Nomina Histologica Veterinaria, First Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression and Localization of Myosin VI in Developing Mouse Spermatids
Histochem Cell Biol DOI 10.1007/s00418-017-1579-z ORIGINAL PAPER Expression and localization of myosin VI in developing mouse spermatids Przemysław Zakrzewski1 · Robert Lenartowski2 · Maria Jolanta Re˛dowicz3 · Kathryn G. Miller4 · Marta Lenartowska1 Accepted: 4 May 2017 © The Author(s) 2017. This article is an open access publication Abstract Myosin VI (MVI) is a versatile actin-based and Sertoli cell actin hoops. Since this is the frst report of motor protein that has been implicated in a variety of dif- MVI expression and localization during mouse spermio- ferent cellular processes, including endo- and exocytic genesis and MVI partners in developing sperm have not yet vesicle traffcking, Golgi morphology, and actin structure been identifed, we discuss some probable roles for MVI stabilization. A role for MVI in crucial actin-based pro- in this process. During early stages, MVI is hypothesized cesses involved in sperm maturation was demonstrated in to play a role in Golgi morphology and function as well Drosophila. Because of the prominence and importance of as in actin dynamics regulation important for attachment actin structures in mammalian spermiogenesis, we inves- of developing acrosome to the nuclear envelope. Next, tigated whether MVI was associated with actin-mediated the protein might also play anchoring roles to help gener- maturation events in mammals. Both immunofuorescence ate forces needed for spermatid head elongation. Moreo- and ultrastructural analyses using immunogold labeling ver, association of MVI with actin that accumulates in showed that MVI was strongly linked with key structures the Sertoli cell ectoplasmic specialization and other actin involved in sperm development and maturation. -
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa
International Journal of Molecular Sciences Review Development and Maintenance of Epidermal Stem Cells in Skin Adnexa Jaroslav Mokry * and Rishikaysh Pisal Medical Faculty, Charles University, 500 03 Hradec Kralove, Czech Republic; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs. Keywords: stem cell; epidermal placode; skin adnexa; signalling; hair pigmentation; markers; keratins 1. Epidermal Stem Cells as Units of Development 1.1. Development of the Epidermis and Placode Formation The embryonic skin at very early stages of development is covered by a surface ectoderm that is a precursor to the epidermis and its multiple derivatives. -
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Inhalation Devices: Various Forms of Administration for Therapeutic Optimization
vv ISSN: 2640-8082 DOI: https://dx.doi.org/10.17352/oja CLINICAL GROUP Renata Cristina de Angelo Calsaverini Leal* Review Article Santa Fé do Sul Foundation of Education and Culture, Brazil Inhalation Devices: Various forms Dates: Received: 31 May, 2017; Accepted: 26 June, of administration for Therapeutic 2017; Published: 27 June, 2017 *Corresponding author: Renata Cristina de Angelo Optimization Calsaverini Leal, Santa Fé do Sul Foundation of Education and Culture, Brazil, Tel: 55 (17) 3272-2769, E-mail: Keywords: Inhalation; Aerosol; Nebulizer Summary https://www.peertechz.com Introduction: Aerosol therapy consists of spraying liquid particles suspended for therapeutic purposes in the respiratory tract. With direct absorption and deposition at the lung level, avoiding side effects and presenting fast response time. Several factors infl uence the drug action, such as size, particle movement, ventilatory fl ow, pulmonary expansion, anatomy, respiratory mechanics and the nebulizer and patient interface. The therapeutic optimization depends on the type of nebulizer differentiating itself by the physical principle that generates the mist. Objectives: Check advantages and disadvantages of different inhalation devices. Methodology. This is a review of the PubMed database using descriptors: ultrasonic and jet nebulizer, aerosol deposition in the lung, metered dose inhaler and dry, inhaler therapy. Results: Different devices are mentioned in the literature: pneumatic and ultrasonic nebulizers (administering solutions), metered pressurized inhalers - pMDI used with or without expander chamber (administering suspensions) and dry powder inhalers - DPI (administering powder). Discussion and Conclusion: The US has advantages: quiet, does not require coordinating abilities, without propellant gases and quick nebulization with small amount of solution. Disadvantages: change in the active principle of thermosensitive drugs, deposition in the oropharynx and VAI of 2% of inhaled particles. -
Respiratory System
Respiratory system Department of Histology and Embryology of Jilin university ----Jiang Wenhua 1. General description z the nose, the pharynx, the larynx, the trachea, bronchus, lung zFunction: inspiring oxygen, expiring carbon dioxide The lung synthesises many materials 2.Trachea and bronchi General structure mucosa submucosa adventitia The trachea is a thin-walled tube about 11centimeters long and 2 centimeters in diameter, with a somewhat flattened posterior shape. The wall of the trachea is composed of three layers: mucosa, submucosa, and adventitia 2.1 mucosa 2.1.1 pseudostratified ciliated columnar epithelium 2.1.1.1 ciliated columnar cells These cells are columnar in shape with a centrally –located oval –shaped nucleus, on the free surface of the cells are microvilli and cilia, which regularly sweep toward the pharynx to remove inspired dust particles 2.1.1.2 brush cells These cells are columnar in shape with a round or oval –shaped nucleus located in the basal portion. on the free surface the microvilli are arranged into the shape of a brush. These cells are considered to be a type of under-developed ciliated columnar cell Schematic drawing of the trachea mucosa Scanning electron micrographs of the surface of mucosa Schematic drawing of the trachea mucosa 2.1.1.3 goblet cells secrete mucus to lubricate and protect the epithelium Schematic drawing of the trachea mucosa 2.1.1.4 basal cells These cells are cone –shaped and situated in the deep layer of the epithelium. Their apices are not exposed to the lumen, and their nuclei are round in shape, such cells constitute a variety of undifferentiated cells 2.1.1.5 small granular cells These cells are a kind of endocrine cells . -
Diverse Repertoire of Human Adipocyte Subtypes Develops from Transcriptionally Distinct Mesenchymal Progenitor Cells
Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells So Yun Mina,b, Anand Desaia, Zinger Yanga,b, Agastya Sharmaa, Tiffany DeSouzaa, Ryan M. J. Gengaa,b,c, Alper Kucukurald, Lawrence M. Lifshitza, Søren Nielsene,f, Camilla Scheelee,f,g, René Maehra,c, Manuel Garbera,d, and Silvia Corveraa,1 aProgram in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655; cDepartment of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655; dProgram in Bioinformatics, University of Massachusetts Medical School, Worcester, MA 01655; eCentre of Inflammation and Metabolism, Rigshospitalet, University of Copenhagen, 1165 Copenhagen Denmark; fCentre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 1165 Copenhagen Denmark; and gNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 1165 Copenhagen, Denmark Edited by Rana K. Gupta, University of Texas Southwestern Medical Center, Dallas, TX, and accepted by Editorial Board Member David J. Mangelsdorf July12, 2019 (received for review April 16, 2019) Single-cell sequencing technologies have revealed an unexpectedly UCP1 in response to stimulation. Lineage-tracing and gene- broad repertoire of cells required to mediate complex functions in expression studies point to distinct developmental origins for multicellular organisms. Despite the multiple roles of adipose tissue these adipocyte subtypes (5, 6). In adult humans, no specific depot + in maintaining systemic metabolic homeostasis, adipocytes are is solely composed of UCP1-containing adipocytes, but UCP-1 thought to be largely homogenous with only 2 major subtypes cells can be found interspersed within supraclavicular, para- recognized in humans so far. -
2020 WSES Guidelines for the Detection and Management of Bile
Edinburgh Research Explorer 2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy Citation for published version: De’angelis, N, Catena, F, Memeo, R, Coccolini, F, Martínez-pérez, A, Romeo, OM, De Simone, B, Di Saverio, S, Brustia, R, Rhaiem, R, Piardi, T, Conticchio, M, Marchegiani, F, Beghdadi, N, Abu-zidan, FM, Alikhanov, R, Allard, M, Allievi, N, Amaddeo, G, Ansaloni, L, Andersson, R, Andolfi, E, Azfar, M, Bala, M, Benkabbou, A, Ben-ishay, O, Bianchi, G, Biffl, WL, Brunetti, F, Carra, MC, Casanova, D, Celentano, V, Ceresoli, M, Chiara, O, Cimbanassi, S, Bini, R, Coimbra, R, Luigi De’angelis, G, Decembrino, F, De Palma, A, De Reuver, PR, Domingo, C, Cotsoglou, C, Ferrero, A, Fraga, GP, Gaiani, F, Gheza, F, Gurrado, A, Harrison, E, Henriquez, A, Hofmeyr, S, Iadarola, R, Kashuk, JL, Kianmanesh, R, Kirkpatrick, AW, Kluger, Y, Landi, F, Langella, S, Lapointe, R, Le Roy, B, Luciani, A, Machado, F, Maggi, U, Maier, RV, Mefire, AC, Hiramatsu, K, Ordoñez, C, Patrizi, F, Planells, M, Peitzman, AB, Pekolj, J, Perdigao, F, Pereira, BM, Pessaux, P, Pisano, M, Puyana, JC, Rizoli, S, Portigliotti, L, Romito, R, Sakakushev, B, Sanei, B, Scatton, O, Serradilla-martin, M, Schneck, A, Sissoko, ML, Sobhani, I, Ten Broek, RP, Testini, M, Valinas, R, Veloudis, G, Vitali, GC, Weber, D, Zorcolo, L, Giuliante, F, Gavriilidis, P, Fuks, D & Sommacale, D 2021, '2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy', World Journal of Emergency Surgery, vol. 16, no. 1, 30. https://doi.org/10.1186/s13017-021-00369-w -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Oligodendrocytes in Development, Myelin Generation and Beyond
cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes. -
Corrective Gene Transfer of Keratinocytes from Patients with Junctional Epidermolysis Bullosa Restores Assembly of Hemidesmosomes in Reconstructed Epithelia
Gene Therapy (1998) 5, 1322–1332 1998 Stockton Press All rights reserved 0969-7128/98 $12.00 http://www.stockton-press.co.uk/gt Corrective gene transfer of keratinocytes from patients with junctional epidermolysis bullosa restores assembly of hemidesmosomes in reconstructed epithelia J Vailly1, L Gagnoux-Palacios1, E Dell’Ambra2, C Rome´ro1, M Pinola3, G Zambruno3, M De Luca2,3 J-P Ortonne1,4 and G Meneguzzi1 1U385 INSERM, Faculte´ de Me´decine, Nice; 4Service de Dermatologie, Hoˆpital L’Archet, Nice, France; Laboratories of 2Tissue Engineering and 3Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, Rome, Italy Herlitz junctional epidermolysis bullosa (H-JEB) provides deposited into the extracellular matrix. Re-expression of a promising model for somatic gene therapy of heritable laminin-5 induced cell spreading, nucleation of hemides- mechano-bullous disorders. This genodermatosis is mosomal-like structures and enhanced adhesion to the cul- caused by the lack of laminin-5 that results in absence of ture substrate. Organotypic cultures performed with the hemidesmosomes (HD) and defective adhesion of squam- transduced keratinocytes, reconstituted epidermis closely ous epithelia. To establish whether re-expression of lami- adhering to the mesenchyme and presenting mature hemi- nin-5 can restore assembly of the dermal-epidermal attach- desmosomes, bridging the cytoplasmic intermediate fila- ment structures lacking in the H-JEB skin, we corrected the ments of the basal cells to the anchoring filaments of the genetic mutation hindering expression of the 3 chain of basement membrane. Our results provide the first evi- laminin-5 in human H-JEB keratinocytes by transfer of a dence of phenotypic reversion of JEB keratinocytes by laminin 3 transgene. -
Chapter 8 Nervous System
Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials -
ATG9 Regulates Autophagosome Progression from the Endoplasmic Reticulum in Arabidopsis
ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis Xiaohong Zhuanga,b,1, Kin Pan Chunga,b,1, Yong Cuia,b,1, Weili Lina,b, Caiji Gaoa,b,2, Byung-Ho Kanga,b, and Liwen Jianga,b,c,3 aCentre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; bState Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and cThe Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China Edited by Diane C. Bassham, Iowa State University, Ames, IA, and accepted by Editorial Board Member Maarten J. Chrispeels December 8, 2016 (received for review October 6, 2016) Autophagy is a conserved pathway for bulk degradationofcytoplasmic autophagy pathway because ATG9 was required for the biogenesis material by a double-membrane structure named the autophagosome. of ER-derived compartments during the unfolded protein response The initiation of autophagosome formation requires the recruitment of (9). However, whether ATG9 plays a direct role in the early stages autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal of autophagosome formation or in a specific autophagy process structure. However, the functional relationship between ATG9 vesicles remainstobeinvestigatedinplants.Onemajorchallengeisthelack and the phagophore is controversial in different systems, and the mo- of morphologically informative visualization that might correlate the lecular function of ATG9 remains unknown in plants. Here, we demon- early autophagosomal structures and ATG9 vesicles in real-time and strate that ATG9 is essential for endoplasmic reticulum (ER)-derived in three dimensions. autophagosome formation in plants.