heveaewereisolatedfromnecroticstemandroottissuesof(Myristicafragrans)treesanddata collectedsuggestedthatthesespeciesarepossiblyassociatedwiththediseaseknownasnutmegwilt.                            138 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

                                    ANNOUNCEMENTS   

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 139 9th-14th September 2012 Córdoba-Spain

ForestPhytophthoras,anewinternationaljournalandwebsite

JenniferParke1andJoyceEberhart2 1Dept.ofBotanyandPlantPathologyand2Dept.ofForestEcosytemsandSociety,OregonState University,Corvallis,Oregon.EͲmail:[email protected] Oomycete plant pathogens in the genus Phytophthora threaten the biodiversity and sustainability of forestecosystemsworldwide.Thenewonlinejournal,ForestPhytophthoras,wascreatedtoprovidea permanent site for publication of peerͲreviewed website articles with digital object identifier (DOI) numbersforarchivingandretrieval.Thejournalprovidesimmediateopenaccessontheprinciplethat making research freely available to the public supports a greater global exchange of knowledge. The journalisavailableathttp://journals.oregondigital.org/ForestPhytophthora/issue/view/261. The website,Forest Phytophthoras of the World[www.ForestPhytophthoras.org],is an international resourcewherescientists,students,forestmanagers,regulators,policymakersandthepubliccanshare the latest information on species ofPhytophthorathat affect the world’s forests. Management and educationalmaterialsforeachspeciesareincluded,ofteninmultiplelanguages.Otherwebsitefeatures includeadiseasefinder,anillustratedglossary,aphotogallery,andasectiononPhytophthorabasics.A searchablereferencesystemwithlinkstoscientificpublicationsisavailable. The “What’s New” column highlights recent publications and news releases pertaining to forest Phytophthoras,andacalendarsectionannouncesconferencesandotherevents.Linksareprovidedtoa listofPhytophthoraexpertsworldwide,archivedconferenceproceedingsfortheIUFROWorkingParty on Phytophthoras in Forest and Natural Ecosystems, proceedings of the Sudden Oak Death Science Symposia,andotherPhytophthorawebresources. FundingforbothprojectsisprovidedbytheUSDAForestServicePSWResearchStation.Thejournalis hostedbyajointprojectofOregonStateandUniversityofOregonLibraries(OJSatOregonDigital.org).                  6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 141 9th-14th September 2012 Córdoba-Spain MorphologicalͲMolecularIDToolsofPhytophthora:Lucid&TabularKeysand SequencingAnalysis Abad,Z.G.1,Balci,Y.2,Coffey,M.D.3,andKang,S.4 1USDAͲAPHISͲPPQͲCenter for Plant Health Science and Technology (CPHST) Beltsville,MD,USA; 2Department of Plant Science and Landscape Architecture, University of Maryland, MD, USA; 3World Oomycetes/Phytophthora Collection, Department of Plant Pathology and Microbiology, University of California,Riverside,CA,USA;4PhytophthoraDatabase,PennsylvaniaStateUniversity,PA,USA.EͲmail: [email protected] ThegenusPhytophthoracurrentlycontains121specieswith67ofthemhavingbeendescribedduring thelast15years.Itisexpectedthatthenumberwillcontinuetoincrease,potentiallyreachingupto 200Ͳ600 spp. [1]. Many species are responsible for severe damage to crops and natural ecosystems. Althoughconsiderableprogressonthetaxonomyofthegenushasbeenachievedinthelasttenyears, accurateidentificationofspeciesisstillchallenginginpartbecauseofunresolvedspeciescomplexes[2]. Accurate identification of species is fundamental not only for disease management but also for the implementation of regulatory measures to prevent pathogen spread. Given the rapidly increasing internationaltrade,rapidresponsesbasedonaccuratepathogenidentificationarecriticalforprotecting agriculture and natural ecosystems from devastating disease. We have used morphological and moleculardatafromtypesandwellͲauthenticatedspeciestobuildarobustidentificationresourceforall 121reportedspecies(expandabletocovernewspecies).ThisresourceincludesinteractiveLucidand Tabular identification keys, images, diagrams, fact sheets, and DNA sequenceͲbased identification platform that is linked with Phytophthora Database (http://www.phytophthoradb.org). The IdentificationTechnologyProgramattheUSDAͲAPHISͲCPHSTisconsultingwithourteamtocomplete this resource. Taxonomic support of Phytophthora will be enhanced with the ID tools that we are developing. The ID Tools will be available online and will be updated frequently to cover wellͲ authenticatednewlydiscoveredspecies.Weexpectthetoolswillbeusedbynationalandinternational scientistsparticularlythoseworkinginregulatoryprograms. [1]Brasier,C.(2009)PhytophthoraBiodiversity:HowmanyPhytophthoraspeciesarethere?.Proceedingsofthe FourthMeetingofIUFROWorkingPartyS07.02.09.pp.101Ͳ115. [2]Martin,F.N.,Abad,Z.G.,Balci,Y.,Ivors,K.(2012)IdentificationandDetectionofPhytophthora:Reviewingour Progress,IdentifyingourNeeds.PlantDisease(AcceptedforPublication2/12).                 142 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

                                    FIELDTRIPS Abstracts    

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 143 9th-14th September 2012 Córdoba-Spain

Canlimestoneamendmentsandpigslurrybeconsideredascontrolmethodsfor QuercusilexrootrotcausedbyPhytophthoracinnamomiindehesa?Preliminary resultsfromfieldtrials MaríaSocorroSerrano1,JoséRamónLeal2,PaoloDeVita1,PedroRíos1,PilarFernández2,María EsperanzaSánchez1 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestryDepartment,UniversityofCórdoba.Ctra.MadridͲCádizKm.396.14014Córdoba,Spain.EͲmail: [email protected] The root rot caused by Phytophthora cinnamomi is leading to high oak tree mortality in dehesa ecosystems located in southwestern Spain. Experiments performed with artificially infested soil in controlledconditionsshowedthatsomeCa2+fertilizersinduceadecreaseofP.cinnamomiinfections, mainly due to a significant inhibition of sporangial production [1]. Furthermore, under controlled conditions,pigslurrysignificantlydecreasedtheinoculumpotentialininfestedsoil[2].Theaimofthis work has been to evaluate in field conditions the ability of limestone amendments and pig slurry to decrease the infectivity of the pathogen. Experiments with two types of limestone amendments, calciumcarbonate(1.500kghaͲ1,OCarichness55,78%),calciumsulphate(2.500kghaͲ1,OCarichness 32,51%) and pig slurry (3000 l haͲ1), were carried out in two oak forests in the province of Huelva (Spain): Los Bueyes, an open Holm oak woodland (dehesa), and Campo Baldío, a former empty land afforestedwithHolmandcorkoaks15yearsago.Inbothfarms,treesareinfectedbyP.cinnamomi.Soil treatmentswereappliedinautumnof2010and2011.Periodicallychemicalchangesonsoil(spring), chlamydospore density and infectivity (spring and autumn), tree defoliation, shoot growth and foliar nutrientcontent(earlysummer)wereevaluated.Althoughtreatmentsdonotinfluencethedensityof chlamydosporesinthesoil,theirabilitytocauseinfectionsdecreasedsignificantlyincomparisonwith control(untreated)plots. Aparallelsetofexperimentswerelocatedinsmallplots(1m2)fortestingahighernumberoffertilizers with 12 replicates (plots) per fertilizer plus controls, distributed in three blocks. In 2010, after soil treatments, 10 Holm oak seedlings per small plot were planted. Seventeen months after plantation, there was an increment in survival in some treated plots in comparison with controls, but some differencesweredetectedamongblocksdependingontheirupordownslopelocation. [1] Serrano, M.S., De Vita, P., Fernández, P., Sánchez, M.E. Calcium fertilizers induce soil suppressiveness to PhytophthoracinnamomirootrotofQuercusilex.EuropeanJournalofPlantPathology132271Ͳ279(2012). [2] Vicente, M., Sánchez, M.E., Fernández, P., Trapero, A. Evaluation of biofumigant plants and organic amendmentsforsupresivenessofrootrotofQuercusspp.causedbyPhytophthoracinnamomi.Phytopathology99 S134Ͳ135(2009).            6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 145 9th-14th September 2012 Córdoba-Spain Holmoakregenerationindehesaswithpresenceofthesoilbornepathogen Phytophthoracinnamomi:somethingtodo? M. S. Serrano1, P. De Vita1, A. M. García2, M. D. Carbonero2, J. R. Leal2, M. E. Sánchez1, P. Fernández2 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestryDepartment,UniversityofCórdoba.Ctra.MadridͲCádizKm.396.14014Córdoba,Spain.EͲmail: [email protected] Since1997,near120000haofformeragriculturalorabandonedlandshavebeenforestedinsouthern Spain.Theseafforestationprogrammesledtoagreatincreaseinforestnurseryproduction,butplant qualitywasnotwellcontrolled.Quercusilexspp.ballota(Holmoak)andQ.suber(corkoak)werethe mainspeciesplanted,occupying70%ofthelandafforestedinsouthernSpaininthelast15years.The qualityand healthstatus ofoakseedlingsproducedinthenurserygreatlydeterminesthesuccessof afforestations,influencinggrowthandsurvivalofplants.Atthenurseryenvironment,diseasesspread easilyandquicklyand,followinginfection,symptomsmayappearrapidly,buttheymayalsobedelayed until the seedlings have been planted out in the forest. Phytophthora diseases have rarely been diagnosedinSpanishoaknurseries,anddeathofseedlingshasusuallybeenattributedtoadeficient watering or to a bad aeration of the substrates. However, Phytophthora species have been demonstratedtobepresentinAndalusiannurseries[1]andalmostcertainlytheycanbeconsiderednot onlyasthemaincauseofseedlingdeath,butalsoresponsibleofinitiateinfectionsthatresultindisease whenalreadyinfectedseedlingswereplantedoutintheforest.Thenaturalsoilusedaspartofplanting substrateseemstobethemostprobablesourceofinoculuminnurseries.Thisprocessisthoughtto havebeenanimportantmeanofdisseminationofP.cinnamomithroughtheoakforestsinsouthern Spain. Whattodowhenthepathogenisalreadyestablishedinafforestations?Howtomanageitsquickspread thatiskillinghundredsofyoungtreeseveryyear? Different approaches have been addressed at the University of Córdoba: Preventive phosphite treatments[2]orlimestoneamendmentsatnurserylevel[3][4].Now,successfultreatmentsarebeing testedseparatelyorcombinedattheHolmoakafforestationCampoBaldío.Preliminaryresultswillbe exposedanddiscussed. [1]Sánchez,M.E.,Andicoberry,S.,Trapero,A.PathogenicityofthreePhytophthoraspp.causinglateseedlingrotof Quercusilexssp.ballota.ForestPathology35115Ͳ125(2005). [2] Navarro, R.M., Terán, A.I., Sánchez, M.E. Acción preventiva y curativa del fosfonato en el control de PhytophthoracinnamomiRandsenencinayalcornoque.BoletíndeSanidadVegetalPlagas32685Ͳ694(2006). [3] Serrano, M.S., De Vita, P., Fernández, P., Sánchez, M.E. Calcium fertilizers induce soil suppressiveness to PhytophthoracinnamomirootrotofQuercusilex.EuropeanJournalofPlantPathology132271Ͳ279(2012). [4]Serrano,M.S.,Fernández,P.,DeVita,P.,Sánchez,M.E.Calciummineralnutritionincreasesthetoleranceof QuercusilextoPhytophthorarootdiseaseaffectingoakrangelandsecosystemsinSpain.AgroforestrySystems.In press,doi:10.1007/s10457Ͳ012Ͳ9533Ͳ5(2012).        

146 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Phytophthorarootrotinawildoliveforest(P.megaspermaandP.inundata) SánchezM.E.1,TraperoA.1,andBrasierC.M.2 1Agronomy Department, University of Córdoba. Ctra. MadridͲCádiz Km. 396. 14014 Córdoba, Spain; 2ForestResearch,AliceHoltLodge,Farnham,Surrey,GU104LH,UK.EͲmail:[email protected] Fromthebeginningof90’s,wiltinganddeathofcultivatedolivetrees(Oleaeuropaea)arecommonin southern Spain, mainly affecting new plantations. Death of trees occurs rapidly, with or without previousyellowingordefoliation.Infieldsurveys,mostoftheaffectedplantationshadwaterloggedor verywetsoils.Inalloftheseplantations,treedeathwasassociatedwithrootrot.Fungalisolationsfrom affectedrootscomingfrom166olive orchardsallalongAndalusia,consistentlyyieldedPhytophthora spp.(94%oftheorchardsshowingrootrot)[1].ThesePhytophthoraisolateswerefirstlycharacterized onthebasisoftheirmorphologicalandphysiologicalproperties,andassignedtotwodistinctgroups,A andB,representing66%and33%oftheisolatesrespectively.AllthegroupAisolatesconformedtoP. megaspermasensustrictoanditsidentificationwasconfirmedbasedonmolecularanalysisoftheITS regions[2].GroupBisolatesexhibiteduniquecharacteristics,beingheterothallicbutwithadegreeof sporadicselfͲfertility.AllthesecharacteristicsandtheirITSsequencesconformedcloselytothoseofthe former‘OͲgroup’taxondescribedbyBrasieretal.InalaterstudyinvolvingOͲgroupisolatesfromawide rangeofhosts,bothA1andA2matingtypeswereidentifiedandthe‘OͲgroup’taxondesignatedasa newspecies:P.inundata[3]. Inthelastdecadeasimilarrootrothasbeendetectedinafforestationsofwildolivesandrecentlyalso inamaturewildolivewoodland(DehesadeAbajo,Sevilla).Inbothcasestreeswerelocatedinseasonal waterloggedsoilsandP.megaspermaandP.inundatawereconsistentlyisolatedfromnecroticroots andrizosphere.ItseemsreasonablethatsusceptibilitytoPhytophthorarootrotmayhavelimitedthe naturalecologicaldistributionofolivetrees.Itisclearthatwildoliveshouldnotbeplantedinconditions wherefloodingoccursorinareaswithpoordrainage. Suitablecontrolmeasurestodecreaseinfectionratesandpathogendispersalinmatureoliveforestswill beexposedanddiscussed. [1] Sánchez, M.E., Ruiz, A., Pérez de Algaba, A., Blanco, M.A., Trapero, A. Occurrence and etiology of death of youngolivetreesinsouthernSpain.EuropeanJournalofPlantPathology104347Ͳ357(1998). [2] Sánchez, M.E., Muñoz, M., Brasier, C.M., Trapero, A. Identity and pathogenicity of two Phytophthora taxa associatedwithanewrootdiseaseofolivetrees.PlantDisease,85411Ͳ416(2001). [3]Brasier,C.M.,SánchezͲHernández,E.,Kirk,S.A.Phytophthorainundatasp.nov.,apartheterothallicpathogen oftreesandshrubsinwetorfloodedsoils.MycologicalResearch,107477Ͳ484(2003).         

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 147 9th-14th September 2012 Córdoba-Spain

                                   FIELDTRIPS Guides     

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 149 9th-14th September 2012 Córdoba-Spain

MONDAY,10thSeptember2012 MORNINGFIELDTRIP:Holmoak(Quercusilex)dehesa  DehesaLaJarosa Location:Córdobaprovince DeparturetimefromCórdoba:8:30 EstimatedarrivaltimeinCórdoba:13:30 



6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 151 9th-14th September 2012 Córdoba-Spain FieldTripProgram

Stops: 1.Themeaningofdehesa.Managementofnaturalvegetation 2.MultipleusesofDehesaagroforestrysystems 3.Treemanagement.Corkoakandcorkproduction 4.Livestockandpasturemanagement 5. Control of Phytophthora root rot by potassium phosphite applied by trunk injection.PracticaldisplayofinjectiondevicescommonlyusedinSpainofferedby thetechnicalstaffofFertinyectSL  

152 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

Dehesa:atraditionalMediterraneanagroforestecosystem DehesasarethemostwidespreadagroforestrysystemsinEurope,covering3.1millionhectares intheIberianPeninsula.Dehesasaremultipurposeopenwoodlands,mostlycreatedbyclearing natural forests, where livestock rearing, cereal and legume cropping, cork and firewood harvesting and hunting are combined. Most dehesas are characterised by a twoͲlayered vegetationstructure:treelayerandanunderstoreypastureorcropinthesamelandunit.The treelayerisdominatedbytheevergreenHolmoak(Quercusilexsubsp.ballota),corkoak(Q. suber)and,toamuchlesserextent,byotherspecies.Thesetreespecieshaveadensityranging from5tomorethan100treesperhectarebutcommonly15–45treesperhectareinflatareas andupthan50inthehills.Thecanopycoversaround20Ͳ40%ofsoil.Holmoak(andcorkoak) are regularly thinned and pruned for multiple purposes, such as ensuring maximum yield of acornsandobtainingfirewoodandcharcoal.Mostofthepasturespeciesareannualherbs,with anonͲvegetativeperiodinsummer.Inthecoldestareaspasturegrowthalsoceasesinwinter. Pastureyieldandqualityisalsoincreasedthroughmineralfertilizationandsowingofnativeand introducedspecies. Differenttypesoflivestock(cattle,sheep,goats,pigs,horses)arecommonindehesas.Sheep are the most suitable species; cattle are found in the most humid dehesas, while goats are oftenusedtoobtainabetteruseofwoodyfodder.Finally,pigsareintroducedinthedehesa duringOctoberͲJanuaryforacornfeeding.Livestockarethemaintoolformaintainingstable understoreyvegetation:preventingcolonizationofpasturesbyshrubs;improvinggrassquality andamelioratingsoilfertility. 1.SomefeaturesaboutnaturalenvironmentindehesaLaJarosa Climate Climate:Mediterranean Averageannualrainfall:788mm Averageannualtemperatures:15.6ºC(24.7ºCinAugustand7.9ºCinJanuary) Maximumtemperatures:40.1ºCinAugustand18.3ºCinJanuary Minimumtemperatures:11.4ºCinAugustandͲ2.2ºCinJanuary Durationoffrostperiod:6months(NovemberͲApril) Durationofdryperiod:4months(JuneͲSeptember) Topography Theaveragealtitudeofthefarmis370m,rangingbetween477mand251m.Topographyis hilly.Mostfarmareahasaslopeofbetween10Ͳ20%withflatandroughareasinterspersed. Southorientationpredominates. Soil Soilshaveevolvedfromslate,quartziteandschists.Theyaredepthandacidic. Typeofsoils:Lithosol(uphills),RegosolandCambisol(downhills). Clay:12%Sand:54%Silt:34% pH(1:2,5):6.5,OM:2.7%,Pavailable:9mgkgͲ1,Kavailable:177mgkgͲ1, CEC:10.5meqkgͲ1,Ca2+:9.2meqkgͲ1,Mg2+:1.3meqkgͲ1 Vegetation TreelayerisdominatedbyHolmoak,corkoakandStonePine(Pinuspinea).Attheshrublayer themostabundantspeciesbelongtothegenusCistus(C.crispus,C.ladanifer,C.monspelliensis, C.salvifolius,C.populifolius),butArbutusunedo,Phillyreaangustifolia,Ruscusaculeatus,Rubia peregrina,Ericaaustralis,PistacealentiscusorPistaceaterebinthusarecommontoo.

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 153 9th-14th September 2012 Córdoba-Spain 2.SomefeaturesaboutlanduseandmanagementofdehesaLaJarosa Farmarea 586ha Livestock Cattle:Limousinbreed(250cows;15bulls;25heifers;200Ͳ220calves) Swine:Iberianbreed.Iberianpiggrazesinthefarmduringfallandearlywinter.Thestocking ratedependsonacornabundance(150Ͳ300pigs) Forestproducts AcornsfromHolmoaksandcorkoaks(collectedbylivestock) Cork,debarkingevery9years PinenutsfromStonePines Othersuses Apiculture Pisciculture(CultureofTincatincaatthepond) Hunting:reddeer(Cervuselaphushispanicus)andwildboar(Susscrofa) Pasturemanagement Naturalpasture:Legumesabundanceisthekeyaspectdrivingpasturemanagement.Farmis dividedinlargefencesandgrazingisconductedinacontinuouswaybutnotyearlong.Each fencehasavariablerestperiod.Every4Ͳ5years,naturalpasturesarefertilizedwith40kgP2O5 haͲ1. LaJarosaalsohasanareaofirrigatedsownpasture,established30yearsago,beingthemain specieswhitecloverandreedfescue. Treemanagement Holm oak and cork oak were traditionally pruned to provide a standard architecture and to obtainfirewood.Now,pruningislimitedtospecialsituationslikesanitaryinterventions. Treehealthstatus In2007,onefocusofdecliningHolmoakswaslocalized.Phytopahtologicalanalysesconfirmed thepresenceofP.cinnamomiinfectingfeederroots.Symptomatictreeswereisolated,avoiding soilmovement,andcutwhendead.Atthismomenttheoakrootdiseasecanbeconsideredas wellcontrolled.

          

154 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

WEDNESDAY,12thSeptember2012 DAYTRIP(8:00TO19:00)TOANDALUSIANMEDITERRANEANFORESTS  1.DehesaLosBueyes Huelvaprovince DeparturetimefromCórdoba:8:00 Estimatedarrivaltime:11:00



DEHESALOSBUEYES DehesaLosBueyesislocatedatLasHerrerías,belongingtothetownHallofPuebladeGuzmán, Huelva. This forest is an open woodland mainly composed by mature Quercus ilex subsp. ballotain an average density of 40 trees per ha. Its topography is hilly withacidic and poor soils.Thereisasmallpondlocateduphilltheareawearevisiting. Since ‘90s,decline symptoms (defoliation andbranch dieback) have been observed affecting trees, leading to high rates of mortality from the 2000’s. Soil and roots samples from symptomatictreeswereanalyzedforthefirsttimeintheLaboratoryofAgroforestPathology (University of Córdoba) 12 years ago, leading to the consistent isolation of Phytophthora cinnamomi.                 Now,severalfieldexperimentsaboutcontrolmethodstopreventthedisseminationoftheroot diseaseareconductedatDehesaLosBueyes,suchassoilapplicationofcalciumamendments, animalmanuresorbiofumigation.Preliminaryresultswillbeexposedanddiscussedinsitu. 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 155 9th-14th September 2012 Córdoba-Spain OrthophotoofLasHerreriasina)1956,andb)2007.Yellowareacorrespondswiththe experimentalplot              a)           b)                  156 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

FieldexperimentsatDehesaLosBueyes.Plotstreatedwithcalciumamendmentsandpigslurry ascontrolmethodsagainstP.cinnamomiinfections 

 Smallplotstreatedwithdifferent 2+ PlottreatedwithCaCO3   Ca amendments 

          6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 157 9th-14th September 2012 Córdoba-Spain 2.CampoBaldío Huelvaprovince Estimatedarrivaltime:12:30



CAMPOBALDÍO CampoBaldíowasacommunalpropertyofthetownHallofPuebladeGuzmánfromcenturies, used by the inhabitants as pasturegrasslands. In 1971, a Civic Company was created by the neighbourhoodtoimprovetheexploitationoftheproperty.Olive,citrusandeucalyptuscrops wereestablished,butforestlandswerealsomaintainedforhuntingandIberianpigbreeding. In the 90’s, the unproductive lands at Campo Baldío benefited from a state program for afforestation of former agricultural lands. From 1993 to 2008, 850 ha were afforested with Holmandcorkoakseedlingsplantedonterracesatadensityof350Ͳ400plantsperha. Since 2003, wind turbines and solar energy collectors were installed in Campo Baldío for productionofgreenenergy.                         OakafforestationatCampoBaldío  Almostfromthebeginningoftheafforestationworks,fociofdeadseedlingswereincreasingly frequentatCampoBaldío.Fromtheseinitialfoci,therootrotcausedbyP.cinnamomihave been spreading, reaching formerly well established young trees thatnow exhibit defoliation, branchdiebackanddeath. 158 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

          In2010,theUniversityofCórdobachoseoneplotatCampoBaldíowhere10Ͳyearsoldtreesare nowbeeninfectedandkilledtosetupasecondsetoffieldtrialstotesttheeffectivenessof calcium amendments, as show in the next Figure. Preliminary results will be exposed and discussed. FieldexperimentsatCampoBaldío.Plotstreatedwithcalciumamendmentsascontrolmethods againstP.cinnamomiinfections                         13:30 LunchatHostalAndalucía,VillanuevadelosCastillejos 15:00 DeparturetoDehesadeAbajo

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 159 9th-14th September 2012 Córdoba-Spain 3.DehesadeAbajo Sevillaprovince Estimatedarrivaltime:17:00

 DEHESADEABAJO

DehesadeAbajoislocatedatthemunicipalityofPuebladelRío,Seville.Thisforestismainly composed by the tree species Pinus pinea and Olea europaea var. sylvestris, the last one occupying an area of 17 ha. On the hill there is a pond included at the Andalusian wetland inventory, created through the confinement of the Majaberraque watercourse. Dehesa de AbajoiscatalogedasNaturalReserveandbelongstotheTownHalltoPuebladelRío. OnMarch2009,declinesymptomsconsistinginseveredefoliationsandbranchdiebackwere observed in wild olives affecting near 5 ha, being a matter of great concern for the local authorities.



Symptomaticwildolivetree  InDehesadeAbajo,treesaffectedbydeclineshoweddifferentdegreeofsymptomsdepending ontheirdistribution:inthehighestplaces,wherethesoilisamixtureofgravelandsand,wild olivesshowedmildtomoderatedefoliation,whileinthelowestsites,wherethesoilisheavier andwetter,alotofcasesofseveredefoliationanddeatharerecordedeveryyear. Thisoliveforestsuffershighfluctuationsinwatertablesduetowaterextractionforagricultural purposes (the forest is surrounded by rice plantations). In addition, soil humidity always alternateextremeperiodsofdryandwetconditions. In September 2009, at he begining of the autumn rainy season, soil and root samples from symptomatic trees were collected by technicians belonging to the Andalusian Government (AgricultureandEnvironmentCouncil)andsenttotheLaboratoryofReferenceforAndalusia,at 160 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain the Agroforest Pathology Unit of the University of Córdoba. In these samples Phytophthora megaspermaandP.inundatawereconsistelyisolated.Analyzingaerialphotographs,itisclear thanthedensityofO.europaeavar.sylvestrishadbeendecreasingfromdowntouphills. TheroleofPhytophthoraspeciesinthisforestdeclineandcontrolmeasuresrecommendedwill bedescribedanddiscussed.  EvolutionofthedensityoftreesinDehesadeAbajo1956Ͳ2007

 

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 161 9th-14th September 2012 Córdoba-Spain 18:30 DeparturetoCórdoba 20:00 ArrivalinCórdoba

162 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

                                   LISTOFPARTICIPANTS  

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 163 9th-14th September 2012 Córdoba-Spain

ZGLORIAABAD PAOLOCAPRETTI  USDAͲAPHISͲPPQͲCPHSTBeltsville,USA DipartimentoBiotecnologieagrarie,Universitàdi [email protected] Firenze,ITALY [email protected] PALOMAABADCAMPOS   UniversitatPolitècnicadeValència,SPAINMARIADOLORESCARBONEROMUÑOZ [email protected] UniversityofCordoba,SPAIN  [email protected] ANGELACEDO  InstitutodelCorcho,laMaderayelCarbónVegetal, ENRIQUECARDILLO SPAIN InstitutodelCorcho,laMaderayelCarbón(IPROCOR), [email protected] SPAIN  [email protected] SONIAAGHIGHI  MurdochUniversity,AUSTRALIASANTIAGOCATALAGARCIA [email protected] UniversitatPolitècnicadeValència,SPAIN  [email protected] OGUZHANANGAY  TechnischeUniversitätMünchen,GERMANYTHOMASCECH [email protected] FederalResearchCentreforForests,NaturalHazards  andLandscape,AUSTRIA KAMYARARAM [email protected] UniversityofCaliforniaatDavis,USA [email protected] ANNECHANDELIER  WalloonAgriculturalResearchCentre,BELGIUM FRANSARENTZ [email protected] PrivateConsultant,AUSTRALIA [email protected] RICHARDCOBB  UniversityofCaliforniaDavis,USA YILMAZBALCI [email protected] UniversityofMaryland,USA  [email protected] ANACRISTINACOELHO  UniversidadedoAlgarve,PORTUGAL STANLEYBELLGARD  [email protected] LandcareResearchLimited,NEWZEALAND [email protected] IANCOLQUHOUN  Alcoa,AUSTRALIA JOHANNABOBERG  [email protected] SwedishUniversityofAgriculturalSciences,SWEDEN  [email protected] DAVIDCOOKE  TheJamesHuttonInstitute,UNITEDKINGDOM CLIVEBRASIER [email protected] ForestResearch,UNITEDKINGDOM [email protected] TAMARACORCOBADOSÁNCHEZ  UniversidaddeExtremadura,SPAIN TREENABURGESS [email protected] MurdochUniversity,AUSTRALIA [email protected] ALFREDOCRAVADOR  CentreofGenomicsandBiotechnology,PORTUGAL SANTAOLGACACCIOLA  [email protected] DipartimentodeiSistemiAgroalimentarieAmbientaliͲ  UniversityofCatania,ITALY RONALDODALIO [email protected] TechnicalUniversityofMunich,GERMANY  [email protected] DAVIDCAHILL  DeakinUniversity,AUSTRALIA [email protected]  6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 165 9th-14th September 2012 Córdoba-Spain

LOURDESDELAMATASAEZ SIBDASGHOSH AgriͲFoodandBiosciencesInstitute(AFBI),Belfast, DominicanUniversityofCalifornia,USA UNITEDKINGDOM [email protected] [email protected]   GEORGEGILL PAOLODEVITA NewZealandMinistryforPrimaryIndustry,NEW UniversityofCordoba,SPAIN ZEALAND [email protected] [email protected]   GEOFFREYDENTON BEATRICEGINETTI TheRoyalHorticulturalSociety,UNITEDKINGDOM UniversityofFlorence,ITALY [email protected] [email protected]   MARGARETDICK DONALDGOHEEN Scion,NewZealandForestResearchInstitute,NEW USDAForestService(Retired),USA ZEALAND [email protected] [email protected]   ELLENGOHEEN JULIODÍEZCASERO USDAForestService,USA UniversityofValladolid,SPAIN [email protected] [email protected]   LORENAGOMEZAPARICIO HATICETUGBADOGMUSͲLEHTIJARVI IRNASͲCSIC,SPAIN SuleymanDemirelUniversity,TURKEY [email protected] [email protected]   NIKLAUSGRUNWALD PILARFERNÁNDEZREBOLLO USDAARS,USA UniversidaddeCórdoba,SPAIN [email protected] [email protected]   EVERETTHANSEN SYLVIAFERNÁNDEZͲPAVÍA OregonStateUniversity,USA UMSNH,MEXICO [email protected] [email protected]   MASUMHAQUE FRANKFLEISCHMANN UniversityofValladolid,USA TechnicalUniversityofMunich,SectionPatholoyof [email protected] WoodyPlants,GERMANY  [email protected] PABLOHARDOIM  UniversityofAlgarve,PORTUGAL SUSANFRANKEL [email protected] USDAͲForestService,PacificSouthwestResearch  Station,USA GILESHARDY [email protected] MurdochUniversity,AUSTRALIA  [email protected] MATTEOGARBELOTTO  UniversityofCalifornia,Berkeley,USA ANNAHARRIS [email protected] ForestryResearch,UNITEDKINGDOM  [email protected] LUISVENTURAGARCÍAFERNÁNDEZ  InstitutodeRecursosNaturalesyAgrobiologíade MARKÉTAHEJNÁ Sevilla,SPAIN TheSilvaTaroucaResearchInstituteforLandscapeand [email protected] OrnamentalGardening,CZECHREPUBLIC  [email protected] ALMAMARÍAGARCÍA  UniversidaddeCórdoba,SPAIN BEATRICEHENRICOT [email protected] TheRoyalHorticulturalSociety,UNITEDKINGDOM  [email protected]   166 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

MARIALUZHERRERO MAELALEONSANTANA BioforskͲPlantHealthandPlantProtectionDivision, InstitutoAgroforestalMediterráneoͲUniversidad NORWAY PolitécnicadeValencia,SPAIN [email protected] [email protected]   IANHOOD CARLOSALFONSOLOPEZORONA Scion(NewZealandForestResearchInstitute),NEW UniversidadAutónomadeSinaloa,MEXICO ZEALAND [email protected] [email protected]   ADRIÁNLÓPEZVILLAMOR MARÍLIAHORTA SPAIN UniversityofAlgarve,PORTUGAL [email protected] [email protected]   NICOLALUCHI CLAUDEHUSSON CNRͲIstitutoperlaProtezionedellePiante,ITALY INRA,FRANCE [email protected] [email protected]   BENOITMARCAIS JUANJOSEJIMENEZ INRA,FRANCE GestiónIntegradaAgroforestal,SPAIN [email protected] [email protected]   LAURAMARTINGÓMEZ THOMASJUNG UCO,SPAIN PhytophthoraResearchandConsultancy,GERMANY [email protected] dr.t.jung@tͲonline.de   ALISTAIRMCCRACKEN MINAKALANTARZADEH AgriͲFood&BiosciencesInstitute,UNITEDKINGDOM ForestResearch,AliceHolt,UNITEDKINGDOM [email protected] [email protected]   JOHANMEFFERT ALANKANASKIE PlantProtectionService,NETHERLANDS OregonDepartmentorForestry,USA [email protected] [email protected]   IVANMILENKOVIC MARIJAKOPINA UniversityofBelgrade,SERBIA AllͲRussianPlantQuarantineCenter,RUSSIA [email protected] [email protected]   JOSEJAVIERMIRANDATORRES JUDITKOVÁCS UniversidaddeExtremadura,SPAIN UniversityofWestͲHungary,HUNGARY [email protected] [email protected]   CARMENMORALESͲRODRÍGUEZ BARBARALACHENBRUCH CentrodeInvestigaciónAgrariaFincaLaOrden,SPAIN OregonStateUniversity,USA [email protected] [email protected]   MARCELAMRÁZKOVÁ JOSERAMONLEALMURILLO TheSilvaTaroucaResearchInstituteforLandscapeand UniversityofCórdoba,SPAIN OrnamentalGardening,CZECHREPUBLIC [email protected] [email protected]   ISABELLEÓNSÁNCHEZ DINANEVES UniversidaddeHuelva,SPAIN UniversidadedoAlgarve,PORTUGAL [email protected] [email protected]    JUSTYNANOWAKOWSKA  ForestResearchInstitute,POLAND  [email protected]

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 167 9th-14th September 2012 Córdoba-Spain

IRENEUSZOLEJARSKI MARÍACRISTINAROMERO ForestResearchInstitute,POLAND UniversidaddeCórdoba,SPAIN [email protected] [email protected]   TOMASZOSZAKO FRANCISCOJOSÉRUIZGÓMEZ ForestResearchInstitute,POLAND UniversidaddeCórdoba,SPAIN, [email protected] [email protected]   MARIAANTONELLAPANE MARÍAESPERANZASÁNCHEZHERNÁNDEZ UniversityofCatania,ITALY UniversidaddeCórdoba,SPAIN [email protected] [email protected]   MATEJPÁNEK BRUNOSCANU MendelUniversityinBrno,CZECHREPUBLIC DipartimentodiAgrariaͲUniversitàdegliStudidi [email protected] Sassari,ITALY  [email protected] JENNIFERPARKE  OregonStateUniversity,USA NATHALIESCHENCK [email protected] ANSESͲLaboratoiredelaSantédesVégétauxͲUnité  deMycologie,France ANAPÉREZSIERRA [email protected] UniversitatPolitècnicadeValència,SPAIN  [email protected] CORINESCHÖBEL  WSL,SWITZERLAND SIMONEPROSPERO [email protected] WSL,SWITZERLAND  [email protected] MARÍASOCORROSERRANOMORAL  UniversidaddeCórdoba,SPAIN MELODIEPUTNAM [email protected] OregonStateUniversity,USA  [email protected] LAURASIMS  OregonStateUniversity,USA PAULREESER [email protected] OregonStateUniversity,USA  [email protected] ALEJANDROSOLLAHACH  UniversidaddeExtremadura,SPAIN PEDRORIOSCASTAÑO [email protected] UniversityofCórdoba,SPAIN  [email protected] TATIANASURINA  AllͲRussianPlantQuarantineCenter,RUSSIA DAVIDRIZZO [email protected] UniversityofCalifornia,Davis,USA  [email protected] WENDYSUTTON  OregonStateUniversity,USA SARAHRIZZO [email protected] USA  [email protected] GRAZYNASZKUTA  MainInspectorateofPlantHealthandSeed CÉCILEROBIN Inspection,POLAND INRA,FRANCE [email protected] [email protected]   VENCHETALGØ MªDELCARMENRODRÍGUEZͲMOLINA Bioforsk,NORWAY CentrodeInvestigaciónAgrariaFincaLaOrdenͲ [email protected] Valdesequera,SPAIN  [email protected]      168 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

GILLIANTHORP STEFANWAGNER TheFoodandEnvironmentResearchAgency,UNITED JuliusKuehnInstitute(JKI),GERMANY KINGDOM [email protected] [email protected]   JOANWEBBER STEVENTJOSVOLD ForestResearch,UNITEDKINGDOM UniversityofCaliforniaCooperativeExtension,USA [email protected] [email protected]   ERIKAWEDGWOOD PANAGIOTISTSOPELAS ADASUKLtd,UNITEDKINGDOM HellenicAgriculturalOrganization"Demeter",GREECE [email protected] [email protected]   SABINEWERRES ANDREAVANNINI JuliusKuehnInstitute(JKIͲGF),GERMANY UniversityofTuscia,ITALY [email protected] [email protected]   MONIQUEWHEAT MARÍALAURAVÉLEZ KauriDiebackJointAgency,NEWZEALAND CIEFAP(CentrodeInvestigaciónyExtensiónForestal [email protected] AndinoPatagónico),ARGENTINA  [email protected] NARIWILLIAMS  Scion,NEWZEALAND ANNAMARIAVETTRAINO [email protected] UniversityofTuscia,ITALY  [email protected] STEPHENWOODWARD  UniversityofAberdeen,UNITEDKINGDOM  [email protected]

              

6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 169 9th-14th September 2012 Córdoba-Spain

INDEX PAGE Programme 7

Session 1: Evolution, Population Biology, Experimental Taxonomy 21

Session 2: Surveys, Diversity, Invasion and Spread 29

Session 3: Ecology, Epidemiology and Climate Change 35

Session 4: Resistance, Pathogenesis, Ecophysiology 45

Session 5: Surveys, Diversity, Invasion and Spread (cont.) / Classical Taxonomy and Classical Molecular Diagnostics 53

Session 6: Resistance, Pathogenesis, Ecophysiology (cont.) 61

Session 7: Management and Control 67

Session 8: Management and Control in Australia 73

Posters 79

Discussion Session: Adaptation and Evolution 123

Discussion Session: The Nursery Pathway 129

Discussion Session: Geographic Origins of Species 135

Announcements 139

Field Trips. Abstracts 143

Field Trips. Guides 149

List of Participants 163

6th IUFRO Working Party 7.02.09 i “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain AUTORS INDEX

SURNAME INITIALS PAGES ABAD Z.G. 142 ABAD CAMPOS P. 33, 34, 64, 81, 85, 86, 99, 131 ACEDO A. 56, 81 ADAMS P. 63 ADAY GA.G. 82, 88, 131 AGHIGHI S. 56 AGUAYO J. 39, 120 AGUÍN-CASAL O. 131 ANAND N. 58 ANGAY O. 51 APONTE C. 64 ARAM K. 41 ARCHER S. 87 ARENTZ F. 137 ARHIPOVA N. 70 ÁVILA J.M. 40 BACCELLI I. 119 BAKONYI J. 83, 131 BALCI Y. 84, 138, 142 BARBER P. 75, 84 BARRENECHE T. 49 BEECH P. 51 BEH M.M. 37 BELBAHRI L. 83, 119 BELLGARD S. 58, 118 BELO D. 119 BELTRÁN A. 85, 86 BERBEGAL M. 34 BONANTS P. 103, 116 BORYS M. 57, 96 BRAGANCA H. 119 BRAMWELLS H. 51 BRASIER C. 23, 25, 32, 126, 147 BRUNI N. 34, 116 BRURBERG M.B. 93, 113, 114 BULLUCK R. 93 BURGESS T. 23, 25, 26, 31, 33, 56, 83, 84, 85 CACCIOLA S.O. 87, 131 CAHILL D. 51 CAMPOS S. 49 CAPRETTI P. 95 CARBONERO MUÑOZ M.D. 146 CARDILLO E. 56, 81 CATALA GARCIA S. 34, 86 CECH T. 50, 131 CERNÝ K. 101, 114 CHAMBERY A. 47, 50 CLARK D. 112 COBB R. 38 COELHO A.C. 47, 48, 50 COETZEE M.P.A. 27 ii 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

COFFEY M. 142 COLQUHOUN I. 71, 76 COPELAND G. 93 CORCOBADO SÁNCHEZ T. 37, 97, 99, 100, 131 CRAVADOR A. 47, 48, 49, 50, 98, 102, 118, 131 CRONE M. 63, 71 CUBERA E. 100 CULLUM J. 51 DALIO R. 47, 63 DE LUCAS A.I. 91 DE PATRICIO A. 87 DE VITA P. 38, 39, 40, 64, 108, 109, 145, 146 DENTON G. 87 DENTON J 87, 131 DIAMANDIS S. 50, 131 DICK M. 32, 70 DÍEZ CASERO J.J. 50, 91 DINIZ I. 98 DOGMUS-LEHTIJARVI H.T. 82, 88, 131 DUNNE C. 76, 77 DUNSTAN W. 77 DURAES S. 49, 102 EBERHART J. 111, 141 EICHMANN R. 47 EVIDENTE A. 106 EYRE C. 24 FAEDDA R. 87 FENWICK S. 63 FERNÁNDEZ P. 38, 105, 108, 109, 145, 146 FERNÁNDEZ-MARTÍNEZ M. 118 FERNÁNDEZ-PAVÍA S. 89 FIELAND V.J. 117 FLEISCHMANN F. 47, 50, 51, 63 FLEMING C. 101 FLOISTAD E. 93 FOURRIER C. 108 FRANCESCHINI A. 106, 107 FRANCESCHINI S. 23, 25, 34 FRANGIOSO K. 37 FRANKEL S. 69 FREY P. 120 GABRIELOVÁ S. 101 GALLO L. 85 GARBELOTTO M. 24, 89 GARCÍA A. 100 GARCÍA A.M. 146 GARCÍA-BREIJO F. 49, 64 GARCÍA FERNÁNDEZ L.V. 39, 40, 64 GARCÍA-JIMÉNEZ J. 33, 64, 81 GARCÍA-MARTÍNEZ J.J. 118 GARDNER J. 32, 70 GHOSH S. 93 GINETTI B. 59, 131 GION J.M. 49 6th IUFRO Working Party 7.02.09 iii “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain GOHEEN E. 69, 70, 90, 104 GOMEZ APARICIO L. 40 GÓMEZ-DORANTES N. 89 GOSS E.M. 117 GRAMS T. 51 GREEN S. 23 GREGOROVÁ B. 101 GRESLEBIN A.G. 27, 115 GRUNWALD N. 117, 133 GRYZENHOUT M. 33 GUIRAO P. 81 HANSEN E. 23, 40, 50, 55, 58, 69, 70, 91, 104, 106, 112, 127 HANTULA J. 131 HAQUE M.M. 91 HARDY G. 23, 25, 26, 31, 56, 63, 71, 75, 77, 84, 85, 112, 113 HARO A. 105 HARRIS A.R. 92 HARTLEY R. 77 HARTMANN G. 131 HAVRDOVÁ L. 101 HEJNÁ M. 101 HENRICOT B. 71, 87, 131 HERMANN S. 51 HERRERO M.L. 93, 113, 114, 131 HEUNGENS K. 25 HIDALGO E. 91 HILBURN D. 70 HOLUB V. 101 HOOD I. 32, 70 HORTA M. 47, 48, 49, 50, 131 HÜBERLI D. 25, 26 HULBERT J. 40 HUSSON C. 39, 120 HUTCHINGS T. 94 IBAÑEZ B. 40 IOOS R. 108 JENNINGS P. 42 JOHNSTON P.R. 58 JOHNSON-BROUSSEAU S. 93 JORRIN NOVO J. 110 JUNG T. 33, 50, 57, 59, 83, 88, 96, 99, 100, 103, 107, 125, 131 KALANTARZADEH M. 94 KANASKIE A. 69, 70 KANG S. 142 KASUGA T. 24 KECA N. 57, 131 KOLTAY A. 83 KOPINA M. 94 KOSTA K. 93 KOSTOV K. 96 KOVÁCS J. 42 KOZANITAS M. 24 KRAMARETS V. 131 KUBIAK K. 103 iv 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

KULAKIOTU E.K. 115 KUNZINGER M. 85 LAKATOS F. 42 LANGAT M. 94 LEAL MURILLO J.R. 145, 146 LEHTIJÄRVI A. 82, 88 LEIJ F. 94 LEITAO A. 98 LEÓN SÁNCHEZ I. 118 LEON SANTANA M. 33, 81, 85 LI A. 63 LILJA A. 131 LINALDEDDU B. 106, 107 LOCKLEY D. 71 LÓPEZ-GARCÍA C. 33 LUCHI N. 95 LYMBERY A. 85 LYUBENOVA A. 96, 131 MACHADO H. 131 MADDAU L. 106, 107 MAGNANO DI SAN LIO G. 131 MAIA C 49, 98, 102 MALEWSKI T. 103 MANSILLA-VÁZQUEZ P.J. 131 MARAÑÓN T 40 MARCAIS B. 39, 120, 131 MARTÍN L. 97 MARTÍN-GARCÍA J. 97, 99, 100 MASCHERETTI S. 89 MASSOLA N. 47, 50, 63 MATEUS M.C. 49 MATOS M.C. 98 MATSIAKH I. 131 MCCRACKEN A. 55, 101 MCCOMB J. 71, 112, 113 MCWILLIAMS M. 70 MEDEIRA C. 98 MEENTEMEYER R.K. 37 MELO E. 98 METZ M.R. 37 MIGLIORINI D. 95 MILENKOVIC I. 57, 131 MIRANDA J. 99, 100 MOMBOUR J. 104 MORALES-RODRÍGUEZ C. 100 MORELAND B. 55, 101 MORENO G. 37 MORICCA S. 59, 131 MRÁZKOVÁ M. 101 MULHOLLAND D. 94 NAGEL J. 25 NAGY Z.A. 83 NATILI G. 116 NAVARRO S. 55 6th IUFRO Working Party 7.02.09 v “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain NAVARRO-CERRILLO R.M. 110, 120 NECHWATAL J. 83, 131 NEVES D. 49, 102 NIANIAKA D. 119 NOWAKOWSKA J. 57, 103, 111 NUÑEZ I. 81 OBREGÓN S. 105 O'BRIEN P. 71, 112, 113 OBSWALD W. 47, 50, 63 OH E. 33 OLEJARSKI I. 103 ORLIKOWSKI L.B. 50, 131 ORSTAD K. 93 ORTEGA A. 81 OSTERBAUER N. 69, 70 OSZAKO T. 57, 96, 103, 111, 131 PAAP T. 77, 84 PAIS I. 98 PALO C. 100 PALO E.J. 100 PANE A.M. 87, 131 PÁNEK M. 101 PAPLOMATAS E.J. 115, 131 PARK D. 58 PARKE J. 111, 141 PASCHOLATI S.F. 47 PENNYCOOK S.R. 58 PÉREZ A. 37, 100 PÉREZ C. 56 PÉREZ-DE-LUQUE A. 120 PÉREZ-RAMOS I.M. 40 PÉREZ-SIERRA A.M. 33, 34, 64, 81, 85, 86, 99, 131 PETERSON E. 40 PFANZ H. 104 PHILLIPS D. 51 PICÓN-TORO J. 100 PINTOS-VARELA C. 131 POLLOCK J. 101 POSADAS A. 93 PROSPERO S. 26, 50 PTASZEK M. 50 PUÉRTOLAS A. 81 QUARTIN V. 98 QUINN L. 55 RAGAZZI A. 59 RAJCHENBERG M. 27 RAMALHO J. 98 RAMO C. 39, 64 RAMOS P. 98 REA A. 23 RECHT S. 51 REDONDO M.A. 64 REESER P. 58, 69, 70, 90, 91, 104, 106 REIG J. 49, 64 vi 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain

RIGLING D. 50 RIAL-MARTÍNEZ C. 131 RÍOS P. 105, 145 RIOUX D. 110 RIZZO D.M. 24, 37, 38, 41 ROBIN C. 23, 49, 50, 106, 108, 131 RODRÍGUEZ- ALVARADO G. 89 RODRÍGUEZ-MOLINA M.C. 100 ROMERO-RODRÍGUEZ M.C. 110 ROOKES J. 51 RUIZ GÓMEZ F.J. 120 RYTKÖNEN A. 131 SÁNCHEZ-CUESTA R. 120 SANCISI-FREY S. 92 SÁNCHEZ HERNÁNDEZ M.E. 38, 39, 40, 64, 97, 105, 108, 109, 131, 145, 146, 147 SANTINI A. 95 SAVONA S. 70 SCANU B. 31, 106, 107, 131 SCHENCK N. 108 SCHLENZIG A. 131 SCHMIDT D. 89 SCHÖEBEL C. 26 SCHOEN C. 103 SCHUMACHER J. 131 SCHWEIGKOFLER W. 93 SCOTT J.K. 56 SCOTT P. 75, 77 SCOTTI-CAMPOS P. 98 SEMEDO J.N. 98 SERRANO MORAL M.S. 38, 39, 40, 64, 97, 108, 109, 145, 146 SGHAIER-HAMMAMI B. 110 SHAMOUN S.F. 110 SHAY S. 111 SHEARER B. 112, 113 SIASOU E. 119 SIEBYLA M. 111 SIKORA K. 57, 96, 103, 111 SILVA P.V. 115 SILVA-ROJAS H. 89 SIMAMORA A. 31 SIMS L. 55, 91, 112 SIPOS G. 50 SIVERIO F. 85 SLAVOV S. 96 SOLLA HACH A. 37, 50, 64, 97, 99, 100, 131 SOULIOTI N. 115 SOUSA E. 131 STASIKOWSKI P. 112, 113 STENSVAND A. 93, 113, 114 STEPANKOVÁ P. 114 STOKES V. 71 STRNADOVÁ V. 101 STUKELY M. 23, 25, 26, 31

6th IUFRO Working Party 7.02.09 vii “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain SURINA T. 94 SUSLOW K. 93 SUTTON W. 58, 69, 70, 90, 91, 104, 106 SWAN R.K. 101 SZABÓ I. 42 SZIGETHY A. 83 TALGØ V. 93, 113, 114, 131 TAPIAS-MARTÍ R. 118 TAYLOR C.R. 117 TAYLOR P. 70 THAN D.J. 58 THORP G. 42, 71 TJAMOS S.E. 115 TOMASSINI A. 34, 116 TOMSOVSKÝ M. 101, 114 TRAPERO A. 147 TRZEWIK A. 50 TSOPELAS P. 115, 131 TSVETKOV I. 96 TURNER J. 71 TURNER J.A. 42 VALERO-GALVÁN J. 110 VANNINI A. 23, 34, 116, 131 VAN POUCKE K. 25 VAN WEST P. 119 VÁZQUEZ-PIQUÉ J. 118 VÉLEZ M.L. 27, 115 VETTRAINO A.M. 23, 34, 116, 131 VIVAS M. 37 WAGHORN I. 87 WEBBER J. 23, 25, 31, 32, 92, 94 WEDGWOOD E. 71 WEIR B.S. 58 WENNEKER M. 131 WERRES S. 50, 117 WHEAT M. 118 WHITE D. 26, 85 WIDMER T. 93 WILLIAMS N. 32, 63, 75 WILSON M. 101 WINGFIELD B. 33 WINGFIELD M. 25, 27, 33 WOODWARD S. 83, 97, 119 YOUNG J. 76

viii 6th IUFRO Working Party 7.02.09 “Phytophthora in Forests and Natural Ecosystems” 9th-14th September 2012 Córdoba-Spain