Last Month's Slides

Total Page:16

File Type:pdf, Size:1020Kb

Last Month's Slides ISSUE 05ISSUE September 2020 This issue Last Month’s Slides P.1 Last Month’s Monthly Case study P.1 Red Cell morphology P.2-3 Slides Monthly Quiz P.2 Morphology Posters P.3 August 2020 Slide Summaries Monthly Digital Case study August 2020 Slide 6 Slide 1 Generally normal film – all 5 normal WBC cell types make it a good Presentation training slide Female (65 years old) In Intensive Care Unit Slide 2 Generally normal film – some FBC Results platelet aggregates WBC 14.8 (10^3/mm3) Neutrophils 53.0% RBC 3.06 (10^6/mm3) Lymphocytes 17.4% Slide 3 HGB 91(g/L) Monocytes 6.1% Generally normal blood film, mild HCT 27.5(%) Metamyelocytes 12.2% basophilia MCV 90 (fL) Myelocytes 8.7% MCH 29.9 (pg) Promyelocytes 0.9% Slide 4 MCHC 33.3 (g/dL) Blasts 1.7% Lymphocytosis with large granular PLT 57 (10^3/mm3) lymphocytes and some atypical lymphocytes in a 19- year old male. NRBCs 20/100WBCs Glandular fever screening recommended Slide review Leucoerythroblstic blood film with an occasional blast. Neutrophils are generally left shifted but without Slide 5 toxic granulation. Basophilia, myelocytes and The red cells show a variety of dyscrasia. Schistocytes occasional blast. Possible and the occasional spherocyte indicative of haemolysis. myeloproliferative disorder Basophilic stippling and the occasional Howell-Jolly Body. Slide 6 The blood film confirms the thrombocytopaenia Patient in intensive care Leukoerythroblastic blood film. Thrombocytopaenia, anisocytosis, Diagnosis schistocytes, polychromasia and No clinical details however, given the patient’s location and in the the occasional spherocyte. absence of any other clinical details, the blood film is suggestive of Basophilic RBC inclusions Sepsis with potential haemolysis, possible DIC. Monthly Morphology Red Cell Quiz Inclusions in Can you identify this Peripheral Blood cell?: An overview of laboratory findings Introduction Red blood cells or Erythrocytes, are the most common cell type. The morphology of a normal red cell is a bio-concave disc, lacking a nucleus or organelles, with a central area of pallor. In general, red cells viewed under a microscope will have a fairly uniform variation in size, shape and colour. A variation in any of these features could indicate an abnormal red cell morphology. Red cell inclusions may arise in various sources. The correct identification of these inclusions is extremely important for providing information on metabolic, physiological and also pathogenic conditions which may be effecting the patient. The most commonly seen red cell inclusions are: What does this Indicate? Basophilic Stippling​ Basophilic stippling, or punctate basophilia, appears in red cells as blue, fairly evenly spread fine dots throughout the cytoplasm of the cell. The stippling can be Last month’s cells: described as “fine” or “coarse”. The stippling is due to spontaneous aggregation of ribosomal RNA in the cytoplasm of red cells. These aggregates then stain and are visible when using routine haematology stains. Basophilic stippling commonly arises due to one of two pathological processes: Dyserythropoietic states- infiltrated Bone marrow, Haemoglobinopathy, Pathways of RNA breakdown are impaired- due to poisoning by heavy metals, classically lead or arsenic, or pyrimidine 5’ nuclease deficiency. Howell-Jolly bodies Identified by small blue/purple fragments which are generally rounded in shape. Howell-jolly bodies are usually single and centrally placed within the red cell with a relatively large size compared to other The blood film shows a red inclusions. The colour and position reflects their origin cell with a Cabot ring and a as non-functional nucleus fragments which have Howell-Jolly body Remained in the cell when it left the bone marrow. The presence of these inclusions is commonly In this case, the patient was associated with the absence of the spleen or if the function of the spleen is impaired.in cases displaying a myelodysplastic such as coeliac disease, bone marrow transplant or pregnancy. picture with abnormalities in all cell lines and Pappenheimer Bodies circulating Pappenheimer bodies are basophilic iron-containing granules. Non-nucleated red micromegakaryocytes. cells containing pappenheimer bodies are known as siderocytes. These inclusions occur because of aggregates of iron from the cytoplasm, or within the For more on red cell mitochondria. A nucleated cell with the same inclusion is known as a sideroblast. Pappenheimer bodies differ from basophilic stippling in that they inclusions, see the main are a denser blue and the granules are courser and there are usually article. less of them and they are usually seen at the edge of the cell (see over for illustration). Red Cell Other News QSP 2.0 Inclusions in Available now! Peripheral Blood Options for a single Continued from page 2… operator or site license which allows Staining with Prussian blue will confirm the presence of siderocytes with a blue reaction, up to 10 concurrent if in sufficient amounts. users The presence of siderocytes may be connected to haemolytic anaemia- increased iron turnover can lead to siderocyte formation, or abnormal haem synthesis, where iron Bibliography accumulates in the RBC if haemoglobin production is hindered. QSP August 2020 Heinz Bodies Hoffbrand’s Essential Heinz bodies appear as small, round inclusions within the red cell, but are not visible Haematology 7th edition when using Romanowski dyes. They are visualised more clearly with the use of Wiley Blackwell supravital staining such as methylene blue. Their presence on a blood film indicates oxidative damage to the haemoglobin component molecules, often through oxidant damage by administered drugs. Conditions associated with Heinz bodies include alpha-thalassaemia or haemolytic anaemia and G6PD deficiency. Heinz bodies can also be present in chronic liver disease. Editorial Team Kelly Duffy Mandy Campbell Conclusion Shubham Rastogi In conclusion, red cell inclusions are nuclear or cytoplasmic aggregates which can be stained. The presence of these inclusion bodies is almost always indicative of some pathological abnormality and is therefore crucial that the correct identification. About us Morphology Posters – Free of charge HORIBA UK Limited Kyoto Close HORIBA Medical have produced Moulton Park two posters; Haematopoiesis, an Northampton, UK illustrated chart of cell development, and NN3 6FL Morphological abnormalities of red blood cells. HORIBA Medical Parc Euromédecine, 390 Rue du Caducée, These are available Free of Charge as high- 34790, France resolution PDF files for printing locally – they look particularly good in A2 size. www.horiba.com/medical If you would like to receive the files, please contact International Marketing Communications at [email protected].
Recommended publications
  • Erythrocytes: Overview, Morphology, Quantity by AH Rebar Et
    In: A Guide to Hematology in Dogs and Cats, Rebar A.H., MacWilliams P.S., Feldman B.F., Metzger F.L., Pollock R.V.H. and Roche J. (Eds.). Publisher: Teton NewMedia, Jackson WY (www.veterinarywire.com). Internet Publisher: International Veterinary Information Service, Ithaca NY (www.ivis.org), 8-Feb-2005; A3304.0205 Erythrocytes: Overview, Morphology, Quantity A.H. Rebar1, P.S. MacWilliams2, B.F. Feldman 3, F.L. Metzger 4, R.V.H. Pollock 5 and J. Roche 6 1Dept of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, IN,USA. 2Dept of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, WI, USA. 3Dept of Biomedical Sciences & Pathobiology, VA-MD - Regional College of Veterinary Medicine, Virginia Tech, VA, USA. 4Metzger Animal Hospital,State College,PA, USA. 5Fort Hill Company, Montchanin, DE, USA. 6 Hematology Systems, IDEXX Laboratories, Westbrook, ME, USA. Overview Production Red blood cells (RBC) are produced in the bone marrow. Numbers of circulating RBCs are affected by changes in plasma volume, rate of RBC destruction or loss, splenic contraction, erythropoietin (EPO) secretion, and the rate of bone marrow production. A normal PCV is maintained by an endocrine loop that involves generation and release of erythropoietin (EPO) from the kidney in response to renal hypoxia. Erythropoietin stimulates platelet production as well as red cell production. However, erythropoietin does not stimulate white blood cell (WBC) production. Erythropoiesis and RBC numbers are also affected by hormones from the adrenal cortex, thyroid, ovary, testis, and anterior pituitary. Destruction Red cells have a finite circulating lifespan. In dogs, the average normal red cell circulates approximately 100 days.
    [Show full text]
  • The Hematological Complications of Alcoholism
    The Hematological Complications of Alcoholism HAROLD S. BALLARD, M.D. Alcohol has numerous adverse effects on the various types of blood cells and their functions. For example, heavy alcohol consumption can cause generalized suppression of blood cell production and the production of structurally abnormal blood cell precursors that cannot mature into functional cells. Alcoholics frequently have defective red blood cells that are destroyed prematurely, possibly resulting in anemia. Alcohol also interferes with the production and function of white blood cells, especially those that defend the body against invading bacteria. Consequently, alcoholics frequently suffer from bacterial infections. Finally, alcohol adversely affects the platelets and other components of the blood-clotting system. Heavy alcohol consumption thus may increase the drinker’s risk of suffering a stroke. KEY WORDS: adverse drug effect; AODE (alcohol and other drug effects); blood function; cell growth and differentiation; erythrocytes; leukocytes; platelets; plasma proteins; bone marrow; anemia; blood coagulation; thrombocytopenia; fibrinolysis; macrophage; monocyte; stroke; bacterial disease; literature review eople who abuse alcohol1 are at both direct and indirect. The direct in the number and function of WBC’s risk for numerous alcohol-related consequences of excessive alcohol increases the drinker’s risk of serious Pmedical complications, includ- consumption include toxic effects on infection, and impaired platelet produc- ing those affecting the blood (i.e., the the bone marrow; the blood cell pre- tion and function interfere with blood cursors; and the mature red blood blood cells as well as proteins present clotting, leading to symptoms ranging in the blood plasma) and the bone cells (RBC’s), white blood cells from a simple nosebleed to bleeding in marrow, where the blood cells are (WBC’s), and platelets.
    [Show full text]
  • Hematology Unit Lab 1 Review Material
    Hematology Unit Lab 1 Review Material Objectives Laboratory instructors: 1. Facilitate lab discussion and answer questions Students: 1. Review the introductory material below 2. Study and review the assigned cases and questions in small groups before the Lab. This includes the pathological material using Virtual Microscopy 3. Be prepared to present your cases, questions and answers to the rest of your Lab class during the Lab Erythropoiesis: The process of red blood cell (RBC) production • Characterized by: − Increasing hemoglobin synthesis Erythroid maturation stages (Below): − Decreasing cell size - Average of 4 cell divisions during maturation − Decreasing cytoplasmic basophilia [One pronormoblast gives rise to 16 red cells] (increasing pink color) - pronormoblast → reticulocyte = 7 days − Progressive chromatin condensation of the - reticulocytes → mature RBC =1-2 days nuclei − Extrusion of nucleus (orthochromatic stage) − Extruded nuclei are subsequently phagocytized − Loss of mitotic capability after the early stage of polychromatophilic normoblast • Picture below: Erythroid progenitors (normoblasts) cluster around macrophages (arrows) in the bone marrow and spleen • Macrophages store iron • Iron is transferred from macrophages to erythroid precursor cells • Iron is used by normoblasts for hemoglobin synthesis aka nucleated rbc aka reticulocyte 1 Mature Red Blood Cell 7-8 microns; round / ovoid biconcave disc with orange-red cytoplasm, no RNA, no nucleus; survives ~120 days in circulation Classification of Anemia by Morphology 1.
    [Show full text]
  • Complete Blood Count in Primary Care
    Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document.
    [Show full text]
  • Red Blood Cell Morphology in Patients with Β-Thalassemia Minor
    J Lab Med 2017; 41(1): 49–52 Short Communication Carolin Körber, Albert Wölfler, Manfred Neubauer and Christoph Robier* Red blood cell morphology in patients with β-thalassemia minor DOI 10.1515/labmed-2016-0052 Keywords: β-thalassemia minor; erythrocytes; red blood Received July 11, 2016; accepted October 20, 2016; previously published cells; red blood cell morphology. online December 10, 2016 Abstract In β-thalassemias, the examination of a peripheral blood (PB) smear may provide relevant clues to initial diagnosis. Background: A systematic analysis of the occurrence of Complete laboratory investigation consists of the determina- red blood cell (RBC) abnormalities in β-thalassemia minor tion of the complete blood count, assessment of red blood has not been performed to date. This study aimed to iden- cell (RBC) morphology, high performance liquid chroma- tify and quantify the frequency of RBC abnormalities in tography (HPLC), hemoglobin electrophoresis and, where patients with β-thalassemia minor. necessary, DNA analysis [1]. Especially in the clinically Methods: We examined blood smears of 33 patients with severe forms referred to as β-thalassemia major and interme- β-thalassemia minor by light microscopy for the occur- dia, RBC abnormalities are often markedly apparent [2]. In rence of 15 defined RBC abnormalities. In the case of posi- β-thalassemia minor, also called β-thalassemia trait, the car- tivity, the abnormal cells/20 high power fields (HPF) at riers are usually clinically asymptomatic, showing persistent 1000-fold magnification were counted. microcytosis and hypochromia or mild microcytic anemia [1, Results: Anisocytosis, poikilocytosis and target cells 3]. The PB smear may show microcytosis, hypochromia and, (median 42/20 HPF) were observed in all, and ovalocytes infrequently, poikilocytosis [2].
    [Show full text]
  • Laboratory Diagnosis Review
    Laboratory Diagnosis Review Hematology Definition: The study of the three cellular elements of blood: Red Blood Cells (RBCs), White Blood Cells (WBCs), and Platelets Hemoglobin (Hgb or Hb): The oxygen carrying compound in RBCs Reference Range: Men 14-18 g/dL, Women 12-16 g/dL, Boy and girl levels are equal till age 11 Smoking increases, Pregnancy decreases, Capillary levels in newborns are higher than venous levels, Race, Position, and Time of day have minor effects, High WBCs may falsely raise Hgb. Below normal Hgb = anemia Red Blood Cell Count Reference Range: Men 4l5-6 million / cubic ml, Women4.0-5.5 million / ml3. Hematocrit (Hct): The ratio of RBCs to plasma Reference Range, Men 40%-54%, Women 37%-47%, Depends mostly on the number of RBCs but is slightly effected by the average RBC size, Not measured directly, but is calculated from the RBC count and the mean corpuscular volume (MCV). Increased by smoking, Decrease = anemia Useful Relationships: Hb X 3 = Hct RBCs (millions) X 3 = Hgb RBCs (millions) X 9 = Hct Wintrobe Indices: These indices are only significant if the RBCs, Hgb, and/or Hct. is abnormal MCV: Mean Corpuscular Volume MCH: Mean Corpuscular Hemoglobin MCHC: Mean Corpuscular Hemoglobin Concentration RDW: Red blood cell Distribution Width MCV: Reference Ranges: Men 80-95 fl (femtoliters), Women 81-99 fl (femto = 1 quadrillionth) Increased MCV = Macrocytosis, Decreased = Microcytosis MCV is increased by smoking, by B12 and/or folic acid deficiency, chronic liver disease, chronic alcoholism, Cardiorespiratory problems… Some macrocytic patients will not have macrocytosis MCV is decreased by iron deficiency, thalassemia, and anemia of chronic disease MCH: Reference Range 27-31 pg MCH is increased by Macrocytic anemias.
    [Show full text]
  • 10 11 Cyto Slides 81-85
    NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Diagnosis: MDS to AML 9 WBC 51.0 x 10 /L 12 Available data: RBC 3.39 x 10 /L 72 year-old female Hemoglobin 9.6 g/dL Hematocrit 29.1 % MCV 86.0 fL Platelet count 16 x 109 /L The significant finding in this case of Acute Myelogenous Leukemia (AML) was the presence of many blast forms. The participant median for blasts, all types was 88. The blast cells in this case (Image 081) are large, irregular in shape and contain large prominent nucleoli. It is difficult to identify a blast cell as a myeloblast without the presence of an Auer rod in the cytoplasm. Auer rods were reported by three participants. Two systems are used to classify AML into subtypes, the French- American-British (FAB) and the World Health Organization (WHO). Most are familiar with the FAB classification. The WHO classification system takes into consideration prognostic factors in classifying AML. These factors include cytogenetic test results, patient’s age, white blood cell count, pre-existing blood disorders and a history of treatment with chemotherapy and/or radiation therapy for a prior cancer. The platelet count in this case was 16,000. Reduced number of platelets was correctly reported by 346 (94%) of participants. Approximately eight percent of participants commented that the red blood cells in this case were difficult to evaluate due to the presence of a bluish hue around the red blood cells. Comments received included, “On slide 081 the morphology was difficult to evaluate since there was a large amount of protein surrounding RBC’s”, “Slide 081 unable to distinguish red cell morphology due to protein” and “Unable to adequately assess morphology on slide 081 due to poor stain”.
    [Show full text]
  • Advanced Blood Cell Id: Peripheral Blood Findings in Sickle Cell Anemia
    ADVANCED BLOOD CELL ID: PERIPHERAL BLOOD FINDINGS IN SICKLE CELL ANEMIA Educational commentary is provided for participants enrolled in program #259- Advanced Blood Cell Identification. This virtual blood cell identification program includes case studies with more difficult challenges. To view the blood cell images in more detail, click on the sample identification numbers underlined in the paragraphs below. This will open a virtual image of the selected cell and the surrounding fields. If the image opens in the same window as the commentary, saving the commentary PDF and opening it outside your browser will allow you to switch between the commentary and the images more easily. Click on this link for the API ImageViewerTM Instructions. Learning Outcomes After completing this exercise, participants should be able to: • describe morphologic features of normal peripheral blood leukocytes. • identify morphologic characteristics distinctive of sickle cells. • distinguish selected RBC inclusions based on morphologic features. • describe significant morphologic characteristics of nucleated red blood cells. Case Study The CBC from a 30 year old African American male is as follows: WBC=9.5 x 109/L, RBC=1.66 x 1012/L, Hgb=5.0 g/dL, Hct=13.9%, MCV=83.7 fL, MCH=30.1 pg, MCHC=36.0 g/dL, RDW-CV=24.9%, MPV=9.6 fL, Platelet=326 x 109/L. Educational Commentary The cells and RBC inclusions chosen for identification in this testing event were seen in the peripheral blood of a man with a severe anemia resulting from sickle cell disease. The cell shown in ABI-08 contains a Howell-Jolly body.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 12, pp.62497-62502, December, 2017 ISSN: 0975-833X RESEARCH ARTICLE INCLUSION BODIES - A REVIEW 1Dr. Mrunalini Mahesh Dadpe, 2, *Dr. Sourab Kumar, 3Dr. Mahesh Dadpe, 4Dr. Payoshnee Bhalinge Jadhav, 5Dr. Abhishek Jadhav and 6Dr. Shilpi Suman 1, 4Department of Oral Pathology, M A Rangoonwala Dental College, Aazam Campus, Camp, Pune 411001, India 2, 5, 6Department of oral Pathology, D.Y. Patil School of Dentistry, Nerul, Navi Mumbai 400706, India 3MIDSR Dental College, Vishwanathpuram, Amba Jogai Road, Latur 413531, India ARTICLE INFO ABSTRACT Article History: The word inclusion means incorporation. Inclusion bodies are nuclear or cytoplasmic aggregates of Received 16th September, 2017 stainable substances which are usually ‘proteins’. They typically represent sites of viral multiplication Received in revised form in bacteria or in a eukaryotic cell and usually consist of viral capsid proteins. Inclusion bodies are 17th October, 2017 typically identified within a cell by their different appearance. Accepted 25th November, 2017 Published online 27th December, 2017 Key words: Proteins, Viral, Types, Structures Copyright © 2017, Mrunalini Mahesh Dadpe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Dr. Mrunalini Mahesh Dadpe, Dr. Sourab Kumar, Dr. Mahesh Dadpe, Dr. Payoshnee Bhalinge Jadhav, Dr. Abhishek Jadhav and Dr. Shilpi Suman, 2017. “Inclusion Bodies - A Review”, International Journal of Current Research, 9, (12), 62497-62502. Classification INTRODUCTION Viral inclusion bodies Inclusion bodies (IB) can also be hallmarks of genetic diseases, as in the case of Neuronal Inclusion bodies in neural disorders, A.
    [Show full text]
  • Blood Lab First Week
    Blood Lab First Week This is a self propelled powerpoint study atlas of blood cells encountered in examination of the peripheral blood smear. It is a requirement of this course that you begin review of these slides with the first day of class in order to familiarize yourself with terms used in describing peripheral blood morphology. Laboratory final exam questions are derived directly from these slides. The content of these slides may duplicate slides (1-37) listed on the Hematopathology Website. You must familiarize yourself with both sets of slides in order to have the best learning opportunity. Before Beginning This Slide Review • Please read the Laboratory information PDF under Laboratory Resources file to learn about – Preparation of a blood smear – How to select an area of the blood smear for review of morphology and how to perform a white blood cell differential – Platelet estimation – RBC morphology descriptors • Anisocytosis • Poikilocytosis • Hypochromia • Polychromatophilia Normal blood smear. Red blood cells display normal orange pink cytoplasm with central pallor 1/3-1/2 the diameter of the red cell. There is mild variation in size (anisocytosis) but no real variation in shape (poikilocytosis). To the left is a lymphocyte. To the right is a typical neutrophil with the usual 3 segmentations of the nucleus. Med. Utah pathology Normal blood: thin area Ref 2 Normal peripheral blood smear. This field is good for exam of cell morphology, although there are a few minor areas of overlap of red cells. Note that most cells are well dispersed and the normal red blood cell central pallor is noted throughout the smear.
    [Show full text]
  • Morphologic Evaluation of Anemia – I Adewoyin S
    nd M y a ed g ic lo i o n i e B Adewoyin and Ogbenna, Biol Med (Aligarh) 2016, 8:6 DOI: 10.4172/0974-8369.1000322 ISSN: 0974-8369 Biology and Medicine Review Article Open Access Morphologic Evaluation of Anemia – I Adewoyin S. Ademola1* and Ogbenna A. Abiola2 1Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria 2Department of Haematology and Blood Transfusion, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria *Corresponding author: Adewoyin S. Ademola, Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria, Tel: +2347033966347; E-mail: [email protected] Received date: June 20, 2016; Accepted date: July 15, 2016; Published date: July 22, 2016 Copyright: © 2016 Adewoyin AS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract Anaemia is a feature of many tropical diseases. Anaemia diagnosis therefore remains a crucial intervention among physicians in developing countries. A barrage of laboratory test (anaemic work-up) is usually deployed in differentiating its underlying cause. However, central to anaemia evaluation is the morphology of the red cells and other cell lines. Conventionally, initial laboratory tests include full blood count, reticulocyte count and peripheral blood film (PBF). PBF is often a clinical request, performed by skilled technologist and reported by haematologist/ haematomorphologist. Findings from PBF are reviewed and reported in the light of patient’s clinical history and examination findings.
    [Show full text]
  • Assessment of Splenic Function A
    Assessment of splenic function A. P. N. A. Porto, A. J. J. Lammers, R. J. Bennink, I. J. M. Berge, P. Speelman, J. B. L. Hoekstra To cite this version: A. P. N. A. Porto, A. J. J. Lammers, R. J. Bennink, I. J. M. Berge, P. Speelman, et al.. Assessment of splenic function. European Journal of Clinical Microbiology and Infectious Diseases, Springer Verlag, 2010, 29 (12), pp.1465-1473. 10.1007/s10096-010-1049-1. hal-00624509 HAL Id: hal-00624509 https://hal.archives-ouvertes.fr/hal-00624509 Submitted on 19 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript: Review Assessment of Slenic Function.doc Click here to view linked References 1 2 3 4 Title-page. 5 6 7 8 Title: Assessment of splenic function 9 10 11 Authors: A.P.N.A. de Porto1, A.J.J. Lammers1, R.J. Bennink2, I.J.M. ten Berge3, P. Speelman1, 12 4 13 J.B.L. Hoekstra . 14 15 16 Affiliations 17 18 1: Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, 19 Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
    [Show full text]