Pathology Course
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Births, Marriages, and Deaths
DEC. 31, 1955 MEDICAL NEWS MEDICALBRrsIJOURNAL. 1631 Lead Glazes.-For some years now the pottery industry British Journal of Ophthalmology.-The new issue (Vol. 19, has been forbidden to use any but leadless or "low- No. 12) is now available. The contents include: solubility" glazes, because of the risk of lead poisoning. EXPERIENCE IN CLINIcAL EXAMINATION OP CORNEAL SENsITiVrry. CORNEAL SENSITIVITY AND THE NASO-LACRIMAL REFLEX AFTER RETROBULBAR However, in some teaching establishments raw lead glazes or ANAES rHESIA. Jorn Boberg-Ans. glazes containing a high percentage of soluble lead are still UVEITIS. A CLINICAL AND STATISTICAL SURVEY. George Bennett. INVESTIGATION OF THE CARBONIC ANHYDRASE CONTENT OF THE CORNEA OF used. The Ministry of Education has now issued a memo- THE RABBIT. J. Gloster. randum to local education authorities and school governors HYALURONIDASE IN OCULAR TISSUES. I. SENSITIVE BIOLOGICAL ASSAY FOR SMALL CONCENTRATIONS OF HYALURONIDASE. CT. Mayer. (No. 517, dated November 9, 1955) with the object of INCLUSION BODIES IN TRACHOMA. A. J. Dark. restricting the use of raw lead glazes in such schools. The TETRACYCLINE IN TRACHOMA. L. P. Agarwal and S. R. K. Malik. APPL IANCES: SIMPLE PUPILLOMETER. A. Arnaud Reid. memorandum also includes a list of precautions to be ob- LARGE CONCAVE MIRROR FOR INDIRECT OPHTHALMOSCOPY. H. Neame. served when handling potentially dangerous glazes. Issued monthly; annual subscription £4 4s.; single copy Awards for Research on Ageing.-Candidates wishing to 8s. 6d.; obtainable from the Publishing Manager, B.M.A. House, enter for the 1955-6 Ciba Foundation Awards for research Tavistock Square, London, W.C.1. -
University of Illinois College of Medicine at Urbana-Champaign
UNIVERSITY OF ILLINOIS COLLEGE OF MEDICINE AT URBANA-CHAMPAIGN PATHOLOGY - VOLUME I 2014 - 2015 PATHOLOGY TEACHING FACULTY LIST Jerome Anderson, MD Farah Gaudier, MD Richard Tapping, PhD Department of Pathology Dept. of Pathology Associate Professor. McDonough District Hosp. Carle Physician Group Dept. of Microbiology McComb, IL 61455 [email protected] [email protected] Phone: (309) 837-2368 [email protected] Teaching Assistant Nasser Gayed, MD Lindsey Burnett, PhD Brett Bartlett, MD Dept. of Med. Info. Sciences [email protected] Dept. of Pathology 190 Medical Sciences Bldg SBL Health Centre 506 South Mathews Avenue Mattoon, IL 61938 Urbana, IL 61801 Pathology Office [email protected] [email protected] Jackie Newman Phone: (217) 244-2265 Frank Bellafiore, MD Nicole Howell, MD [email protected] Dept. of Pathology Dept. of Pathology Carle Physician Group Carle Physician Group 602 West University Avenue [email protected] Urbana, IL 61801 [email protected] Zheng George Liu, MD Dept. of Pathology Allan Campbell, MD Carle Physician Group Dept. Of Pathology 602 West University Avenue UICOM Peoria IL Urbana, IL 61801 [email protected] [email protected] Gregory Freund, MD Steve Nandkumar, M.D. Head, Dept. of Pathology Pathology Course Director 190 Medical Sciences Building 249 Medical Sciences Building 506 South Mathews Avenue 506 South Mathews Avenue Urbana, IL 61801 Urbana, IL 61801 [email protected] [email protected] Page 2 Pathology M-2 Introduction INTRODUCTION Pathology – study of the essential nature of diseases and the structural and functional changes produced by them. ( Pathos= suffering; ologos = study) Pathology consists of two major subdivisions. -
WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA). -
Modelling of Red Blood Cell Morphological and Deformability Changes During In-Vitro Storage
applied sciences Article Modelling of Red Blood Cell Morphological and Deformability Changes during In-Vitro Storage Nadeeshani Geekiyanage 1 , Emilie Sauret 1,*, Suvash Saha 2 , Robert Flower 3 and YuanTong Gu 1 1 School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; [email protected] (N.G.); [email protected] (Y.G.) 2 School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; [email protected] 3 Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; [email protected] * Correspondence: [email protected] Received: 28 February 2020; Accepted: 27 April 2020; Published: 4 May 2020 Featured Application: Red blood cell (RBC) storage lesion is a critical issue facing transfusion treatments, and significant changes in RBC morphology and deformability are observed due to the storage lesion. RBCs require high deformability to sustain in-vivo circulation, and impaired deformability leads to several post-transfusion adverse outcomes. Therefore, improved understanding of the interrelation between the morphological and deformability changes and the quality and viability of the stored RBCs is essential to prevent or reduce the transfusion related adverse outcomes. To support this requisite, the influence on RBC deformability due to several aspects of the storage lesion, namely, the changes in cell morphology, surface area and volume, RBC membrane biomechanics, and cytoskeletal structural integrity are explored numerically in this study. Abstract: Storage lesion is a critical issue facing transfusion treatments, and it adversely affects the quality and viability of stored red blood cells (RBCs). -
Cytology of Myeloma Cells
J Clin Pathol: first published as 10.1136/jcp.29.10.916 on 1 October 1976. Downloaded from J. clin. Path., 1976, 29, 916-922 Cytology of myeloma cells F. G. J. HAYHOE AND ZOFIA NEUMAN1 From the Department of Haematological Medicine, Cambridge University SYNOPSIS A cytological, cytochemical, and cytometric study of plasma cells from 195 cases of multiple myeloma showed that, contrary to earlier reports, flaming cells, thesaurocytes, and intra- nuclear inclusions are not confined to IgA-secreting cases but are common also in IgG and Bence Jones varieties of myeloma. IgA-secreting cells are not larger, nor do they have a lower nuclear- cytoplasmic ratio than other myeloma cells. On average, for a given mass of tumour, Bence-Jones, IgG, and IgA varieties of myeloma produce amounts of paraprotein in the ratio 1 to 1 6 to 2-7. In 1961 Paraskevas et al reported a correlation the results of a larger scale survey carried out some between the morphological features of plasma cells years ago but previously unpublished. in myeloma and the type of immunoglobulin secreted. The cases studied included 12 with y1A Material and methods (f2A, IgA) myeloma, 30 with y (IgG) myeloma, and six myelomas without M protein (probably Bence The study was performed on bone marrow smearscopyright. Jones myelomas). Flaming cells, thesaurocytes, and from 200 consecutive patients newly entered into a intranuclear, PAS-positive inclusion bodies were comparative trial of treatments in myeloma, under found only in cases of IgA myeloma, and flaming the auspices of the Medical Research Council. Five cells especially were present in most cases and in patients were subsequently excluded as not confirmed high percentage in several. -
Hereditary Spherocytosis: Clinical Features
Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected -
Studies on the Breaking Pattern in Man at Rest and During Sleep
STUDIES ON THE BREAKING PATTERN IN MAN AT REST AND DURING SLEEP by Steven Andrew Shea A thesis submitted to the Faculty of Science, University of London for the degree of Doctor of Philosophy 1988 Department of Medicine, Charing Cross and Westminster Medical School, London. 2 ABSTRACT . This thesis quantifies the breathing pattern and the extent of the reproducibility of this pattern within an individual at rest and during sleep. From breath-by-breath measurements of respiratory frequency, tidal volune and end-tidal POO2 made under standardised conditions of relaxed wakefulness - with a minimum of sensory stimulation - the results show that differences between individuals are highly significantly greater than differences seen on repeated measurements within an individual: people tend to breathe in a reproducible and characteristic fashion. The basic respiratory pattern is shown to have long-term reproducibility for periods of up to 5 years and may be, to some extent, inherited since it is shown to be similar between identical twins. The individual’s ’respiratory personality’ also persists during deep non-rapid eye movement (non- REM) sleep when any forebrain influences upon breathing are minimal. Further studies, using similar techniques, examine the effect upon this basic respiratory pattern of some behavioural, metabolic and pulmonary reflex control mechanisms. These studies reveal that visual, and auditory stimulation, and altered cognitive activity (performing mental arithmetic) affects the pattern of breathing; principally by increasing respiratory frequency. However, these changes in breathing which occur between the different ’states’ are not solely behavioural responses since they are also related to increases in cerebral and/or somatic metabolism. -
MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002
MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002 Michigan Department of Community Health Community Public Health Agency and Center for Health Statistics 3423 N. Martin Luther King Jr. Blvd. P. O. Box 30691 Lansing, Michigan 48909 Michigan Department of Community Health James K. Haveman, Jr., Director B-274a (March, 2002) Authority: P.A. 236 of 1988 BIRTH DEFECTS REGISTRY MICHIGAN DEPARTMENT OF COMMUNITY HEALTH BIRTH DEFECTS REGISTRY STAFF The Michigan Birth Defects Registry staff prepared this manual to provide the information needed to submit reports. The manual contains copies of the legislation mandating the Registry, the Rules for reporting birth defects, information about reportable and non reportable birth defects, and methods of reporting. Changes in the manual will be sent to each hospital contact to assist in complete and accurate reporting. We are interested in your comments about the manual and any suggestions about information you would like to receive. The Michigan Birth Defects Registry is located in the Office of the State Registrar and Division of Health Statistics. Registry staff can be reached at the following address: Michigan Birth Defects Registry 3423 N. Martin Luther King Jr. Blvd. P.O. Box 30691 Lansing MI 48909 Telephone number (517) 335-8678 FAX (517) 335-9513 FOR ASSISTANCE WITH SPECIFIC QUESTIONS PLEASE CONTACT Glenn E. Copeland (517) 335-8677 Cytogenetics Laboratory Reporting Instructions I. INTRODUCTION This manual provides detailed instructions on the proper reporting of diagnosed birth defects by cytogenetics laboratories. A report is required from cytogenetics laboratories whenever a reportable condition is diagnosed for patients under the age of two years. -
Evidence-Based Practice Center Systematic Review Protocol
Evidence-based Practice Center Systematic Review Protocol Project Title: Serum-Free Light Chain Analysis for the Diagnosis, Management, and Prognosis of Plasma Cell Dyscrasias I. Background and Objectives for the Systematic Review Plasma cell dyscrasias (PCDs) are a spectrum of disorders characterized by the expansion of a population of monoclonal bone-marrow plasma cells that produce monoclonal immunoglobulins.1 At the benign end of the spectrum is monoclonal gammopathy of undetermined significance (MGUS), where the plasma-cell clone usually does not expand. Multiple myeloma (MM) is a plasma cell disorder at the malignant end of the spectrum and is characterized by the neoplastic proliferation of a clone of plasma cells in the bone marrow with resulting end-organ damage, including skeletal destruction (lytic bone lesions), hypercalcemia, anemia, and renal insufficiency. Whereas monoclonal plasma cells generally secrete intact immunoglobulin, in about 20 percent of patients with MM these cells only produce light-chain monoclonal proteins (i.e., light-chain multiple myeloma [LCMM], formerly known as Bence Jones myeloma) and in 3 percent of patients they secrete neither light- nor heavy-chain monoclonal proteins that are detectable by immunofixation (i.e., nonsecretory multiple myeloma [NSMM]).1 In two-thirds of patients with NSMM, a monoclonal protein can be identified by the serum-free light chain (SFLC) assay. Patients with LCMM develop complications related to tissue deposition of light chains, including amyloidosis. Amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis seen in the United States and is characterized by a relatively stable, slow-growing plasma-cell clone that secretes light-chain proteins that form Table 1: Diagnostic criteria and clinical course of selected plasma cell dyscrasias (PCDs)2 Disorder Disease Definition Clinical Course Monoclonal gammopathy of . -
Tropical Ulcer
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1939 Tropical ulcer Mary K. Smith University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Smith, Mary K., "Tropical ulcer" (1939). MD Theses. 776. https://digitalcommons.unmc.edu/mdtheses/776 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. TROPICAL ULCER By Mary K. Smith Presented to: Univer·aity of Nebraska College of Medicine April 14, 1939. TROPICAL ULCER TABLE OF CONTENTS Introduction • • • • • • • • • • • • • • • • • • • • • • • • • • • l Symptomatology • • • • • • • • • • • • • • • • • • • • • • • • • 4 Etiology • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15 Pathological Histology • • • • • • • • • • • • • • • • • 39 Relation of Tropical Ulcer to Other Fuso-Spirochaetal Diseases ••••••••••••••••••••••••••••• 50 Diagnosis •.................. •·• ........ 55 Treatment • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 56 Conclusions • • • • • • • • • • • • • • • • • • • • • • • • • • • • 69 Bibliography • • • • • • • • • • • • • • • • • • • • • • -
The Diagnosis & Management of Skin & Soft Tissue Infection
THE DIAGNOSIS & MANAGEMENT OF SKIN & SOFT TISSUE INFECTION 7th December 2020 7th December 2022 Version History Version Status Date Editor Description 1.0 Final 7th December 2020 Guidelines Team Version for Publication. Citation Suggested citation style: Ministry of Public Health Qatar. National Clinical Guideline: The Diagnosis and Management of Skin and Soft Tissue Infection (2020). Abbreviations The abbreviations used in this guideline are as follows: ART Antiretroviral Therapy BIT Burrow Ink Test CA-MRSA Community-Associated Methicillin-Resistant Staphylococcus aureus CT Computed Tomography EPSD Epidermal Parasitic Skin Diseases FGSI Fournier’s Gangrene Severity Index HIV Human Immunodeficiency Virus HrCLM Hookworm-Related Cutaneous Larva Migrans LRINEC Laboratory Risk Indicator for Necrotising Fasciitis MMR Measles-Mumps-Rubella MCV Molluscum Contagiosum Virus MMRV Measles-Mumps-Rubella-Varicella MRI Magnetic Resonance Imaging MRSA Methicillin-Resistant Staphylococcus aureus MSSA Methicillin-Sensitive Staphylococcus aureus NSAID Non-Steroidal Anti-Inflammatory Drug S. aureus Staphylococcus aureus S. pyogenes Streptococcus pyogenes SSTIs Skin and Soft-Tissue Infections VZV Varicella Zoster Virus The Diagnosis and Management of Skin and Soft Tissue Infection (Date of next revision: 7th December 2022) 2 Table of Contents 1 Information about this Guideline ........................................................................................................... 6 1.1 Objective and Purpose of the Guideline ....................................................................................... -
Hereditary Spherocytosis
Hereditary Spherocytosis o RBC band 3 protein testing is a very sensitive and Indications for Ordering specific test for the diagnosis of hereditary Use to confirm diagnosis of hereditary spherocytosis when spherocytosis hemolytic anemia and spherocytes are present Physiology • RBC band 3 protein is a major structural protein of RBCs Test Description o Reduction in the amount of band 3 fluorescence after Test Methodology binding with EMA correlates with spherocytosis • Red blood cell (RBC) surface protein band 3 staining with Genetics eosin-5-maleimide (EMA) analyzed by flow cytometry Clinical Validation Genes: ANK1, EPB42, SLC4A1, SPTA1, SPTB • Validated against the clinical diagnosis of hereditary Inheritance spherocytosis supported by osmotic fragility and/or • Autosomal dominant: 75% molecular testing • Autosomal recessive: 25% Tests to Consider Penetrance: variable Structure/Function Primary Test • Chromosomal location: 17q21.31 RBC Band 3 Protein Reduction in Hereditary Spherocytosis • Provides structure for the red cell cytoskeleton 2008460 • Use to confirm diagnosis of hereditary spherocytosis Test Interpretation when hemolytic anemia and spherocytes are present Sensitivity/Specificity Related Test • Clinical sensitivity: 93% Osmotic Fragility, Erythrocyte 2002257 • Analytical sensitivity/specificity: unknown • Functional testing of RBC sensitivity to osmotic stress Results Disease Overview • Normal o Normal staining of band 3 protein with EMA does not Prevalence: 1/2,000 in northern Europeans suggest hereditary spherocytosis