New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C

Total Page:16

File Type:pdf, Size:1020Kb

New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. Muscle fibers, collagen, reticulin and proteins predominates at acid pH, and correspon- elastin fibers, erythrocytes, cartilage, bone, mucous cells, oocytes and larvae were selectively stained and differentiated. ding tissues will have affinity to acid dyes Dyes with small size and molecular weight (i.e Orange G), pen- (Gutiérrez, 1990). In addition, dyes also have the etrate all tissue structures rapidly, but are only tightly retained same groups as the proteins, but may include the in densely textured tissues (i.e erythrocytes). Methyl Blue is an sulphonic group as well. Which of these groups is interesting triarylmethane dye (large size and molecular weight), which is incorporated in this new VOF tetrachrome involved in any particular case depends on the cir- stain, and acquires histochemical significance when used at cumstances, including the pH of the staining solu- acid pH (2.8) because collagen and reticulin fibers, as well tion (Culling, 1976; Lillie, 1977; Pearse, 1985; basophilic and metachromatic substances (strongly ionized sulphated glycoconjugates) can be identified. Muscle tissues Gutiérrez, 1990; Kiernan, 1999). show an evident green colour (Fast Green or Light Green affini- Trichrome stains can be applied as a one-step ties), even those isolated and/or diffuse muscle fibers pres- technique (i.e. van Gieson’s and Gomori’s methods) ent in the digestive submucosa layer. Connective tissues showed a specific and strong blue colour (Methyl Blue affini- or as a multi-step method (i.e Masson's trichrome), ty) or mixed blue-red staining (Methyl Blue and Acid Fucshin where dyes and reagents are applied sequentially, affinities). Very noticeable is the staining of the mucous cells, and staining is optimised at each step (Culling, as well as the hyaline capsule of the viral lymphocystic cells, 1976; Lillie, 1977, Pearse, 1985; Bancroft and which were stained blue-purple (carboxylated and/or strongly ionized sulphated groups). Cartilaginous tissues showed a Cook, 1984; Gutiérrez, 1990; Kiernan, 1999). blue or purple (Methyl Blue affinity) staining, and a specific The original Haematoxylin-Gutiérrez´VOF stain red colour (Acid Fucshin affinity) was evident during calcifica- (Gutierrez, 1961,1967) is a one-step trichromic tion or in bone structures (i.e skeleton, fins, gills, teeth). stain, useful for histological purposes and Key words: Tetrachromic stain, cartilage, bone, fibers, diges- histopathological diagnosis (Gutiérrez et al., 1963; tive tract, ovary, skin, teeth, fish species. Gutiérrez, 1990). Specially interesting is the matu- *Correspondence: [email protected] Tel: 34.956832612. ration of the protozoan parasite, Martelia refrigens Fax: 34.956-834701. detected in the digestive gland of mussels, Mytilus Paper accepted on January 07, 2005 edulis, by using the original Haematoxylin- VOF stain (Gutiérrez, 1977a, b), because mature stages European Journal of Histochemistry 2005; vol. 49 issue 2 (Apr-Jun): 105-114 of this parasite were clearly evidenced by a specific Orange G affinity, while inmature stages stain blue 105 C. Sarasquete et al. due to a specific Haematoxylin affinity. Also, aci- dophilic zymogen granules secreted by the Material and Methods basophilic exocrine pancreas, erythrocytes accumu- lated in vascular systems, and yolk (larvae and Fixation and embedding samples oocytes) showed a strong or specific affinity to Samples (8-15x3-4 mm) of different tissues Orange G dye (Gutiérrez et al., 1985; Sarasquete et (ovary, digestive tract, gills, kidney, spleen, liver, al., 1993, 1995, 2002; Ribeiro et al., 1999; Gisbert heart) of healthy and pathological organisms (viral et al., 1999; Ortiz-Delgado et al., 2003; infected skin) and whole larvae and juvenile speci- Santamaria et al., 2004). On the other hand, and mens (Senegales sole, Solea senegalensis; interestingly, the mucous secreting cells containing seabream, Sparus aurata; sargo, Diplodus sargo; neutral and/or carboxylate- and/or sulphate-rich redbanded seabream, Pagrus auriga; meagre, glycoconjugates are present in the digestive tract, Argyrosomus regius and toadfish, Halobatrachus gills and skin of different larvae and adult fish didactylus) are fixed in Helly´s or Bouin´s fluids species (Gutiérrez et al., 1986; Sarasquete et al., during 2-10 h, depending on their thickness. Most 1995, 1996, Gisbert et al., 1999; Ribeiro et al., trichrome stains benefit from picric acid or mer- 1999, Ortiz-Delgado et al., 2003; Arellano et al., curic chloride fixation. If tissues have been fixed in 2001, 2004). Usually, these secretive cells are PAS formalin 10% buffered with phosphate (0.1 M at and Alcian Blue positive, but they are unstained pH 7.2), fixed sections can be postfixed in Bouin's with Haematoxylin-eosin or Haematoxylin- fluid or treated in picro-mercuric-alcohol (a satu- Gutiérrez´VOF morphological techniques rated solution of picric acid in absolute alcohol (Sarasquete et al., 1995, 2001; Arellano et al., containing 3% mercuric chloride) overnight. 2001, 2002, 2004; Ortiz-Delgado et al., 2003). Subsequently, mercuric pigment must be removed Pituitary glands of vertebrates have been largely with iodine/thiosulphate and the sections washed in used for researching trichromic stains. In fact, by water to remove picric acid. After fixation, samples using both Gutiérrez´VOF stain (Gutiérrez, 1961, are washed in 80% ethanol, and dehydrated 1967, 1990) and Slidders´method (Slidders, through increasing ethanol series (or acetone), 1961), which are composed of three (Light Green, cleared and embedded in 56-60ºC paraffin. Orange G and Acid Fucshin) isolated or mixed dyes, Sections are routinely made at 4-6 µm, stained and pituitary glands of vertebrates present an interest- mounted in Eukit medium. ing colour variability of hormone-secreting cells; Several triarylmethane derivatives: Light Green showing the acidophilic cells as orange or green; the SF (C37H34N2O9S3Na2, MW 792.875)/or Fast basophilic cells as magenta-red and the chromo- Green FCF (C37H34N2O10S3Na2, MW 808.86); phobic/amphiphilic cells as pale grey or green Methyl Blue (C37H27N3O9S3Na2, MW 799.81) and (Slidders, 1961; Rendón et al., 1997; Sarasquete et Acid Fuchsin (C20H17N3O9S3Na2, MW 585.55) al., 1997; Rodríguez-Gómez et al., 2001). The and a monoazoic dye: Orange G (C16H10N2O7S2Na2, architectural pattern of pituitary or stroma of dif- MW 452.386) are used to prepare the original ferent organs/tissues (Culling, 1976; Lillie, 1977; VOF´Gutiérrez, VOF Type-II and VOF Type III G.S Rendon et al., 1997) is well demonstrated with stains (For review Lillie, 1977 and Zollinger,1991; reticulin stains (i.e Methyl Blue); and this triaryl- http://members.pgonline.com/~bryand/StainsFile/d methane (large size and molecular weight) and yes/). polychromatic dye (positive and negative charges) Tetrachromic VOF Type III -G.S stain solution is an essential component of the now proposed 1. Dissolve Fast Green FCF (260 mg) or Light tetrachromic VOF Type III -G.S stain. Green SF (260 mg), Methyl Blue (140 mg), In this paper we described a variant of the origi- Orange G (500 mg) and Acid Fuchsin (600 mg) nal trichromic Gutiérrez´VOF technique, which is a completely in freshly boiled distilled water (100 one-step tretrachrome stain (VOF Type III-G.S) ml), and let the solution cool down to room tem- composed of Light Green SF/or Fast Green FCF, perature. Methyl Blue, Orange G and Acid Fuchsin.This stain 2. Add phosphotungstic acid (1.5 g); to dissolve was applied to histological sections of whole fish it, add glacial acetic acid (3 mL) and absolute larvae and to sections of normal
Recommended publications
  • PAPANICOLAOU STAINING SYSTEM (Procedure No. HT40)
    PAPANICOLAOU 6. Tap water......................................................................................................................rinse STAINING SYSTEM 7.­ Scott’s Tap Water Substitute................................................................................10 dips (Procedure No. HT40) 8. Tap water......................................................................................................................rinse 9. Reagent­Alcohol,­95%.........................................................................................10­dips _______________________________________________ 10. Papanicolaou­Stain­OG­6..............................................................................1.5­minutes INTENDED USE 11. Reagent­Alcohol,­95%.........................................................................................10­dips _______________________________________________ 12. Papanicolaou­Stain­Modified­EA,­OR ­ Papanicolaou­Stain­EA­50,­OR The Sigma-Aldrich Papanicolaou Staining system is intended for staining exfoliative ­ Papanicolaou­Stain­EA­65.............................................................................2.5­minutes cells in cytologic specimens. Papanicolaou staining reagents are for “In Vitro Diagnostic 13. Reagent­Alcohol,­95%,­two­changes..........................................................10­dips­each Use.” 1 14. Reagent­Alcohol,­100%.....................................................................................1­minute Papanicolaou staining techniques, reviewed in a concise report
    [Show full text]
  • Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21
    Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 भारत सरकार Government of India स्वास्थ्य सेवा महानिदेशालय Directorate General of Health Services स्वास्थ्य एवं पररवार कल्याण मंत्रालय Ministry of Health & Family Welfare ग मेनडकल कॉलेज एवं श्रीमती सुचेता कृपलािी अस्पतालﴂलेडी हनड Lady Hardinge Medical College & Smt. Sucheta Kriplani Hospital शहीद भगत नसंह मागग, िई नदल्ली – ११०००१ Shaheed Bhagat Singh Marg, New Delhi-110001 ३ नसतम्बर २०२० / 3rd September 2020 भंडार अिुभाग/Stores Section Tender Documents for Advertised Tender Enquiry for running rate contract of Kits, Chemicals & Reagents required for Lady Hardinge Medical College & Associated Hospitals New Delhi (Two Bid System) Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 Dated: 3rd September 2020 Amount of Bid Security: Rs. 2,00,000.00 (Rs. Two Lakh Only) Tender Fee: Rs. 0 (Can be downloaded from Central Public Procurement Portal or LHMC Website) CRITICAL DATES Start Date of Sale of Tender: 04/09/2020 11.00 AM to 1.30 PM and from 2.30 PM to 4.00 PM End Date of Sale of Tender: 12/10/2020 4.00 PM Start Date for Submission of Tender: 13/10/2020, 10.00 AM onwards, Time Schedule for Submission of Tender: 14/10/2020, upto 11.00 AM Time Schedule for Opening of Tender: 14/10/2020, 11.30 AM A. INSTRUCTIONS 1. LHMC & Associated Hospitals proposed to enter into a rate-contract (R/C) for the supply of Chemicals, Reagents & Kits valid for a period of 24 months from the date of opening of the Price Bid, can be extended for a period of 12 months or more on mutual consent on existing terms & conditions.
    [Show full text]
  • JB-4 Kit AGR1130
    Unit 7, M11 Business Link Parsonage Lane, Stansted Essex, UK CM24 8GF t: +44 (0)1279 813519 f: +44 (0)1279 815106 e: [email protected] w: www.agarscientific.com JB-4 Kit AGR1130 Introduction: JB-4 Embedding Kit is a unique polymer embedding material that gives a higher level of morphological detail than paraffin processed tissues. A water-soluble media, JB-4 does not require dehydration to absolute alcohol except for dense, bloody, or fatty tissue specimens. JB-4 is excellent for non-decalcified bone specimens, routine stains, special stains, and histochemical staining. Clearing agents such as xylene and chloroform are not required. The polymerization of JB-4 is exothermic, which is easily controlled by polymerizing on ice or by using refrigeration at 4°C. JB-4 Embedding Kits must be used under a chemical fume hood. Sections of JB-4 embedded material can be cut at 0.5 to 3.0 microns or thicker. Microtomes designed for plastic sectioning are required as are glass, Ralph, or tungsten carbide knives. Polysciences, Inc. has tungsten carbide knives available for most sectioning requirements. Sections can be stained for routine histological or histochemical procedures. Immunohistochemical procedures are not recommended for JB-4 as the glycol methacrylate cannot be removed from the section and may block antigen sites for most antibody reactions. As an alternative we recommend the Polysciences, Inc. Osteo-Bed Bone Embedding Kit. The Osteo-Bed formulation is a methyl methacrylate that is well suited for bone or for immunohistochemistry on routine histological specimens. NOTE: It is recommended that the Embedding Kit be used under a fume hood with appropriate gloves.
    [Show full text]
  • I. the Preparation and Morphology of a Quantified Urine Sediment
    Upsala J Med Sci 84: 67-74, 1979 The Effect of Short-term High-dose Treatment with Methenamine Hippurate of Urinary Infection in Geriatric Patients with Indwelling Catheters I. The preparation and morphology of a quantified urine sediment Bo Norberg, Astrid Norberg, Ulf Parkhede, Hans Gippert and MBns Akerman Departments of Internal Medicine, Pathology and Education, Univer.tity of Lund and the School of Nursing, Lund, Sweden. 3 A4 Riker Laboratories, Skurholmen, Swyden ABSTRACT A quantified sediment of the urine from patients with indwelling catheters was prepared by fixation of 0.1 ml urine in 0.9 ml 2% glutaraldehyde immediately after sampling. Slide preparations were then made from 0.2 ml of the glutaral- dehyde suspension by means of a cytocentrifuge. Bacteria and epithelial cells were properly contrasted by the May-Grunwald-Giemsa stain but haematoxylin- eosin and the Papanicolaou stain were superior as regards leukocyte morphology. It is suggested that glutaraldehyde-cytocentrifuge preparations of the urine cytology may be useful in the evaluation of urinary infection and in the evaluation of the therapy of urinary infection. INTRODUCTION The microscopic examination of urine sediments is a rapid and simple proce- dure which provides essential information in many cases of kidney disease or infections in the urinary tract. The conventional urinary sediment has, how- ever, serious pitfalls, e.g. low reproducibility, low precision and high vul- nerability to delay in transport and preparation (1-10). It nevertheless seemed desirable to make a quantified urine sediment from patients with indwelling catheters in order to evaluate urinary infection and the effects of therapy.
    [Show full text]
  • Mucin Histochemistry in Tumours of Colon, Ovaries and Lung
    ytology & f C H i o s l t a o n l o r g u y o Ali et al., J Cytol Histol 2012, 3:7 J Journal of Cytology & Histology DOI: 10.4172/2157-7099.1000163 ISSN: 2157-7099 ReviewResearch Article Article OpenOpen Access Access Mucin Histochemistry in Tumours of Colon, Ovaries and Lung Usman Ali*, Nagi AH, Nadia Naseem and Ehsan Ullah Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore, Pakistan Abstract Introduction: Mucins implicated in cancers of various organs. The apical epithelial surfaces of mammalian respiratory, gastrointestinal, and reproductive tracts are coated by mucus, a mixture of water, ions, glycoproteins, proteins, and lipids. The purpose of this study was to confirm the presence of mucin production using Haematoxylin and Eosin (H&E) stain as the gold standard and to describe the types of mucins produced in tumors of lung, colon and ovaries using various types of histochemical techniques. Methods: The resection specimens and biopsies from tumours of colon (n=16), ovaries (n=13) and lung (n=5) were included and stained with H&E to determin the histological diagnosis for selecting tissues with mucin production. Slides were stained with PAS, Alcian blue, High iron diamine-Alcian blue, Meyer’s mucicarmine and Alcian blue-PAS to demonstrate the mucin production and to identify types of mucins. Results: In the present study we observed predominance of acid mucins over neutral mucins. In addition in these cases we observed sulphomucin predominating over sialomucin. Conclusion: Mucin histochemistry can effectively determine the types of mucins. Keywords: Haematoxylin and Eosin; Periodic acid schiff; High iron Materials and Methods diamine; Alcian blue Paraffin embedded sections were prepared using automatic tissue Introduction processor, followed by preparation of paraffin block using our embedding station.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel Et Al
    USOO6905539B2 (12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel et al. (45) Date of Patent: Jun. 14, 2005 (54) BLACK ERADICABLE INK, METHODS OF 5,478,382. A 12/1995 Miller et al............... 106/22 B ERADICATION OF THE SAME, 5,486.228 A 1/1996 Miller et al. ..... ... 106/22 B ERADICABLE INK KIT, AND ERADICATED 5,489,331 A 2/1996 Miller et al. .............. 106/22 B INK COMPLEX 5,492,558 A 2/1996 Miller et al. .............. 106/22 B 5,498.282 A 3/1996 Miller et al. .. ... 106/22 B (75) Inventors: Sanjay Patel, Cypress, CA (US); David 5,498,285 A 3/1996 Hooykaas ................... 106/486 Godbout, Westmont, IL (US); Wing 5,499,881. A 3/1996 Chang........................ 401/17 Sum Vincent Kwan, Chicago, IL (US) E. A to: Eli - - - t; (73) Assignee: Sanford L.P., Freeport, IL (US) SEA GE Air O..."; (*) Notice: Subject to any disclaimer, the term of this SCA : R. S. G.O.". patent is extended or adjusted under 35 5.877234. A 3/1999 Xuetal... 523/161 U.S.C. 154(b) by 0 days. 5,916,357. A 6/1999 Wang et al. ............. 106/31.23 5,964,931 A 10/1999 Korper .................... 106/31.93 (21) Appl. No.: 10/619,706 5,977.211 A 11/1999 Koyama ..................... 523/161 5.997,891 A 12/1999 Fuerst et al. ................ 424/401 (22) Filed: Jul. 15, 2003 6,037,391 A 3/2000 Iida ............................ 523/161 6,048.914 A 4/2000 Goto et al.
    [Show full text]
  • T-Cell Brain Infiltration and Immature Antigen-Presenting Cells in Transgenic Models of Alzheimerв€™S Disease-Like Cerebral
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis Ferretti, M T ; Merlini, M ; Späni, C ; Gericke, C ; Schweizer, N ; Enzmann, G ; Engelhardt, B ; Kulic, L ; Suter, T ; Nitsch, R M Abstract: Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer’s disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen- presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow- cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg andtgmice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments.
    [Show full text]
  • Student Safety Sheets Dyes, Stains & Indicators
    Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched.
    [Show full text]
  • Simple Technique to Identify Haemosiderin in Immunoperoxidase Stained Sections
    J Clin Pathol: first published as 10.1136/jcp.37.10.1190 on 1 October 1984. Downloaded from 1190 Technical methods Phosphate buffer at pH 8*0 gave the sharpest 2 Rozenszajn L, Leibovich M, Shoham D, Epstein J. The esterase staining reactions, although there was little differ- activity in megaloblasts, leukaemic and normal haemopoietic cells. Br J Haematol 1968; 14:605-19. ence at pH 7-0 or pH 7-5. As the buffer pH was 3Hayhoe FGJ, Quaglino D. Haematological cytochemistry. Edin- increased above pH 8-0 staining with both substrates burgh: Churchill Livingstone, 1980. became progressively weaker, especially above pH 4Li CY, Lam KW, Yam LT. Esterases in human leucocytes. J 9.0. Below pH 7-0 staining with a-naphthyl butyrate Histochem Cytochem 1973;21:1-12. Yam LT, Li CY, Crosby WH. Cytochemical identification of became weaker, and below pH 5*0 staining with monocytes and granulocytes. Am J Clin Pathol 1971;55:283- naphthol AS-D chloroacetate began to disappear. 90. 6 Armitage RJ, Linch DC, Worman CP, Cawley JC. The morphol- This work was supported by a Medical Research ogy and cytochemistry of human T-cell subpopulations defined by monoclonal antibodies and Fc receptors. Br J Haematol Council project grant. I thank Professor FGJ 1983;51:605-13. Hayhoe for valuable advice. References Requests for reprints to: Dr DM Swirsky, Department of Gomori G. Chloroacyl esters as histochemical substrates. J His- Haematological Medicine, University Clinical School, Hills tochem Cytochem 1953;1:469-70. Road, Cambridge CB2 2QL, England. Simple technique to identify identification of the two compounds on the same haemosiderin in slide.
    [Show full text]
  • The Sensitizing and Indicator Action of Victoria Blue and Janus Green on the Flocculation Reaction for Syphilis
    In the case of sulphonamides, cultures resistant to sulphanilamide were resistant or partially resistant to the other members of this group with the exception of marfanil. Resistance once acquired seems to be permanent, and so far we have not been successful in reducing it in vitro. REFERENCES. ALBERT, A., FRANCIS, A. E., GARROD, L. P., AND LINNELL, W. H.-(1938) Brit. J. exp. Path., 19, 41. LANDY, M., LARKUM, N. W., OswALD, E. J., AND STREIGHTOFF, F.-(1943) Science, 97, 265. LEVADITI, C., AND MCINTOSH, J.-(1910) Bull. Soc. Path. exot., 3, 368. MACLEAN, I. H., ROGERS, K. B., AND FLEMING, A.-(1939) Lancet, i, 562. MACLEOD, C. M.-(1940) J. exp. Med., 72, 217. RAMMELKAMP, C. H., AND MAXON, T.-(1942) Proc. Soc. exp. Biol., N.Y., 51, 386. RUBBO, S. D., ALBERT, A., AND MAxWELL, M.-(1942) Brit. J. exp. Path., 23, 69. TILLETT, W. S., CAMBIER, M. J., AND HARRIS, W. H.-(1943) J. clin. Invest., 22, 249. THE SENSITIZING AND INDICATOR ACTION OF VICTORIA BLUE AND JANUS GREEN ON THE FLOCCULATION REACTION FOR SYPHILIS. F. M. BERGER. From the Public Health Laboratory, County Hall, Wakefield. Received for publication November 9, 1943. DEAN (1937) found that isamine blue could act as an indicator of the reaction between an antigen and its homologous antibody. The addition of the dye to a mixture of horse serum and dilute antiserum produced a precipitate which was easily visible because it took up all the dye from the supernatant fluid. Prof. P. L. Suther- land suggested the possibility of using isamine blue as indicator in serological tests for syphilis.
    [Show full text]
  • Pituitary Gland
    Part 6: Pituitary Gland Normal Physiology and Structure The pituitary gland comprises the adenohypophysis, which is made up of the pars distalis, pars intermedia and pars tuberalis and the neurohypophysis which includes the pars nervosa, infundibular stem and median eminence. The pars distalis forms the largest proportion of the gland and functions as the overall regulator of peripheral endocrine function by synthesizing and secreting at least 6 major trophic hormones. These include growth hormone (GH), prolactin (PrL), adrenocorticotrophic hormone (ACTH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Since this is the important area of the pituitary with respect to detecting endocrine active compounds, the rest of this section will concentrate only on this part of the pituitary. For reviews see (Page, 1994; Tucker, 1999; Greaves, 2007). Each hormone of the pars distalis is generally secreted by a seperate cell type, but some cells are able to secrete two hormones. The different hormones impart different staining properties to the cells. Using histological stains based on Orange G and periodic acid-Schiff (PAS), the cells of the pars distalis have been divided into acidophils (orange G positive), basophils (PAS positive) and chromophobes (absence of staining). In the rat, these have been reported to constitute 40, 10 and 50% respectively of the cell population of the pars distalis. The staining characteristics are dependent on the level of secretory activity, and when the cells have just secreted their granules or when secretory activity is increased, all the cells take on chromophobic characteristics due to the relative abundance of secretory organelles (endoplasmic reticulum and Golgi) and relative lack of secretory granules.
    [Show full text]
  • The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in Th
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1976 The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat eric sigmond Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Medical Anatomy Commons Recommended Citation sigmond, eric, "The Histochemical Distribution of Placental Calcium and Alkaline Phosphatase Activity Following Fetoplacental Dissociation in the Albino Rat" (1976). Master's Theses. 2872. https://ecommons.luc.edu/luc_theses/2872 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1976 eric sigmond THE HISTOCHEMICAL DISTRIBUTION OF PLACENTAL CALCIUM AND ALKALINE PHOSPHATASE ACTIVITY FOLLOWING FETOPLACENTAL DISSOCIATION IN THE ALBINO RAT by Eric Sigmond A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science February 1976 ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Leslie A. Emmert for his suggestion of the problem, his patience, encouragement and supervision throughout the course of this thesis. His guidance helped overcome many problems which arose during the course of this study. I also wish to express thanks to Dr. Charles C.C. O'Morchoe and Dr. Maurice V. L'Heureux for their many valuable suggestions during the writing of this thesis.
    [Show full text]