Benefits Neet - Subscription

Total Page:16

File Type:pdf, Size:1020Kb

Benefits Neet - Subscription TARGET NEET_UG 2022 LET’s ACE NEET_UG EXAMS WITH INDIA’s MOST INNOVATIVE LEARNING PLATFORM BENEFITS NEET - SUBSCRIPTION Full Access to All Subjects: Biology, Taught in English LIVE Courses Physics, chemistry and Hindi Instant In-class Master concepts Learn safely from Doubt Solving with India's Best home on any Teachers device UNDERSTAND YOUR VEDANTU NEET PRO-SUBSCRIPTION 5000+ Hours of LIVE Tests & Assignments Continuous review of Online Teaching with 10,000+questions areas of Improvement 20+ Teachers with 5+ Option to Learn in Cover all needs with years of experience English or Hindi Micro & Crash Courses NEET - SUBSCRIPTION PRICES SUBSCRIPTION ORIGINAL DISCOUNTED PER MONTH PER DAY MODEL-- PRICE PRICE PRICE PRICE 1 MONTH Rs.5,000/- Rs.4,000/- Rs.4,000/- Rs.133/- 3 MONTH Rs.13500/- Rs.10800/- Rs.3600/- Rs.120/- 6 MONTH Rs.24000/- Rs.19200/- Rs.3200/- Rs.107/- 12 MONTH Rs.42000/- Rs.33600/- Rs.2800/- Rs.93/- WHAT ARE YOU WAITING FOR ? BUY NOW @ https://vdnt.in/YTPRO USE COUPON CODE:- Sense of Hearing The organ of hearing, the ear, has outer (external), middle, and inner (internal) sections. The ear has two sensory functions: hearing and balance (equilibrium). Middle Ear Inner Ear Outer Ear Stapes Semicircular Canals Incus Malleus Vestibular Nerve Pinna Cochlear Nerve Tympanic cochlea Membrane Auditory Canal Round Auditory Earlobe Window Tube OUTER EAR Gathers sound waves Consists of the pinna (external flap) and the auditory canal Opening of auditory canal is lined with fine hairs and glands OUTER EAR Auricle Collects sounds waves External Auditory Meatus Lined with ceruminous glands Carries sound to tympanic membrane Terminates with tympanic membrane Tympanic Membrane Vibrates in response to sound waves MIddle EAR Amplifies sound waves Begins at tympanic membrane (Eardrum) Ends at a bony wall containing two small openings covered by membranes called oval window and round window Three small bones lie between the tympanic membrane and oval window called ossicles, individually they are malleus (hammer), incus (anvil), and stapes (stirrup) MIddle EAR TYMPANIC CAVITY Air-filled space in temporal bone Middle Ear Incus AUDITORY OSSICLES Malleus Stapes Vibrate in response to tympanic membrane Malleus, incus and stapes Hammer, anvil and stirrup OVAL WINDOW Auditory Opening in wall of tympanic cavity Tube Stapes vibrates against it to move fluids in inner ear MIddle EAR Middle Ear Auditory Tube Incus Malleus Stapes Also known as the Eustachian tube Connects middle ear to throat Helps maintain equal pressure on both sides of tympanic membrane Auditory Usually closed by valvelike flaps in Tube throat INNER EAR Filled with fluid Semicircular canals and also the vestibule are both concerned with balance The cochlea is concerned with hearing INNER EAR Complex system of labyrinths • Osseous Labyrinth Bony canal in temporal bone Filled with perilymph • Membranous Labyrinth Tube within osseous labyrinth Filled with endolymph INNER EAR Three (3) parts of labyrinths: • Cochlea Functions in hearing • Semicircular canals Functions in equilibrium • Vestibule Functions in equilibrium COCHLEA • Scala Vestibuli Upper compartment Leads from oval window to apex of spiral, Part of bony labyrinth • Scala Tympani Lower compartment Extends from apex of the cochlea to round window, Part of bony labyrinth COCHLEA • Cochlear duct Portion of membranous labyrinth in cochlea • Vestibular membrane Separates cochlear duct from scala vestibuli • Basilar membrane Separates cochlear duct from scala tympani Organ of Corti • Group of hearing receptor cells (hair cells) • On upper surface of basilar membrane • Different frequencies of vibration move different parts of basilar membrane • Particular sound frequencies cause hairs of receptor cells to bend • Nerve impulse generated MECHANISM OF HEARING Sound waves enter the external acoustic meatus. ↓ Waves of changing pressures cause tympanic membrane to reproduce vibrations coming from sound wave source. ↓ Auditory ossicles amplify and transmit vibrations to the end of stapes. ↓ Movement of stapes at oval window transmits vibrations to perilymph in scala vestibuli. ↓ Vibrations pass through vestibular membrane and enter endolymph of cochlear duct. ↓ Different frequencies of vibration in endolymph move specific regions of basilar membrane, stimulating specific sets of receptor cells. ↓ MECHANISM OF HEARING ↓ A receptor cell depolarizes; its membrane becomes more permeable to calcium ions. ↓ In presence of calcium ions, vesicles at base of receptor cell release neurotransmitter. ↓ Neurotransmitter stimulates ends of nearby sensory neurons. ↓ Sensory impulses are triggered on fibers of the cochlear branch of the vestibulocochlear nerve. ↓ The auditory cortex of the temporal lobe interprets the sensory impulses. SENSE OF TASTE In mammals, taste receptors are a type of chemoreceptor located in taste buds There are at least four primary types of taste Sweet, sour, salty, and bitter A fifth taste, called umami, may exist for certain flavors of cheese, beef broth, and some seafood SENSE OF TASTE Taste buds for each of these tastes are located throughout the tongue Certain regions may be most sensitive to particular tastes Tip of the tongue is most sensitive to sweet tastes Margins to salty and sour tastes Rear of the tongue to bitter tastes SENSE OF TASTE Sweet → Stimulated by carbohydrates Sour →Stimulated by acids Salty → Stimulated by salts Bitter → Stimulated by many organic compounds TASTE BUDS • Organs of taste • Located on papillae of tongue, roof of mouth, linings of cheeks and walls of pharynx Taste Receptors • Chemoreceptors • Taste cells → Modified epithelial cells that function as receptors • Taste hairs → Microvilli that protrude from taste cells; sensitive parts of taste cells TASTE GUSTATION Sugar molecules enter the taste bud ↓ Sugar molecules bind to sweet receptors, specific protein molecules embedded in a taste receptor cell membrane ↓ The binding triggers a signal transduction pathway that causes some ion channels in the membrane to close and others to open. ↓ These changes in the flow of ions create a graded change in membrane potential called a receptor potential. THANK YOU.
Recommended publications
  • Sound and the Ear Chapter 2
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter© Jones & Bartlett 2 Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Sound and the Ear © Jones Karen &J. Kushla,Bartlett ScD, Learning, CCC-A, FAAA LLC © Jones & Bartlett Learning, LLC Lecturer NOT School FOR of SALE Communication OR DISTRIBUTION Disorders and Deafness NOT FOR SALE OR DISTRIBUTION Kean University © Jones & Bartlett Key Learning, Terms LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR Acceleration DISTRIBUTION Incus NOT FOR SALE OR Saccule DISTRIBUTION Acoustics Inertia Scala media Auditory labyrinth Inner hair cells Scala tympani Basilar membrane Linear scale Scala vestibuli Bel Logarithmic scale Semicircular canals Boyle’s law Malleus Sensorineural hearing loss Broca’s area © Jones & Bartlett Mass Learning, LLC Simple harmonic© Jones motion (SHM) & Bartlett Learning, LLC Brownian motion Membranous labyrinth Sound Cochlea NOT FOR SALE OR Mixed DISTRIBUTION hearing loss Stapedius muscleNOT FOR SALE OR DISTRIBUTION Compression Organ of Corti Stapes Condensation Osseous labyrinth Tectorial membrane Conductive hearing loss Ossicular chain Tensor tympani muscle Decibel (dB) Ossicles Tonotopic organization © Jones Decibel & hearing Bartlett level (dB Learning, HL) LLC Outer ear © Jones Transducer & Bartlett Learning, LLC Decibel sensation level (dB SL) Outer hair cells Traveling wave theory NOT Decibel FOR sound SALE pressure OR level DISTRIBUTION
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Nervous System Week 5
    NERVOUS SYSTEM WEEK 5 Doç. Dr. Yasemin SALGIRLI DEMİRBAŞ Neural Pathways in Sensory Systems • A single afferent neuron with all its receptor endings is a sensory unit. • a. Afferent neurons, which usually have more than one receptor of the same type, are the first neurons in sensory pathways. • b. The area of the body that, when stimulated, causes activity in a sensory unit or other neuron in the ascending pathway of that unit is called the receptive field for that neuron. Neural Pathways in Sensory Systems • Neurons in the specific ascending pathways convey information to specific primary receiving areas of the cerebral cortex about only a single type of stimulus. • Nonspecific ascending pathways convey information from more than one type of sensory unit to the brainstem, reticular formation and regions of the thalamus that are not part of the specific ascending pathways. Association Cortex and Perceptual Processing • Information from the primary sensory cortical areas is elaborated after it is relayed to a cortical association area. • The primary sensory cortical area and the region of association cortex closest to it process the information in fairly simple ways and serve basic sensory-related functions. • Regions of association cortex farther from the primary sensory areas process the sensory information in more complicated ways. • Processing in the association cortex includes input from areas of the brain serving other sensory modalities, arousal, attention, memory, language, and emotions. Comparison of General and Special Senses General Senses Special Senses • Include somatic sensations (tactile, • Include smell, taste, vision, hearing thermal, pain, and proprioceptive) and equilibrium. and visceral sensations.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Cochlear Implants
    Cochlear Implants William P. Liirell, BA, and Leslie R Jebson, ST, BA BBA Electrical stimulation as a medical treatment has been used by ter antenna positioned over the receiver and held in place by individuals for centuries, however, the medical establishment a headband. Michaelson's work stimulated the debate that the has historically viewed electricity as something more vaude- hearing discrimination displayed by his patient was not the villian than legitimate medicine. It has not been until the lat- effect of stimulation of the auditory nerve, but rather on the ter half of this century that certain aspects of electrical stimu- remaining neural tissue. Over the next several years, doctors lation has been viewed as a viable medical treatment. The studied the range and degree of hearing of implantation sub- field with the greatest acceptance has been audiology, specifi- jects and debated single- versus multiple-electrode implant cally the cochlear implant. devices. In the latter 1930s, researchers first conceived the idea that From 1969-70, House and Urban conducted their own the cochlea may work as a sort of transducer of acoustic to study, which they reported on at the 1973 meeting of the electric energy. It took another 20 years before J Djoumo and American Otological Society. House and Urban used multi- C Eyries first used an electrode to directly stimulate the channel electrodes in their patients and developed a take- acoustic nerve. Although the results of the procedure were home device for one particular patient. During this period, minimal, they were great enough to encourage the research of the science of the implant field grew exponentially and many Dr William F House, who, in 1961, began using electrode questions about the research were answered.
    [Show full text]
  • Anatomic Moment
    Anatomic Moment Hearing, I: The Cochlea David L. Daniels, Joel D. Swartz, H. Ric Harnsberger, John L. Ulmer, Katherine A. Shaffer, and Leighton Mark The purpose of the ear is to transform me- cochlear recess, which lies on the medial wall of chanical energy (sound) into electric energy. the vestibule (Fig 3). As these sound waves The external ear collects and directs the sound. enter the perilymph of the scala vestibuli, they The middle ear converts the sound to fluid mo- are transmitted through the vestibular mem- tion. The inner ear, specifically the cochlea, brane into the endolymph of the cochlear duct, transforms fluid motion into electric energy. causing displacement of the basilar membrane, The cochlea is a coiled structure consisting of which stimulates the hair cell receptors of the two and three quarter turns (Figs 1 and 2). If it organ of Corti (Figs 4–7) (4, 5). It is the move- were elongated, the cochlea would be approxi- ment of hair cells that generates the electric mately 30 mm in length. The fluid-filled spaces potentials that are converted into action poten- of the cochlea are comprised of three parallel tials in the auditory nerve fibers. The basilar canals: an outer scala vestibuli (ascending spi- membrane varies in width and tension from ral), an inner scala tympani (descending spi- base to apex. As a result, different portions of ral), and the central cochlear duct (scala media) the membrane respond to different auditory fre- (1–7). The scala vestibuli and scala tympani quencies (2, 5). These perilymphatic waves are contain perilymph, a substance similar in com- transmitted via the apex of the cochlea (helico- position to cerebrospinal fluid.
    [Show full text]
  • The Nervous System: General and Special Senses
    18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors
    [Show full text]
  • Structure and Function of Ear
    STRUCTURE AND FUNCTION OF EAR sns college of pharmacy and allied health 1 sciences EAR The human ear serve as an astounding transducer, converting sound energy mechanical energy nerve impulse which is transmitted to the brain Ear consists of three basic parts Outer ear-collect and channel sound to middle ear Middle ear-transform the energy of soundwave into internal vibration to the bones of middle ear and then into compressional wave in the inner ear Inner ear-compressional wave into nerve impulse which can be transmiited to brain sns college of pharmacy and allied health 2 sciences OUTER EAR: The outer ear consist of Pinna and External auditory meatus Auricle (pinna) : collects and directs sound waves to move the tympanic membrane External auditory canal (meatus) : leads sound waves from Auricle to tympanic membrane . Function : collecting and channeling sound waves into the ear canal . sns college of pharmacy and allied health 3 sciences MIDDLE EAR: Tympanic membrane: Elastic structure which vibrates with sound waves . connected with Auditory ossicles; 3 small bones – malleus , Incus, and stapes which conduct vibrations to oval window of inner ear. Tympanic cavity : Air spaces within temporal bone containing middle ear structures . Eustachian tube : communicates middle ear with pharynx . Muscle tensor tympani stapedius: protect inner ear from loud sounds . Function: conduct and amplifies vibrations through the action of 3 bones. sns college of pharmacy and allied health 4 sciences INNER EAR: It is also called as labyrinth because
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Structural Aspects of Slow Mechanical Adaptation in the Vertebrate Cochlea
    International Journal of Comparative Psychology, 2006, 19, 62-82. Copyright 2006 by the International Society for Comparative Psychology Structural Aspects of Slow Mechanical Adaptation in the Vertebrate Cochlea Olga Ganeshina and Misha Vorobyev University of Queensland, Australia Anatomical and experimental data suggesting a slow adaptation of cochlear mechanics are summa- rized and discussed. All groups of terrestrial vertebrates, possessing advanced hearing—mammals, Archosauria (birds and crocodiles) and lizards—developed intrinsic cochlear specializations, which may adjust cochlear mechanics and therefore adapt hearing to different acoustic environments, or protect the cochlea from excessive mechanical stimuli. Mammalian outer hair cells, several types of supporting cells, hyaline and homogene in birds and crocodiles, and putative contractile cells of the cochlear lateral wall in mammals and in geckos may provide structural basis for the slow mechanical adaptation. Independent appearance of these specializations in animals that developed different co- chlear designs may indicate that the maintainence of “mechanical homeostasis” is a common re- quirement for the highly organized hearing organ. Mechano-electric transduction in the vertebrate hearing organs is mediated by mechano-sensitive channels located on the hair cell stereocilia, whose deflec- tion produces an adequate physiological signal. The full dynamic range of the stereocilium transducer is narrow, since it covers approximately 2 angular degrees of hair displacement, or 100 nm of a total excursion at the tip of the hair bundle (Furness et al., 1997; Kros, Lennan, & Richardson, 1995; see Fettiplace & Ricci, 2003). Therefore, precise control of the mechanical input is required to keep the auditory hair cells within their operating range (Fettiplace & Ricci, 2003).
    [Show full text]
  • Large Vestibular Aqueduct and Congenital Sensorineural Hearing Loss
    Large Vestibular Aqueduct and Congenital Sensorineural Hearing Loss Mahmood F. Mafee, 1 Dale Char/etta, Arvind Kumar, and Hera/do Belmonf From the Department of Radiology, University of Illinois at Chicago (MAM), the Department of Radiology, Rush-Presbyterian-St. Luke's Medical Center (DC), and the Department of Otolaryngalogy-Head and Neck Surgery, University of Illinois at Chicago (AK) The inner ear is composed of the membranous All of the structures of the membranous laby­ labyrinth and the osseous labyrinth (1). The mem­ rinth are enclosed within hollowed-out bony cav­ branous labyrinth has two major subdivisions, a ities that are considerably larger than their mem­ sensory portion called the sensory labyrinth and branous contents. These bony cavities assume a nonsensory portion designated the nonsensory the same shape as the membranous chambers labyrinth. and are referred to as the osseous labyrinth. The The sensory labyrinth lies within the petrous bony cavities of the osseous labyrinth are lined portion of the temporal bone. It contains two by periosteum and contain fluid, known as peri­ intercommunicating portions: 1) the cochlear lab­ lymph, that bathes the external surface of the yrinth that consists of the cochlea and is con­ membranous labyrinth. The perilymph is rich in cerned with hearing, and 2) the vestibular laby­ . sodium ions and poor in potassium ions and is rinth that contains the utricle, saccule, and sem­ roughly comparable with extracellular tissue fluid icircular canals, all of which are concerned with or cerebrospinal fluid (CSF). It appears to act as equilibrium. These hollow chambers are filled a hydraulic shock absorber to protect the mem­ with fluid, known as endolymph, that resembles branous labyrinth.
    [Show full text]