A C T a T H E R I O L O G I

Total Page:16

File Type:pdf, Size:1020Kb

A C T a T H E R I O L O G I ACTA THERIOLOGICA VOL. XIII, 13: 2191—260. BIAŁOWIEŻA 20.V.1968 Stanislaw CHODYNICKI Embryogencsis of the Auditory Part of the Inner Ear in the Guinea Pig |With l Table, 5 Figs. & Plate IV— IX] The process of morphological differentiation of the inner ear in the guinea pig is accompanied by characteristic histochemical transforma­ tions within the cells and tissues. The start of the functioning of the inner ear is preceded by increase in the activity of respiratory enzymes in the sensory cells and in the cells of stria vascularis and the appearan­ ce of glycogen grains in the hair cells. Nissl’s bodies appear in the spiral cells. The inner ear is capable of receiving sounds as soon as Corti’s organ is completely formed on all the turns. The youngest embryos of the guinea pig in which reaction to sounds was found in the form of microphonic potential were 80 mm long. The value of the microphonic potential increases with increasing length of the embryo and before birth attains several hundred fiV, To a certain extent the curve repre­ senting increase in activity of the histochemical transformations runs parallel to the curve of increase in mean values of the microphonic potential with the growth of the embryos. During embryogenesis the different kinds of cells of the cochlear duct and spiral cells possess a Golgi apparatus of characteristic shape and location. In the spiral ganglion cells the situation of the Golgi apparatus is polar, but as from the time the embryos reach the length of 65 mm it adopts an apolar position. The development of the auditory part of the inner ear in the guinea pig may, on the basis of the material elaborated, be divided into two periods: Period I —-in which morphological and histochemical dif­ ferentiations occurs. Period II — is characterised by the start of the bioelectric function of the organ of Corti. I. Introduction ..................................................................................................220 II. Review of references ................................................................................................................220 III. Material and study methods 1. Histological and histochemical m ethods ...................................................................... 222 2. Bioelectrical method (measurements of microphonic potential) . 223 IV. Morphogenesis and histochemistry of the development of the auditory part of the inner ear of the guinea pig 1. D escrip tio n of m a t e r i a l ........................................................................................................ 223 2. D iscussion of r e s u l t s ................................................................................................................232 V. Microphonic potential (C M ) ................................................................................................. 238 VI. General discussion ....................................................................................................................... 240 1. M o r p h o g e n e s i s ....................................................................................................................... 241 2. H i s t o c h e m i s t r y ....................................................................................................................... 244 3. Electrophysiology ................................................................................................................248 VII. R eferences ...................................................................................................................................... 251 Explanation of plates ................................................................................................................257 S treszczen ie . 259 [219] 220 S. Chodynicki I. INTRODUCTION The development of the inner ear and its adaptation to receiving sounds is a very complicated process from both the morpological and biochemical aspects. A more accurate knowledge of this development may facilitate studies on the pathogenesis of congenital defects of hearing (T o n d u r y, 1952; Weibel, 1957). The cytological and histochemical pictures of the elements of the inner ear only indirectly express the functional state of morphological elements and their adaptat­ ion to receiving sounds. An objective manifestation of the function of the organ of hearing during perception of sounds are electric currents (microphonie potential, summating potential, potential of auditory nerve). Many authors have in recent years examined the question of the possibility of reception of sounds by the developing organ of hearing. Studies of this kind in humans are based on observations of the heart function of the embryo, encéphalo­ graphie and clinical examinations and are also treated as an attempt at early dis­ covery of cases of deafness (Dwornicka,, 1963; Brown, 1964; Elliot, 1964; Johansson, 1964). Research on animals is concerned chiefly with the correlations between the morphological picture of the differentiating Corti’s organ and mani­ festations of its function. Investigations are usually carried out on those species of animals which are born deaf and exhibit the final formation of the organ of hear­ ing during the first weeks after birth. The aim of this study is to obtain a better knowledge of the morpho­ genesis and development of the function of the inner ear in the guinea pig during embryonic life. II. REVIEW OF REFERENCES Among the basic studies dealing with development of the inner ear are those devoted to morphogenesis of the labyrinth. Streeter (1906, 1917, 1918), using models, presented the development of the osseous and membraneous labyrinth, the auditory nerve and endolabyrinthal space in man. Anson (1934), on the basis of material taken from different animals, discusses the early stages of formation of the labyrinth. An exact description of differentiation of the structures of the Corti organ and tectorial membrane in animals was given by Van der Stricht (1918, 1920). Har­ desty (1915) discusses the formation and structure of the tectorial membrane in pig embryos. Held (1926) and Kolmer (1927) in studies of a monographic character describe the formation of the organ of hearing, with particular reference to m an. Altmann (1950) on the basis of extensive literature discusses the develop­ ment of the organ of hearing and the mechanics of this development. Weibel (1957) carried out detailed studies on differentiation of the cochlear duct in mice. Grisant i (1957) investigated the development of stria vascularis in the rabbit. Vinnikov (1959, 1961) discussed the phylogenetic and ontogenetic development of the human organ of hearing. Among other interesting studies on the embryogenesis of the inner ear we must include investigations of the development of transplantations of the labyrinth under different experimental conditions. For instance K a a n (1917) defined the capacity for transformation of an otic vesicle transplanted to the labyrinth in Amblystoma p unctatum. W aterman (1917) observed fuller histological differentiation of the labyrinth in comparison with its anatomic development in transplanted rabbit Embryogenesis of the inner ear in the Guinea pig 221 em bryos. Kogan (1950) carried out studies on the development of the membranous labyrinth in birds under conditions of artificial tissue cultures. Similar investigations were made by Lawrance & Merchant (1953) on the otocyst of fowl and rat embryos and by Friedmann (1956; 1959; 1961) on th e em bryos of birds. The histoehemical observations made in recent years have contributed to a better knowledge of the development of the organ of hearing. Bélanger (1956), fo r in ­ stance, observed the occurrence of polysaccharides and basophil substance during the development of epithelium and connective tissue structures of the cochlea in ra ts. Rossi (1963) made studies of the activity of acetylocholinesterase during the embryogenesis of the spiral ganglion in the guinea pig. Titova (1965) c a rrie d o u t histoehemical examination of the differentiation process in the inner ear in goat, rabbit and cat embryos beginning with the second half of pregnancy, and ending with animals from 10—14 days after birth. This author considers that nuclein acids play the most important part in the differentiation process of the structures of the cochlear duct. Observations made by means of electronic microscope must be included in research work carried out recently. Friedmann (1959, 1961) discusses th e u ltra - structural organisation of sensory epithelium., supporting cells and intercellular space in the fowl embryo otocyst. Titova (1965) carried out observations of the deve­ lopment of the organ of hearing and balance in vertebrates. Kikuchi & Hil- ding (1965), using mice, investigated the development of the organ of hearing by means of a light and electronic microscope. These authors consider that efferent nerve endings play an important part in the development of Corti’s organ. In 1966 the same authors reached the conclusion, during their examination of stria vascu­ laris in mice, that the morphological structure of the cells of this stria makes it possible for them to participate in fluid transport even during the development of the ear — this also applies to the cells of the spiral prominence, Ruben (1967) using marked tritiated thymidyne, defined the time of differentia­ tion of the different parts of the inner ear in mice. In his opinion the cochlear duct in the region of the apical turn undergoes earlier differentiation
Recommended publications
  • Sound and the Ear Chapter 2
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter© Jones & Bartlett 2 Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Sound and the Ear © Jones Karen &J. Kushla,Bartlett ScD, Learning, CCC-A, FAAA LLC © Jones & Bartlett Learning, LLC Lecturer NOT School FOR of SALE Communication OR DISTRIBUTION Disorders and Deafness NOT FOR SALE OR DISTRIBUTION Kean University © Jones & Bartlett Key Learning, Terms LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR Acceleration DISTRIBUTION Incus NOT FOR SALE OR Saccule DISTRIBUTION Acoustics Inertia Scala media Auditory labyrinth Inner hair cells Scala tympani Basilar membrane Linear scale Scala vestibuli Bel Logarithmic scale Semicircular canals Boyle’s law Malleus Sensorineural hearing loss Broca’s area © Jones & Bartlett Mass Learning, LLC Simple harmonic© Jones motion (SHM) & Bartlett Learning, LLC Brownian motion Membranous labyrinth Sound Cochlea NOT FOR SALE OR Mixed DISTRIBUTION hearing loss Stapedius muscleNOT FOR SALE OR DISTRIBUTION Compression Organ of Corti Stapes Condensation Osseous labyrinth Tectorial membrane Conductive hearing loss Ossicular chain Tensor tympani muscle Decibel (dB) Ossicles Tonotopic organization © Jones Decibel & hearing Bartlett level (dB Learning, HL) LLC Outer ear © Jones Transducer & Bartlett Learning, LLC Decibel sensation level (dB SL) Outer hair cells Traveling wave theory NOT Decibel FOR sound SALE pressure OR level DISTRIBUTION
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Nervous System Week 5
    NERVOUS SYSTEM WEEK 5 Doç. Dr. Yasemin SALGIRLI DEMİRBAŞ Neural Pathways in Sensory Systems • A single afferent neuron with all its receptor endings is a sensory unit. • a. Afferent neurons, which usually have more than one receptor of the same type, are the first neurons in sensory pathways. • b. The area of the body that, when stimulated, causes activity in a sensory unit or other neuron in the ascending pathway of that unit is called the receptive field for that neuron. Neural Pathways in Sensory Systems • Neurons in the specific ascending pathways convey information to specific primary receiving areas of the cerebral cortex about only a single type of stimulus. • Nonspecific ascending pathways convey information from more than one type of sensory unit to the brainstem, reticular formation and regions of the thalamus that are not part of the specific ascending pathways. Association Cortex and Perceptual Processing • Information from the primary sensory cortical areas is elaborated after it is relayed to a cortical association area. • The primary sensory cortical area and the region of association cortex closest to it process the information in fairly simple ways and serve basic sensory-related functions. • Regions of association cortex farther from the primary sensory areas process the sensory information in more complicated ways. • Processing in the association cortex includes input from areas of the brain serving other sensory modalities, arousal, attention, memory, language, and emotions. Comparison of General and Special Senses General Senses Special Senses • Include somatic sensations (tactile, • Include smell, taste, vision, hearing thermal, pain, and proprioceptive) and equilibrium. and visceral sensations.
    [Show full text]
  • Vascular Supply of the Human Spiral Ganglion: Novel Three
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN Vascular Supply of the Human Spiral Ganglion: Novel Three- Dimensional Analysis Using Synchrotron Phase-Contrast Imaging and Histology Xueshuang Mei1,2*, Rudolf Glueckert3, Annelies Schrott-Fischer3, Hao Li1, Hanif M. Ladak4,6, Sumit K. Agrawal5,6 & Helge Rask-Andersen1,6* Human spiral ganglion (HSG) cell bodies located in the bony cochlea depend on a rich vascular supply to maintain excitability. These neurons are targeted by cochlear implantation (CI) to treat deafness, and their viability is critical to ensure successful clinical outcomes. The blood supply of the HSG is difcult to study due to its helical structure and encasement in hard bone. The objective of this study was to present the frst three-dimensional (3D) reconstruction and analysis of the HSG blood supply using synchrotron radiation phase-contrast imaging (SR-PCI) in combination with histological analyses of archival human cochlear sections. Twenty-six human temporal bones underwent SR-PCI. Data were processed using volume-rendering software, and a representative three-dimensional (3D) model was created to allow visualization of the vascular anatomy. Histologic analysis was used to verify the segmentations. Results revealed that the HSG is supplied by radial vascular twigs which are separate from the rest of the inner ear and encased in bone. Unlike with most organs, the arteries and veins in the human cochlea do not follow the same conduits. There is a dual venous outfow and a modiolar arterial supply. This organization may explain why the HSG may endure even in cases of advanced cochlear pathology. Human inner ear function relies on microcirculation derived from vessels in the internal auditory canal (IAC).
    [Show full text]
  • Cochlear Partition Anatomy and Motion in Humans Differ from The
    Cochlear partition anatomy and motion in humans differ from the classic view of mammals Stefan Raufera,b,1, John J. Guinan Jra,b,c, and Hideko Heidi Nakajimaa,b,c aEaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114; bSpeech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA 02138; and cDepartment of Otolaryngology, Harvard Medical School, Boston, MA 02115 Edited by Christopher A. Shera, University of Southern California, Los Angeles, CA, and accepted by Editorial Board Member Thomas D. Albright June 6, 2019 (received for review January 16, 2019) Mammals detect sound through mechanosensitive cells of the assume there is no OSL motion (10–13). Additionally, the attach- cochlear organ of Corti that rest on the basilar membrane (BM). ment of the OSL to the BM and the attachment of the TM to Motions of the BM and organ of Corti have been studied at the spiral limbus (which sits above the OSL) are also consid- the cochlear base in various laboratory animals, and the assump- ered stationary. In contrast to this view, there have been reports tion has been that the cochleas of all mammals work similarly. of sound-induced OSL movement, but these reports have been In the classic view, the BM attaches to a stationary osseous spi- largely ignored in overviews of cochlear mechanics and the for- ral lamina (OSL), the tectorial membrane (TM) attaches to the mation of cochlear models (10–13). Von B´ek´esy (14), using static limbus above the stationary OSL, and the BM is the major mov- pressure, found that the CP “bent like an elastic rod that was free ing element, with a peak displacement near its center.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Endolymphatic Hydrops Meniere's
    ENDOLYMPHATIC HYDROPS MENIERE’S DISEASE Introduction: Meniere’s Disease, or endolymphatic hydrops, is a disorder of the inner ear. This condition occurs because of abnormal fluctuations in the inner ear fluid called endolymph. A system of membranes, called the membranous labyrinth, contains a fluid called endolymph. This fluid bathes the inner ear balance and hearing system sensory cells and allows them to function normally. The membranes can become dilated like a balloon when pressure increases. This is called "hydrops". The amount of fluid is normally kept constant by altering the production and absorption of the fluid. Endolymph also contains a specific concentration of sodium, potassium, chloride, and other electrolytes. If the inner ear is damaged by disease, injury, or other causes, the volume and composition of the inner ear fluid can fluctuate with changes in the body’s fluid and electrolyte levels. This fluctuation in inner ear fluid can cause the symptoms of hydrops, including pressure or fullness of the affected ear, tinnitus, hearing loss, and imbalance or dizziness. Treatment of this condition is geared towards stabilizing the body fluid levels so that fluctuations in the endolymph volume can be avoided. Meniere's episodes may occur in clusters in which several attacks may occur within a short period of time. On the other hand, years may pass between episodes. Between the acute attacks, most people are free of symptoms or note mild imbalance, tinnitus, and/or hearing loss. Meniere’s affects roughly 0.2% of the population, about 200 out of 100,000 people (or in other words, 2/1000).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Benefits Neet - Subscription
    TARGET NEET_UG 2022 LET’s ACE NEET_UG EXAMS WITH INDIA’s MOST INNOVATIVE LEARNING PLATFORM BENEFITS NEET - SUBSCRIPTION Full Access to All Subjects: Biology, Taught in English LIVE Courses Physics, chemistry and Hindi Instant In-class Master concepts Learn safely from Doubt Solving with India's Best home on any Teachers device UNDERSTAND YOUR VEDANTU NEET PRO-SUBSCRIPTION 5000+ Hours of LIVE Tests & Assignments Continuous review of Online Teaching with 10,000+questions areas of Improvement 20+ Teachers with 5+ Option to Learn in Cover all needs with years of experience English or Hindi Micro & Crash Courses NEET - SUBSCRIPTION PRICES SUBSCRIPTION ORIGINAL DISCOUNTED PER MONTH PER DAY MODEL-- PRICE PRICE PRICE PRICE 1 MONTH Rs.5,000/- Rs.4,000/- Rs.4,000/- Rs.133/- 3 MONTH Rs.13500/- Rs.10800/- Rs.3600/- Rs.120/- 6 MONTH Rs.24000/- Rs.19200/- Rs.3200/- Rs.107/- 12 MONTH Rs.42000/- Rs.33600/- Rs.2800/- Rs.93/- WHAT ARE YOU WAITING FOR ? BUY NOW @ https://vdnt.in/YTPRO USE COUPON CODE:- Sense of Hearing The organ of hearing, the ear, has outer (external), middle, and inner (internal) sections. The ear has two sensory functions: hearing and balance (equilibrium). Middle Ear Inner Ear Outer Ear Stapes Semicircular Canals Incus Malleus Vestibular Nerve Pinna Cochlear Nerve Tympanic cochlea Membrane Auditory Canal Round Auditory Earlobe Window Tube OUTER EAR Gathers sound waves Consists of the pinna (external flap) and the auditory canal Opening of auditory canal is lined with fine hairs and glands OUTER EAR Auricle Collects sounds waves External
    [Show full text]
  • Organum Vestibulocochleare INTERNAL EAR MIDDLE EAR EXTERNAL EAR PETROSAL BONE- Eq EXTERNAL EAR AURICLE
    EAR organum vestibulocochleare INTERNAL EAR MIDDLE EAR EXTERNAL EAR PETROSAL BONE- Eq EXTERNAL EAR AURICLE The external ear plays the role of an acoustic antenna: auricle the auricle (together with the head) collects and focuses sound waves, the ear canal act as a resonator. tympanic membrane anular cartilage meatus acusticus externus EXTERNAL EAR EXTERNAL EAR AURICLE scutiform cartilage Auricular muscles: -Dorsal -Ventral -Rostral -Caudal EXTERNAL EAR MEATUS ACUSTICUS EXTERNUS auricular cartilage vertical canal auditory ossicles horizontal cochlea canal auditory tube tympanic tympanic eardrum bulla cavity tympanic membrane MIDDLE EAR Auditory ossicles STAPES INCUS Tympanic cavity: (anvil) (stirrup) - epitympanium - mesotympanium - hypotympanium MALLEUS (hammer) auditory vestibular window- ossicles or oval window through which mechanical stimuli (transmitted by the auditory ossicles) enter the epitympanic internal ear for translation recess into nerve impulses auditory tube (Eustachian tube) cochlear window- or round window tympanic cavity bulla tympanica through which the vibration of the perilympha is absorbed MIDDLE EAR MIDDLE EAR GUTTURAL POUCH- Eq MIDDLE EAR AUDITORY OSSICLES head INCUS processus rostralis (stirrup) STAPES processus muscularis (anvil) manubrium short crus body MALLEUS (hammer) Two muscles of the ossicles: long crus m. tensor tympani- n. tensoris tympani ex. n. base mandibularis (footplate) m. stapedius- n. stapedius ex. n. facialis crus The muscles fix the bones and protect the cochlea crus against the harmful effects
    [Show full text]
  • Ear Development Ear Development
    Ear Development Ear Development The ear can be divided into three parts ◦ External Ear Auricle external auditory canal ◦ Middle Ear tympanic cavity auditory tube auditory ossicles malleus, incus, stapes ◦ Inner Ear Cochlea vestibular apparatus semicircular canals Utricle Saccule Development of Inner Ear All of inner ear derivatives arise from ectoderm Late in 3rd week ◦ otic placode (disc) appears next to hindbrain During 4th week ◦ otic placode form: otic pit otic vesicle or otocyst Young neurons delaminate from ventral otocyst Form statoacoustic (vestibulocochlear) ganglion Rhombencephalon region:formation of otic vesicles Derivatives of the 1st & 2nd branchial arches Rhombencephalon region:otic placode , otic pit and otic vesicle Development of Inner Ear epithelial structures of Otic vesicle develops to membranous labyrinth dorsomedial region elongate to form: ◦ endolymphatic appendage endolymphatic sac rest region expanded to: ◦ pars superior Utricle semicircular canals endolymphatic duct ◦ pars inferior Its ventral tip elongate and coil form cochlear duct differentiate to spiral organ of Corti Its rest gives rise to: Saccule connected to cochlea by ductus reuniens Development of the otic vesicle showing a dorsal utricular portion with endolymphatic duct, and a ventral saccular portion Saccule, cochlea & organ of Corti Outgrowth of cochlear duct-spiral fashion 8th wk.- 21/2 turns Cochlear duct conect with saccule through ductus reuniens Sensory cells of Inner Ear specialized mechanotransducers arise in six prosensory regions within developing otic vesicle ◦ In the cochlea organ of Corti ◦ In the saccule and utricle Maculae ◦ in the semicircular canals Cristae All of these sensory regions innervated by the vestibulocochlear nerve Development of the scala tympani & scala vestibuli Note:the auditory nerve and spiral ganglion Scala media - organ of Corti Hair cells Tectorial mem.
    [Show full text]
  • The Temporal Bone
    Anatomic Moment The Temporal Bone Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark Despite the advent of thin-section high-reso- the inner ear structures and the external lution computed tomography and, more re- environment. cently, unique magnetic resonance imaging se- Virtually all textbooks define the inner ear as quences with thin sections, T2 weighting, and a membranous labyrinth housed within an os- maximum-intensity projection techniques, seous labyrinth. The membranous labyrinth three-dimensional neuroanatomy of the tempo- contains endolymph, a fluid rich in potassium ral bone and related structures remains some- and low in sodium, similar to intracellular fluid. what of an enigma to many medical specialists, Interposed between the membranous labyrinth neuroradiologists included. Therefore, we are and the osseous labyrinth resides a supportive undertaking a series of anatomic moments in perilymphatic labyrinth. Perilymph is similar to the hope of solidifying the most important ana- cerebrospinal fluid and other extracellular tissue tomic concepts as they relate to this region. Our fluid. approach will be organized so as to consider the The osseous labyrinth consists of the bony temporal bone to represent the complex inter- edifice for the vestibule, semicircular canals, relationship of three systems: hearing, balance, cochlea, and vestibular aqueduct. The mem- and related neuroanatomic and neurovascular branous labyrinth consists of the utricle and structures. saccule (located within the vestibule), the semi- The ear originated in fish as a water motion circular ducts, the cochlear duct, and the en- detection system (1). The vestibular (balance) dolymphatic duct. The latter is a channel within mechanism becomes more complex as we the vestibular aqueduct with communications to scale the embryologic ladder and endolymph the utricle and saccule.
    [Show full text]