Containing Granules in Human Erythrocytes and Their Precursors by A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hematological Complications of Alcoholism
The Hematological Complications of Alcoholism HAROLD S. BALLARD, M.D. Alcohol has numerous adverse effects on the various types of blood cells and their functions. For example, heavy alcohol consumption can cause generalized suppression of blood cell production and the production of structurally abnormal blood cell precursors that cannot mature into functional cells. Alcoholics frequently have defective red blood cells that are destroyed prematurely, possibly resulting in anemia. Alcohol also interferes with the production and function of white blood cells, especially those that defend the body against invading bacteria. Consequently, alcoholics frequently suffer from bacterial infections. Finally, alcohol adversely affects the platelets and other components of the blood-clotting system. Heavy alcohol consumption thus may increase the drinker’s risk of suffering a stroke. KEY WORDS: adverse drug effect; AODE (alcohol and other drug effects); blood function; cell growth and differentiation; erythrocytes; leukocytes; platelets; plasma proteins; bone marrow; anemia; blood coagulation; thrombocytopenia; fibrinolysis; macrophage; monocyte; stroke; bacterial disease; literature review eople who abuse alcohol1 are at both direct and indirect. The direct in the number and function of WBC’s risk for numerous alcohol-related consequences of excessive alcohol increases the drinker’s risk of serious Pmedical complications, includ- consumption include toxic effects on infection, and impaired platelet produc- ing those affecting the blood (i.e., the the bone marrow; the blood cell pre- tion and function interfere with blood cursors; and the mature red blood blood cells as well as proteins present clotting, leading to symptoms ranging in the blood plasma) and the bone cells (RBC’s), white blood cells from a simple nosebleed to bleeding in marrow, where the blood cells are (WBC’s), and platelets. -
Pituitary Gland
Part 6: Pituitary Gland Normal Physiology and Structure The pituitary gland comprises the adenohypophysis, which is made up of the pars distalis, pars intermedia and pars tuberalis and the neurohypophysis which includes the pars nervosa, infundibular stem and median eminence. The pars distalis forms the largest proportion of the gland and functions as the overall regulator of peripheral endocrine function by synthesizing and secreting at least 6 major trophic hormones. These include growth hormone (GH), prolactin (PrL), adrenocorticotrophic hormone (ACTH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Since this is the important area of the pituitary with respect to detecting endocrine active compounds, the rest of this section will concentrate only on this part of the pituitary. For reviews see (Page, 1994; Tucker, 1999; Greaves, 2007). Each hormone of the pars distalis is generally secreted by a seperate cell type, but some cells are able to secrete two hormones. The different hormones impart different staining properties to the cells. Using histological stains based on Orange G and periodic acid-Schiff (PAS), the cells of the pars distalis have been divided into acidophils (orange G positive), basophils (PAS positive) and chromophobes (absence of staining). In the rat, these have been reported to constitute 40, 10 and 50% respectively of the cell population of the pars distalis. The staining characteristics are dependent on the level of secretory activity, and when the cells have just secreted their granules or when secretory activity is increased, all the cells take on chromophobic characteristics due to the relative abundance of secretory organelles (endoplasmic reticulum and Golgi) and relative lack of secretory granules. -
Hematology Unit Lab 1 Review Material
Hematology Unit Lab 1 Review Material Objectives Laboratory instructors: 1. Facilitate lab discussion and answer questions Students: 1. Review the introductory material below 2. Study and review the assigned cases and questions in small groups before the Lab. This includes the pathological material using Virtual Microscopy 3. Be prepared to present your cases, questions and answers to the rest of your Lab class during the Lab Erythropoiesis: The process of red blood cell (RBC) production • Characterized by: − Increasing hemoglobin synthesis Erythroid maturation stages (Below): − Decreasing cell size - Average of 4 cell divisions during maturation − Decreasing cytoplasmic basophilia [One pronormoblast gives rise to 16 red cells] (increasing pink color) - pronormoblast → reticulocyte = 7 days − Progressive chromatin condensation of the - reticulocytes → mature RBC =1-2 days nuclei − Extrusion of nucleus (orthochromatic stage) − Extruded nuclei are subsequently phagocytized − Loss of mitotic capability after the early stage of polychromatophilic normoblast • Picture below: Erythroid progenitors (normoblasts) cluster around macrophages (arrows) in the bone marrow and spleen • Macrophages store iron • Iron is transferred from macrophages to erythroid precursor cells • Iron is used by normoblasts for hemoglobin synthesis aka nucleated rbc aka reticulocyte 1 Mature Red Blood Cell 7-8 microns; round / ovoid biconcave disc with orange-red cytoplasm, no RNA, no nucleus; survives ~120 days in circulation Classification of Anemia by Morphology 1. -
New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. -
Medical Bacteriology
LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology. -
Complete Blood Count in Primary Care
Complete Blood Count in Primary Care bpac nz better medicine Editorial Team bpacnz Tony Fraser 10 George Street Professor Murray Tilyard PO Box 6032, Dunedin Clinical Advisory Group phone 03 477 5418 Dr Dave Colquhoun Michele Cray free fax 0800 bpac nz Dr Rosemary Ikram www.bpac.org.nz Dr Peter Jensen Dr Cam Kyle Dr Chris Leathart Dr Lynn McBain Associate Professor Jim Reid Dr David Reith Professor Murray Tilyard Programme Development Team Noni Allison Rachael Clarke Rebecca Didham Terry Ehau Peter Ellison Dr Malcolm Kendall-Smith Dr Anne Marie Tangney Dr Trevor Walker Dr Sharyn Willis Dave Woods Report Development Team Justine Broadley Todd Gillies Lana Johnson Web Gordon Smith Design Michael Crawford Management and Administration Kaye Baldwin Tony Fraser Kyla Letman Professor Murray Tilyard Distribution Zane Lindon Lyn Thomlinson Colleen Witchall All information is intended for use by competent health care professionals and should be utilised in conjunction with © May 2008 pertinent clinical data. Contents Key points/purpose 2 Introduction 2 Background ▪ Haematopoiesis - Cell development 3 ▪ Limitations of reference ranges for the CBC 4 ▪ Borderline abnormal results must be interpreted in clinical context 4 ▪ History and clinical examination 4 White Cells ▪ Neutrophils 5 ▪ Lymphocytes 9 ▪ Monocytes 11 ▪ Basophils 12 ▪ Eosinophils 12 ▪ Platelets 13 Haemoglobin and red cell indices ▪ Low haemoglobin 15 ▪ Microcytic anaemia 15 ▪ Normocytic anaemia 16 ▪ Macrocytic anaemia 17 ▪ High haemoglobin 17 ▪ Other red cell indices 18 Summary Table 19 Glossary 20 This resource is a consensus document, developed with haematology and general practice input. We would like to thank: Dr Liam Fernyhough, Haematologist, Canterbury Health Laboratories Dr Chris Leathart, GP, Christchurch Dr Edward Theakston, Haematologist, Diagnostic Medlab Ltd We would like to acknowledge their advice, expertise and valuable feedback on this document. -
The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in Th
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1976 The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat eric sigmond Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Medical Anatomy Commons Recommended Citation sigmond, eric, "The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat" (1976). Master's Theses. 2872. https://ecommons.luc.edu/luc_theses/2872 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1976 eric sigmond THE HISTOCHEMICAL DISTRIBUTION OF PLACENTAL CALCIUM AND ALKALINE PHOSPHATASE ACTIVITY FOLLOWING FETOPLACENTAL DISSOCIATION IN THE ALBINO RAT by Eric Sigmond A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science February 1976 ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Leslie A. Emmert for his suggestion of the problem, his patience, encouragement and supervision throughout the course of this thesis. His guidance helped overcome many problems which arose during the course of this study. I also wish to express thanks to Dr. Charles C.C. O'Morchoe and Dr. Maurice V. L'Heureux for their many valuable suggestions during the writing of this thesis. -
Laboratory Diagnosis Review
Laboratory Diagnosis Review Hematology Definition: The study of the three cellular elements of blood: Red Blood Cells (RBCs), White Blood Cells (WBCs), and Platelets Hemoglobin (Hgb or Hb): The oxygen carrying compound in RBCs Reference Range: Men 14-18 g/dL, Women 12-16 g/dL, Boy and girl levels are equal till age 11 Smoking increases, Pregnancy decreases, Capillary levels in newborns are higher than venous levels, Race, Position, and Time of day have minor effects, High WBCs may falsely raise Hgb. Below normal Hgb = anemia Red Blood Cell Count Reference Range: Men 4l5-6 million / cubic ml, Women4.0-5.5 million / ml3. Hematocrit (Hct): The ratio of RBCs to plasma Reference Range, Men 40%-54%, Women 37%-47%, Depends mostly on the number of RBCs but is slightly effected by the average RBC size, Not measured directly, but is calculated from the RBC count and the mean corpuscular volume (MCV). Increased by smoking, Decrease = anemia Useful Relationships: Hb X 3 = Hct RBCs (millions) X 3 = Hgb RBCs (millions) X 9 = Hct Wintrobe Indices: These indices are only significant if the RBCs, Hgb, and/or Hct. is abnormal MCV: Mean Corpuscular Volume MCH: Mean Corpuscular Hemoglobin MCHC: Mean Corpuscular Hemoglobin Concentration RDW: Red blood cell Distribution Width MCV: Reference Ranges: Men 80-95 fl (femtoliters), Women 81-99 fl (femto = 1 quadrillionth) Increased MCV = Macrocytosis, Decreased = Microcytosis MCV is increased by smoking, by B12 and/or folic acid deficiency, chronic liver disease, chronic alcoholism, Cardiorespiratory problems… Some macrocytic patients will not have macrocytosis MCV is decreased by iron deficiency, thalassemia, and anemia of chronic disease MCH: Reference Range 27-31 pg MCH is increased by Macrocytic anemias. -
Evaluation of Better Staining Method Among Hematoxylin and Eosin, Giemsa and Periodic Acid Schiff-Alcian Blue for the Detection
Evaluation of Better Staining Method among Original Article Hematoxylin and Eosin, Giemsa and Periodic Acid Schiff-Alcian Blue for the Detection of Helicobacter pylori in Gastric Biopsies Submitted: 18 May 2020 Accepted: 4 Aug 2020 Abdullah Saleh ALKHAMISS Online: 27 Oct 2020 Department of Pathology and Laboratory Medicine, Collage of Medicine, Qassim University, Qassim, Saudi Arabia To cite this article: Alkhamiss AS. Evaluation of better staining method among hematoxylin and eosin, Giemsa and periodic acid Schiff-Alcian blue for the detection of Helicobacter pylori in gastric biopsies. Malays J Med Sci. 2020;27(5):53–61. https://doi.org/10.21315/mjms2020.27.5.6 To link to this article: https://doi.org/10.21315/mjms2020.27.5.6 Abstract Background: This study was undertaken to evaluate the preferred method (Giemsa or periodic acid Schiff-Alcian blue [PAS-AB] stains) of detecting Helicobacter pylori (H. pylori) in gastric mucosal biopsies in terms of sensitivity, specificity and applicability. To the best of my knowledge, this is the first report comparing Giemsa and PAS-AB staining for the detection of H. pylori in such biopsies. Methods: The formalin-fixed paraffin-embedded blocks of 49 gastric biopsies from different patients were collected from the archive of anatomical pathology at King Abdulaziz Medical City, National Guard, Riyadh, Saudi Arabia. From each block, three slides were prepared and analysed using the hematoxylin and eosin (H&E), Giemsa and PAS-AB stains to detect the presence/absence of H. pylori, and the results were compared in terms of sensitivity, specificity and applicability. Results: The majority of the biopsies in this study showed antrum-type gastric mucosa. -
Tissue in Cases of Acute Rheumatism
Ann Rheum Dis: first published as 10.1136/ard.16.3.307 on 1 September 1957. Downloaded from Ann. rheum. Dis. (1957), 16, 307. HISTOCHEMICAL INVESTIGATION OF CONNECTIVE TISSUE IN CASES OF ACUTE RHEUMATISM BY A. I. STRUKOV AND G. V. ORLOVSKAYA U.S.S.R. Academy of Medical Sciences, Moscow (RECEIVED FOR PUBLICATION JULY 5, 1957) The connective tissue is the chief place where the phases: soluble (procollagen) and insoluble (colla- pathological rheumatic process takes place. The stromine). Obtained by precipitation from a changes mainly affect its intercellular components. solution, procollagen has all the properties of On the basis of this localization of the pathological collagen fibrils (of collagen): it turns red when it is lesions, rheumatism has been included among the stained by Van Gieson stain, and its roentgenogram so-called collagen diseases (Klemperer, 1950). The shows the characteristic interplane intervals of mechanism of development of the pathological 2-9 A and 11-0 A. Under the electron microscope by copyright. processes in the intercellular substance of connective it shows the same transverse bands. tissue can be understood only when there is a clear In a roentgenogram, collastromine shows no idea of the nature, structure, and correlations of ring at 2 9 A which is characteristic for collagen; collagen and the amorphous cementing substance, it has no periodicity, does not turn red with Van both of which play a principal role in the develop- Gieson stain, and shows a distinct metachromasia; ment of the rheumatic process. staining with silver reveals argyrophilic fibres. The The investigations made in recent years with the results of fractioning show collagen as at least a aid of physical, chemical, and histochemical bi-phasic system; the known features of collagen methods have considerably advanced our concepts in toto are determined by its content of procollagen. -
Microsporidia Are an Obligate Intracellular, Spore-Forming Parasite That Has Been Implicated in Emerging Infectious Diseases
The Malaysian Journal of Medical Sciences, Volume 15, Supplement 1, 2008 OB-1 MICROSPORIDIA INFECTION: A SERIES OF CASE REPORT Zeehaida M, Siti Asma H and Kirnpal-Kaur BS Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus 16150 Kubang Kerian, Kelantan, Malaysia. Introduction: Microsporidia are an obligate intracellular, spore-forming parasite that has been implicated in emerging infectious diseases. They are increasingly recognized as opportunistic parasites in AIDS patients as well as pathogens in immunocompetent individuals. Though more then 1000 species were named in Microsporidia phylum, only 11 to 14 species were known to infect human. A wide range of clinical presentation was associated with this infection. Chronic diarrhea is the commonest manifestation however myositis, keratoconjunctivitis and disseminated infection have been reported. Objective: To review cases with microsporidia infection. Patients and Method: All requests for suspected cases of microsporidia sent to the Medical Microbiology and Parasitology laboratory, School of Medical Sciences, USM from year 2003 to 2007 were reviewed. Patients were considered positive whenever the microsporidia oocysts were detected by Gram Chromotrope staining method. The detailed histories of patients with positive results were traced from the hospital record office. Results: Five patients were detected as positive for microsporidia oocyst within 4 years study period. Four of them were children aged 3 months to 8 years old. One patient was an immunocompromised adult. All patients had gastrointestinal symptoms. No other clinical manifestations were reported. Discussion and Conclusion: This study demonstrated that microsporidia are present in our local setting despite the fact that their detection is low. -
10 11 Cyto Slides 81-85
NEW YORK STATE CYTOHEMATOLOGY PROFICIENCY TESTING PROGRAM Glass Slide Critique ~ November 2010 Slide 081 Diagnosis: MDS to AML 9 WBC 51.0 x 10 /L 12 Available data: RBC 3.39 x 10 /L 72 year-old female Hemoglobin 9.6 g/dL Hematocrit 29.1 % MCV 86.0 fL Platelet count 16 x 109 /L The significant finding in this case of Acute Myelogenous Leukemia (AML) was the presence of many blast forms. The participant median for blasts, all types was 88. The blast cells in this case (Image 081) are large, irregular in shape and contain large prominent nucleoli. It is difficult to identify a blast cell as a myeloblast without the presence of an Auer rod in the cytoplasm. Auer rods were reported by three participants. Two systems are used to classify AML into subtypes, the French- American-British (FAB) and the World Health Organization (WHO). Most are familiar with the FAB classification. The WHO classification system takes into consideration prognostic factors in classifying AML. These factors include cytogenetic test results, patient’s age, white blood cell count, pre-existing blood disorders and a history of treatment with chemotherapy and/or radiation therapy for a prior cancer. The platelet count in this case was 16,000. Reduced number of platelets was correctly reported by 346 (94%) of participants. Approximately eight percent of participants commented that the red blood cells in this case were difficult to evaluate due to the presence of a bluish hue around the red blood cells. Comments received included, “On slide 081 the morphology was difficult to evaluate since there was a large amount of protein surrounding RBC’s”, “Slide 081 unable to distinguish red cell morphology due to protein” and “Unable to adequately assess morphology on slide 081 due to poor stain”.