Advanced Blood Cell Id: Peripheral Blood Findings in Sickle Cell Anemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Illinois College of Medicine at Urbana-Champaign
UNIVERSITY OF ILLINOIS COLLEGE OF MEDICINE AT URBANA-CHAMPAIGN PATHOLOGY - VOLUME I 2014 - 2015 PATHOLOGY TEACHING FACULTY LIST Jerome Anderson, MD Farah Gaudier, MD Richard Tapping, PhD Department of Pathology Dept. of Pathology Associate Professor. McDonough District Hosp. Carle Physician Group Dept. of Microbiology McComb, IL 61455 [email protected] [email protected] Phone: (309) 837-2368 [email protected] Teaching Assistant Nasser Gayed, MD Lindsey Burnett, PhD Brett Bartlett, MD Dept. of Med. Info. Sciences [email protected] Dept. of Pathology 190 Medical Sciences Bldg SBL Health Centre 506 South Mathews Avenue Mattoon, IL 61938 Urbana, IL 61801 Pathology Office [email protected] [email protected] Jackie Newman Phone: (217) 244-2265 Frank Bellafiore, MD Nicole Howell, MD [email protected] Dept. of Pathology Dept. of Pathology Carle Physician Group Carle Physician Group 602 West University Avenue [email protected] Urbana, IL 61801 [email protected] Zheng George Liu, MD Dept. of Pathology Allan Campbell, MD Carle Physician Group Dept. Of Pathology 602 West University Avenue UICOM Peoria IL Urbana, IL 61801 [email protected] [email protected] Gregory Freund, MD Steve Nandkumar, M.D. Head, Dept. of Pathology Pathology Course Director 190 Medical Sciences Building 249 Medical Sciences Building 506 South Mathews Avenue 506 South Mathews Avenue Urbana, IL 61801 Urbana, IL 61801 [email protected] [email protected] Page 2 Pathology M-2 Introduction INTRODUCTION Pathology – study of the essential nature of diseases and the structural and functional changes produced by them. ( Pathos= suffering; ologos = study) Pathology consists of two major subdivisions. -
The Hematological Complications of Alcoholism
The Hematological Complications of Alcoholism HAROLD S. BALLARD, M.D. Alcohol has numerous adverse effects on the various types of blood cells and their functions. For example, heavy alcohol consumption can cause generalized suppression of blood cell production and the production of structurally abnormal blood cell precursors that cannot mature into functional cells. Alcoholics frequently have defective red blood cells that are destroyed prematurely, possibly resulting in anemia. Alcohol also interferes with the production and function of white blood cells, especially those that defend the body against invading bacteria. Consequently, alcoholics frequently suffer from bacterial infections. Finally, alcohol adversely affects the platelets and other components of the blood-clotting system. Heavy alcohol consumption thus may increase the drinker’s risk of suffering a stroke. KEY WORDS: adverse drug effect; AODE (alcohol and other drug effects); blood function; cell growth and differentiation; erythrocytes; leukocytes; platelets; plasma proteins; bone marrow; anemia; blood coagulation; thrombocytopenia; fibrinolysis; macrophage; monocyte; stroke; bacterial disease; literature review eople who abuse alcohol1 are at both direct and indirect. The direct in the number and function of WBC’s risk for numerous alcohol-related consequences of excessive alcohol increases the drinker’s risk of serious Pmedical complications, includ- consumption include toxic effects on infection, and impaired platelet produc- ing those affecting the blood (i.e., the the bone marrow; the blood cell pre- tion and function interfere with blood cursors; and the mature red blood blood cells as well as proteins present clotting, leading to symptoms ranging in the blood plasma) and the bone cells (RBC’s), white blood cells from a simple nosebleed to bleeding in marrow, where the blood cells are (WBC’s), and platelets. -
Hematology Unit Lab 1 Review Material
Hematology Unit Lab 1 Review Material Objectives Laboratory instructors: 1. Facilitate lab discussion and answer questions Students: 1. Review the introductory material below 2. Study and review the assigned cases and questions in small groups before the Lab. This includes the pathological material using Virtual Microscopy 3. Be prepared to present your cases, questions and answers to the rest of your Lab class during the Lab Erythropoiesis: The process of red blood cell (RBC) production • Characterized by: − Increasing hemoglobin synthesis Erythroid maturation stages (Below): − Decreasing cell size - Average of 4 cell divisions during maturation − Decreasing cytoplasmic basophilia [One pronormoblast gives rise to 16 red cells] (increasing pink color) - pronormoblast → reticulocyte = 7 days − Progressive chromatin condensation of the - reticulocytes → mature RBC =1-2 days nuclei − Extrusion of nucleus (orthochromatic stage) − Extruded nuclei are subsequently phagocytized − Loss of mitotic capability after the early stage of polychromatophilic normoblast • Picture below: Erythroid progenitors (normoblasts) cluster around macrophages (arrows) in the bone marrow and spleen • Macrophages store iron • Iron is transferred from macrophages to erythroid precursor cells • Iron is used by normoblasts for hemoglobin synthesis aka nucleated rbc aka reticulocyte 1 Mature Red Blood Cell 7-8 microns; round / ovoid biconcave disc with orange-red cytoplasm, no RNA, no nucleus; survives ~120 days in circulation Classification of Anemia by Morphology 1. -
Complete Blood Count in Primary Care
Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document. -
Laboratory Diagnosis Review
Laboratory Diagnosis Review Hematology Definition: The study of the three cellular elements of blood: Red Blood Cells (RBCs), White Blood Cells (WBCs), and Platelets Hemoglobin (Hgb or Hb): The oxygen carrying compound in RBCs Reference Range: Men 14-18 g/dL, Women 12-16 g/dL, Boy and girl levels are equal till age 11 Smoking increases, Pregnancy decreases, Capillary levels in newborns are higher than venous levels, Race, Position, and Time of day have minor effects, High WBCs may falsely raise Hgb. Below normal Hgb = anemia Red Blood Cell Count Reference Range: Men 4l5-6 million / cubic ml, Women4.0-5.5 million / ml3. Hematocrit (Hct): The ratio of RBCs to plasma Reference Range, Men 40%-54%, Women 37%-47%, Depends mostly on the number of RBCs but is slightly effected by the average RBC size, Not measured directly, but is calculated from the RBC count and the mean corpuscular volume (MCV). Increased by smoking, Decrease = anemia Useful Relationships: Hb X 3 = Hct RBCs (millions) X 3 = Hgb RBCs (millions) X 9 = Hct Wintrobe Indices: These indices are only significant if the RBCs, Hgb, and/or Hct. is abnormal MCV: Mean Corpuscular Volume MCH: Mean Corpuscular Hemoglobin MCHC: Mean Corpuscular Hemoglobin Concentration RDW: Red blood cell Distribution Width MCV: Reference Ranges: Men 80-95 fl (femtoliters), Women 81-99 fl (femto = 1 quadrillionth) Increased MCV = Macrocytosis, Decreased = Microcytosis MCV is increased by smoking, by B12 and/or folic acid deficiency, chronic liver disease, chronic alcoholism, Cardiorespiratory problems… Some macrocytic patients will not have macrocytosis MCV is decreased by iron deficiency, thalassemia, and anemia of chronic disease MCH: Reference Range 27-31 pg MCH is increased by Macrocytic anemias. -
10 11 Cyto Slides 81-85
NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Diagnosis: MDS to AML 9 WBC 51.0 x 10 /L 12 Available data: RBC 3.39 x 10 /L 72 year-old female Hemoglobin 9.6 g/dL Hematocrit 29.1 % MCV 86.0 fL Platelet count 16 x 109 /L The significant finding in this case of Acute Myelogenous Leukemia (AML) was the presence of many blast forms. The participant median for blasts, all types was 88. The blast cells in this case (Image 081) are large, irregular in shape and contain large prominent nucleoli. It is difficult to identify a blast cell as a myeloblast without the presence of an Auer rod in the cytoplasm. Auer rods were reported by three participants. Two systems are used to classify AML into subtypes, the French- American-British (FAB) and the World Health Organization (WHO). Most are familiar with the FAB classification. The WHO classification system takes into consideration prognostic factors in classifying AML. These factors include cytogenetic test results, patient’s age, white blood cell count, pre-existing blood disorders and a history of treatment with chemotherapy and/or radiation therapy for a prior cancer. The platelet count in this case was 16,000. Reduced number of platelets was correctly reported by 346 (94%) of participants. Approximately eight percent of participants commented that the red blood cells in this case were difficult to evaluate due to the presence of a bluish hue around the red blood cells. Comments received included, “On slide 081 the morphology was difficult to evaluate since there was a large amount of protein surrounding RBC’s”, “Slide 081 unable to distinguish red cell morphology due to protein” and “Unable to adequately assess morphology on slide 081 due to poor stain”. -
TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic
TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic Disorders Refer to chapter 17 and selected online sources. Refer to the front cover of Gould & Dyer for normal blood test values. Complete and internet search for videos from reliable sources on blood donations and blood tests. Topic 5 Lab - A: Blood and Lymphatic Disorders You’ll need to refer to an anatomy & physiology textbook or lab manual to complete many of these objectives. Blood Lab Materials Prepared slides of normal blood Prepared slides of specific blood pathologies Models of formed elements Plaque models of formed elements Blood typing model kits Blood Lab Objectives – by the end of this lab, students should be able to: 1. Describe the physical characteristics of blood. 2. Differentiate between the plasma and serum. 3. Identify the formed elements on prepared slides, diagrams and models and state their main functions. You may wish to draw what you see in the space provided. Formed Element Description / Function Drawing Erythrocyte Neutrophil s e t y c Eosinophils o l u n a r Basophils Leukocytes G e Monocytes t y c o l u n Lymphocytes a r g A Thrombocytes 4. Define differential white blood cell count. State the major function and expected range (percentage) of each type of white blood cell in normal blood. WBC Type Function Expected % Neutrophils Eosinophils Basophils Monocytes Lymphocytes 5. Calculation of the differential count? 6. Define and use in proper context: 1. achlorhydria 5. amyloidosis 2. acute leukemia 6. anemia 3. agnogenic myeloid metaplasia 7. autosplenectomy 4. aleukemic leukemia 8. basophilic stippling 9. -
Clinical Hematology 1
CLINICAL HEMATOLOGY 1 CLINICAL HEMATOLOGY Editor Gamal Abdul Hamid, MD,PhD Associate Professor Faculty of Medicine and Health Sciences University of Aden CLINICAL HEMATOLOGY 2 PREFACE Clinical Hematology, first edition is written specifically for medical students, the clinician and resident doctors in training and general practioner. It is a practical guide to the diagnosis and treatment of the most common disorders of red blood cells, white blood cells, hemostasis and blood transfusion medicine. Each disease state is discussed in terms of the pathophysiology, clinical and paraclinical features which support the diagnosis and differential diagnosis. We bring together facts, concepts, and protocols important for the practice of hematology. In addition this book is also supported with review questions and quizzes. G.A-H 2012 CLINICAL HEMATOLOGY 3 CONTENTS Preface 1. Hematopoiesis 7 2. Anemia 26 3. Iron Deficiency Anemia 32 4. Hemolytic Anemia 41 5. Sickle Cell Hemoglobinopathies 49 6. Thalassemia 57 7. Hereditary Hemolytic Anemia 63 8. Acquired Hemolytic Anemia 68 9. Macrocytic Anemia 75 10. Bone Marrow Failure, Panctopenia 87 11. Spleen 95 12. Acute Leukemia 99 13. Chronic Myeloproliferative Disorders 125 14. Chronic Lymphoproliferative Disorders 137 15. Malignant Lymphoma 147 16. Multiple Myeloma and Related Paraproteinemia 171 17. Hemorrhagic Diseases 179 18. Transfusion Medicine 201 19. Bone Marrow Transplantations 214 CLINICAL HEMATOLOGY 4 Appendices: I. Hematological Tests and Normal Values 221 II. CD Nomenclature for Leukocytes Antigen 226 III. Cytotoxic Drugs 228 IV. Drugs Used in Hematology 230 Glossary 232 Answers 246 Bibliography 247 CLINICAL HEMATOLOGY 5 CLINICAL HEMATOLOGY 6 HEMATOPOIESIS 1 All of the cells in the peripheral blood have finite life spans and thus must be renewed continuously. -
Morphologic Evaluation of Anemia – I Adewoyin S
nd M y a ed g ic lo i o n i e B Adewoyin and Ogbenna, Biol Med (Aligarh) 2016, 8:6 DOI: 10.4172/0974-8369.1000322 ISSN: 0974-8369 Biology and Medicine Review Article Open Access Morphologic Evaluation of Anemia – I Adewoyin S. Ademola1* and Ogbenna A. Abiola2 1Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria 2Department of Haematology and Blood Transfusion, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria *Corresponding author: Adewoyin S. Ademola, Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria, Tel: +2347033966347; E-mail: [email protected] Received date: June 20, 2016; Accepted date: July 15, 2016; Published date: July 22, 2016 Copyright: © 2016 Adewoyin AS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract Anaemia is a feature of many tropical diseases. Anaemia diagnosis therefore remains a crucial intervention among physicians in developing countries. A barrage of laboratory test (anaemic work-up) is usually deployed in differentiating its underlying cause. However, central to anaemia evaluation is the morphology of the red cells and other cell lines. Conventionally, initial laboratory tests include full blood count, reticulocyte count and peripheral blood film (PBF). PBF is often a clinical request, performed by skilled technologist and reported by haematologist/ haematomorphologist. Findings from PBF are reviewed and reported in the light of patient’s clinical history and examination findings. -
Assessment of Splenic Function A
Assessment of splenic function A. P. N. A. Porto, A. J. J. Lammers, R. J. Bennink, I. J. M. Berge, P. Speelman, J. B. L. Hoekstra To cite this version: A. P. N. A. Porto, A. J. J. Lammers, R. J. Bennink, I. J. M. Berge, P. Speelman, et al.. Assessment of splenic function. European Journal of Clinical Microbiology and Infectious Diseases, Springer Verlag, 2010, 29 (12), pp.1465-1473. 10.1007/s10096-010-1049-1. hal-00624509 HAL Id: hal-00624509 https://hal.archives-ouvertes.fr/hal-00624509 Submitted on 19 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript: Review Assessment of Slenic Function.doc Click here to view linked References 1 2 3 4 Title-page. 5 6 7 8 Title: Assessment of splenic function 9 10 11 Authors: A.P.N.A. de Porto1, A.J.J. Lammers1, R.J. Bennink2, I.J.M. ten Berge3, P. Speelman1, 12 4 13 J.B.L. Hoekstra . 14 15 16 Affiliations 17 18 1: Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, 19 Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands. -
[Practical] HEMATOLOGY
Hematology 432 Hematology Team Done By: Roqaih Al-Dueb & Othman Al-Mutairi & Ibrahim Abunohaiah Color Index: Female notes are in Green. Male notes are in Blue. Red is important. Orange is explanation. 432HematologyTeam PRACTICAL HAEMATOLOGY Practical Haemaglobinopathy Introduction to Haemoglobin Variants: Hemoglobin variants are mutant forms of hemoglobin, caused by genetical variation. Some well-known hemoglobin variants such as Hb S are responsible for sickle cell anemia which is one of the hemoglobinopathies. And some are undetectable non-pathological variats. Some normal hemoglobin types are; Hemoglobin A (Hb A) which constitute 95-98% of hemoglobin found in adults, Hemoglobin A2 (Hb A2), which consitiute 2-3% of hemoglobin found in adults, and Hemoglobin F (Hb F) which is the fetal Hb. Effects of Haemoglobin variants: Variant Clinical and haematological abnormalities Recurrent painful crises (in adults) and chronic haemolytic HbS anaemia; both related to sickling of red cells on deoxygenation* Chronic haemolytic anaemia due to reduced red cell HbC deformability on deoxygenation, * deoxygenated HbC is less soluble than deoxygenated HbA. Spontaneous or drug-induced haemolytic anaemia due to Hb Köln, instability of the Hb and consequent intracellular Hb Hammersmith precipitation. HbM Boston, Cyanosis due to congenital methaemoglobinaemia as a HbM Saskatoon consequence of a substitution near or in the haem pocket. Hb Chesapeake Hereditary polycythaemia due to increased O2 affinity. Hb Constant Spring, Thalassaemia-like syndrome due to decreased rate of Hb Lepore, HbE synthesis of normal chains. Thalassaemia-like syndrome due to marked instability of Hb Indianapolis Hb * Only in homozygotes All of these have similar features (hemolytic anemia – target cells – spleenomegaly – trait usually asymptomatic or mild symptomatic – if the disease combined with another abnormal Hb, the patient will present with sever hemolytic anemia). -
Containing Granules in Human Erythrocytes and Their Precursors by A
J Clin Pathol: first published as 10.1136/jcp.6.4.307 on 1 November 1953. Downloaded from J. clin. Path. (1953), 6, 307. THE INCIDENCE AND SIGNIFICANCE OF IRON- CONTAINING GRANULES IN HUMAN ERYTHROCYTES AND THEIR PRECURSORS BY A. S. DOUGLAS AND J. V. DACIE From the Department of Pathology, the Postgraduate Medical School of London (RECEIVED FOR PUBLICATION AUGUST 28, 1953) The iron in haemoglobin cannot normally be and Davis (1949) re-investigated the nature of detected in the erythrocytes of healthy human stippling in lead poisoning. They found that adults by means of a staining technique. How- many of the normoblasts in the bone marrow had ever, Gruneberg (1941a and b) used the term large basophilic granules in their cytoplasm, i.e., " siderocyte " to describe erythrocytes containing were stippled, and that a variable proportion of small granules readily demonstrable by means of the granules gave a positive reaction for iron. Perls's (Prussian blue) reaction. He found these Splenectomy of lead-poisoned guinea-pigs resulted cells in small numbers in the blood of normal rat, in a very considerable increase in the frequency of mouse, and human embryos (Gruneberg, 1941a stippled cells in the peripheral blood. and b), and later (Gruneberg, 1942) in large More recently Bilger and Tetzner (1953) have numbers in the blood of mice suffering from con- reported the presence of siderocytes in small copyright. genital anaemia. Doniach, Gruneberg, and Pear- numbers in the peripheral blood of some healthy son (1943) described the occurrence of siderocytes subjects, in newborn infants, and in various haemo- in adult human blood.