Biological Stains & Dyes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PAPANICOLAOU STAINING SYSTEM (Procedure No. HT40)
PAPANICOLAOU 6. Tap water......................................................................................................................rinse STAINING SYSTEM 7. Scott’s Tap Water Substitute................................................................................10 dips (Procedure No. HT40) 8. Tap water......................................................................................................................rinse 9. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 10. PapanicolaouStainOG6..............................................................................1.5minutes INTENDED USE 11. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 12. PapanicolaouStainModifiedEA,OR PapanicolaouStainEA50,OR The Sigma-Aldrich Papanicolaou Staining system is intended for staining exfoliative PapanicolaouStainEA65.............................................................................2.5minutes cells in cytologic specimens. Papanicolaou staining reagents are for “In Vitro Diagnostic 13. ReagentAlcohol,95%,twochanges..........................................................10dipseach Use.” 1 14. ReagentAlcohol,100%.....................................................................................1minute Papanicolaou staining techniques, reviewed in a concise report -
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 भारत सरकार Government of India स्वास्थ्य सेवा महानिदेशालय Directorate General of Health Services स्वास्थ्य एवं पररवार कल्याण मंत्रालय Ministry of Health & Family Welfare ग मेनडकल कॉलेज एवं श्रीमती सुचेता कृपलािी अस्पतालﴂलेडी हनड Lady Hardinge Medical College & Smt. Sucheta Kriplani Hospital शहीद भगत नसंह मागग, िई नदल्ली – ११०००१ Shaheed Bhagat Singh Marg, New Delhi-110001 ३ नसतम्बर २०२० / 3rd September 2020 भंडार अिुभाग/Stores Section Tender Documents for Advertised Tender Enquiry for running rate contract of Kits, Chemicals & Reagents required for Lady Hardinge Medical College & Associated Hospitals New Delhi (Two Bid System) Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 Dated: 3rd September 2020 Amount of Bid Security: Rs. 2,00,000.00 (Rs. Two Lakh Only) Tender Fee: Rs. 0 (Can be downloaded from Central Public Procurement Portal or LHMC Website) CRITICAL DATES Start Date of Sale of Tender: 04/09/2020 11.00 AM to 1.30 PM and from 2.30 PM to 4.00 PM End Date of Sale of Tender: 12/10/2020 4.00 PM Start Date for Submission of Tender: 13/10/2020, 10.00 AM onwards, Time Schedule for Submission of Tender: 14/10/2020, upto 11.00 AM Time Schedule for Opening of Tender: 14/10/2020, 11.30 AM A. INSTRUCTIONS 1. LHMC & Associated Hospitals proposed to enter into a rate-contract (R/C) for the supply of Chemicals, Reagents & Kits valid for a period of 24 months from the date of opening of the Price Bid, can be extended for a period of 12 months or more on mutual consent on existing terms & conditions. -
Lysochrome Dyes Sudan Dyes, Oil Red Fat Soluble Dyes Used for Biochemical Staining of Triglycerides, Fatty Acids, and Lipoproteins Product Description
FT-N13862 Lysochrome dyes Sudan dyes, Oil red Fat soluble dyes used for biochemical staining of triglycerides, fatty acids, and lipoproteins Product Description Name : Sudan IV Other names: Sudan R, C.I. Solvent Red 24, C.I. 26105, Lipid Crimson, Oil Red, Oil Red BB, Fat Red B, Oil Red IV, Scarlet Red, Scarlet Red N.F, Scarlet Red Scharlach, Scarlet R Catalog Number : N13862, 100g Structure : CAS: [85-83-6] Molecular Weight : MW: 380.45 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =513-529nm(red);Sol(EtOH):0.09% S:22/23/24/25 Name : Sudan III Other names: Rouge Sudan ; rouge Ceresin ; CI 26100; CI Solvent Red 23 Catalog Number : 08002A, 25g Structure : CAS:[85-86-9] Molecular Weight : MW: 352.40 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =503-510nm(red);Sol(EtOH):0.15% S:24/25 Name : Sudan Black B Other names: Sudan Black; Fat Black HB; Solvent Black 3; C.I. 26150 Catalog Number : 279042, 50g AR7910, 100tests stain for lipids granules Structure : CAS: [4197-25-5] S:22/23/24/25 Molecular Weight : MW: 456.54 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs=596-605nm(blue-black) Name : Oil Red O Other names: Solvent Red 27, Sudan Red 5B, C.I. 26125 Catalog Number : N13002, 100g Structure : CAS: [1320-06-5 ] Molecular Weight : MW: 408.51 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =518(359)nm(red);Sol(EtOH): moderate; Sol(water): Insoluble S:22/23/24/25 Storage: Room temperature (Z) P.1 FT-N13862 Technical information & Directions for use A lysochrome is a fat soluble dye that have high affinity to fats, therefore are used for biochemical staining of triglycerides, fatty acids, and lipoproteins. -
(12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel Et Al
USOO6905539B2 (12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel et al. (45) Date of Patent: Jun. 14, 2005 (54) BLACK ERADICABLE INK, METHODS OF 5,478,382. A 12/1995 Miller et al............... 106/22 B ERADICATION OF THE SAME, 5,486.228 A 1/1996 Miller et al. ..... ... 106/22 B ERADICABLE INK KIT, AND ERADICATED 5,489,331 A 2/1996 Miller et al. .............. 106/22 B INK COMPLEX 5,492,558 A 2/1996 Miller et al. .............. 106/22 B 5,498.282 A 3/1996 Miller et al. .. ... 106/22 B (75) Inventors: Sanjay Patel, Cypress, CA (US); David 5,498,285 A 3/1996 Hooykaas ................... 106/486 Godbout, Westmont, IL (US); Wing 5,499,881. A 3/1996 Chang........................ 401/17 Sum Vincent Kwan, Chicago, IL (US) E. A to: Eli - - - t; (73) Assignee: Sanford L.P., Freeport, IL (US) SEA GE Air O..."; (*) Notice: Subject to any disclaimer, the term of this SCA : R. S. G.O.". patent is extended or adjusted under 35 5.877234. A 3/1999 Xuetal... 523/161 U.S.C. 154(b) by 0 days. 5,916,357. A 6/1999 Wang et al. ............. 106/31.23 5,964,931 A 10/1999 Korper .................... 106/31.93 (21) Appl. No.: 10/619,706 5,977.211 A 11/1999 Koyama ..................... 523/161 5.997,891 A 12/1999 Fuerst et al. ................ 424/401 (22) Filed: Jul. 15, 2003 6,037,391 A 3/2000 Iida ............................ 523/161 6,048.914 A 4/2000 Goto et al. -
Student Safety Sheets Dyes, Stains & Indicators
Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched. -
The Sensitizing and Indicator Action of Victoria Blue and Janus Green on the Flocculation Reaction for Syphilis
In the case of sulphonamides, cultures resistant to sulphanilamide were resistant or partially resistant to the other members of this group with the exception of marfanil. Resistance once acquired seems to be permanent, and so far we have not been successful in reducing it in vitro. REFERENCES. ALBERT, A., FRANCIS, A. E., GARROD, L. P., AND LINNELL, W. H.-(1938) Brit. J. exp. Path., 19, 41. LANDY, M., LARKUM, N. W., OswALD, E. J., AND STREIGHTOFF, F.-(1943) Science, 97, 265. LEVADITI, C., AND MCINTOSH, J.-(1910) Bull. Soc. Path. exot., 3, 368. MACLEAN, I. H., ROGERS, K. B., AND FLEMING, A.-(1939) Lancet, i, 562. MACLEOD, C. M.-(1940) J. exp. Med., 72, 217. RAMMELKAMP, C. H., AND MAXON, T.-(1942) Proc. Soc. exp. Biol., N.Y., 51, 386. RUBBO, S. D., ALBERT, A., AND MAxWELL, M.-(1942) Brit. J. exp. Path., 23, 69. TILLETT, W. S., CAMBIER, M. J., AND HARRIS, W. H.-(1943) J. clin. Invest., 22, 249. THE SENSITIZING AND INDICATOR ACTION OF VICTORIA BLUE AND JANUS GREEN ON THE FLOCCULATION REACTION FOR SYPHILIS. F. M. BERGER. From the Public Health Laboratory, County Hall, Wakefield. Received for publication November 9, 1943. DEAN (1937) found that isamine blue could act as an indicator of the reaction between an antigen and its homologous antibody. The addition of the dye to a mixture of horse serum and dilute antiserum produced a precipitate which was easily visible because it took up all the dye from the supernatant fluid. Prof. P. L. Suther- land suggested the possibility of using isamine blue as indicator in serological tests for syphilis. -
New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. -
Dietary Supplements Compendium Volume 1
2015 Dietary Supplements Compendium DSC Volume 1 General Notices and Requirements USP–NF General Chapters USP–NF Dietary Supplement Monographs USP–NF Excipient Monographs FCC General Provisions FCC Monographs FCC Identity Standards FCC Appendices Reagents, Indicators, and Solutions Reference Tables DSC217M_DSCVol1_Title_2015-01_V3.indd 1 2/2/15 12:18 PM 2 Notice and Warning Concerning U.S. Patent or Trademark Rights The inclusion in the USP Dietary Supplements Compendium of a monograph on any dietary supplement in respect to which patent or trademark rights may exist shall not be deemed, and is not intended as, a grant of, or authority to exercise, any right or privilege protected by such patent or trademark. All such rights and privileges are vested in the patent or trademark owner, and no other person may exercise the same without express permission, authority, or license secured from such patent or trademark owner. Concerning Use of the USP Dietary Supplements Compendium Attention is called to the fact that USP Dietary Supplements Compendium text is fully copyrighted. Authors and others wishing to use portions of the text should request permission to do so from the Legal Department of the United States Pharmacopeial Convention. Copyright © 2015 The United States Pharmacopeial Convention ISBN: 978-1-936424-41-2 12601 Twinbrook Parkway, Rockville, MD 20852 All rights reserved. DSC Contents iii Contents USP Dietary Supplements Compendium Volume 1 Volume 2 Members . v. Preface . v Mission and Preface . 1 Dietary Supplements Admission Evaluations . 1. General Notices and Requirements . 9 USP Dietary Supplement Verification Program . .205 USP–NF General Chapters . 25 Dietary Supplements Regulatory USP–NF Dietary Supplement Monographs . -
L-Cycloserine Amplifies Anti-Tumor Activity of Glutamine Antagonist
J. Clin. Biochem. Nutr., 14, 53-60, 1993 L-Cycloserine Amplifies Anti-Tumor Activity of Glutamine Antagonist Akira OKADA, Hiroo TAKEHARA, Kanehiro YOSHIDA, Masaharu NISHI, Hidenori MIYAKE, and Nobuhiko KOMI* The First Department of Surgery, School of Medicine, The University of Tokushima, Tokushima 770, Japan (Received September 22, 1992) Summary We examined the effect of simultaneous treatment with 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, and L- cycloserine, a transaminase inhibitor, on Yoshida sarcoma-bearing rats, with the aim of achieving inhibition of both glutamine catabolism and glutamate synthesis. L-Cycloserine, in a dosage of 1-30 mg/kg, was intraperitoneally administered to Yoshida sarcoma-bearing rats, but the administration of L-cycloserine alone did not show any significant effect on the tumor weight. However, combined treatment with DON (1 mg/kg) caused a dose-dependent reduction in the tumor weight. Amino acid analysis of the tumor tissue, performed 24 h after these treatments in order to confirm their influences on amino acid metabolism in the tumor, showed that the increased glutamate level seen after treatment with DON in a previous study was suppressed by simultaneous administration of DON and 10 mg/kg of L-cycloserine. These results suggest that pooled glutamate in the tumor tissue plays some role in resistance to the tumor- reducing activity of this glutamine antagonist. This, in turn, suggests that concurrent inhibition of glutamate production and blockage of glutamine utilization might result in enhanced tumor reduction in a clinical study. Key Words: glutamine antagonist, transaminase inhibitor, glutamate, Yoshida sarcoma, tumor reduction The glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) evoked tumor reduction in experimental tumors [1-3], but it did not show adequate efficacy in clinical studies [4, 5]. -
S-Carboxymethylcysteine Synthase from Escherichia Coli
Agric. Biol. Chem., 53 (9), 2481 -2487, 1989 2481 S-Carboxymethylcysteine Synthase from Escherichia coli Hidehiko Kumagai,* Hideyuki Suzuki, Hiroki Shigematsu and Tatsurokuro Tochikura Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan Received April 14, 1989 An enzyme that catalyzes the synthesis of S-carboxymethyl-L-cysteine from 3-chloro-L-alanine (3-Cl-Ala) and thioglycolic acid was found in Escherichia coli W3110 and was designated as S- carboxymethyl-L-cysteine synthase. It was purified from the cell-free extract to electrophoretic homogeneity and was crystallized. The enzymehas a molecular weight of 84,000 and gave one band corresponding to a molecular weight of 37,000 on SDS-polyacrylamide gel electrophoresis. The purified enzyme catalyzed the ^-replacement reactions between 3-Cl-Ala and various thiol compounds. The apparent Kmvalues for 3-Cl-Ala and thioglycolic acid were 40mMand 15.4mM.The enzyme showedvery low activity as to the a,/^-elimination reaction with 3-Cl-Ala and L-serine. It was not inactivated on the incubation with 3-Cl-Ala. Theabsorption spectrum of the enzymeshows a maximum at 412nm, indicating that it contains pyridoxal phosphate as a co factor. The N-terminal amino acid sequence was determined and the corresponding sequence was detected in the protein sequence data bank, but no homogeneous sequence was found. 3-Chloro-L-alanine (3-Cl-Ala) acts as a so- called suicide substrate for some pyridoxal- Materials and Methods phosphate (PLP) dependent enzymes, such Reagents. Casamino acids and Tryptone were obtained as glutamate-oxaloacetic acid transminase,1} from Difco Laboratories, yeast extract from Oriental glutamate-pyruvic acid transaminase2) and Yeast Co., amido black 10B from E. -
20 to 30 Sec)
457 Observations on a highly specific method for the histochemical detection of sulphated mucopolysaccharides, and its possible mechanisms By I. D. HEATH (From the Department of Anatomy, University of St. Andrews, Queen's College, Dundee. Present address: General Hospital, Nottingham) With 3 plates (figs, i to 3) Summary Whereas basic dyes in aqueous solutions stain chromatin, all mucins, mast cells, the ground substance of cartilage, and epidermis, it has been shown that a 0-03 % solution of basic dye in 5% aluminium sulphate produces a highly specific staining reaction for sulphated mucopolysaccharides. The best dyes are nuclear fast red (Herzberg) and methylene blue. Acid dyes in solutions of aluminium salts are induced to stain the ground substance of cartilage. These observations have been confirmed in a num- ber of species. Other metallic ions have similar properties and the use of green and purple chromic salts indicate that co-ordination plays a part in the reaction. Methylation, saponification, and sulphation experiments show that the sulphate group is essential. This has been confirmed by using pure chemical substances in gelatin models. Oxidation of keratin with performic acid, which produces sulphonic groups, causes hair (previously negative) to react. From this it is suggested that sul- phonic groups may also react, and that the reactive groups need not be attached to mucopolysaccharides. It is further suggested that the specificity of sulphated muco- polysaccharides is due to the fact that they are the only substances present in the tis- sues with a sufficient concentration of sulphate groups. Experiments with solochrome azurine show that the aluminium is attached to all tissue elements irrespective of their nature. -
Selective Toxicity of Rhodamine 123 in Carcinoma Cells in Vitro
[CANCER RESEARCH 43, 716-720, February 1983] 0008-5472/83/0043-0000502.00 Selective Toxicity of Rhodamine 123 in Carcinoma Cells in Vitro Theodore J. Lampidis, 1 Samuel D. Bernal, 2 lan C. Summerhayes, and Lan Bo Chen a Sidney Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115 ABSTRACT ing appears to be unique, since chemotherapeutic agents currently in clinical use have not been shown to be particularly The study of mitochondria in situ has recently been facilitated selective between tumorigenic and normal cells in vitro. through the use of rhodamine 123, a mitochondrial-specific fluorescent dye. It has been found to be nontoxic when applied MATERIALS AND METHODS for short periods to a variety of cell types and has thus become an invaluable tool for examining mitochondrial morphology and Cell Cultures. All cell types and cell lines were grown in Dulbecco's function in the intact living cell. In this report, however, we modified Eagle's medium supplemented with 10% calf serum (M. A. demonstrate that with continuous exposure, rhodamine 123 Bioproducts, Walkersville, Md.) at 37 ~ with 5% CO2. The following cell selectively kills carcinoma as compared to normal epithelial lines were obtained from the American Type Culture Collection: cells grown in vitro. At doses of rhodamine 123 which were CCL 105, CCL 15, CRL 1550, CRL 1420, CCL51, CCL77, CCL185, toxic to carcinoma cells, the conversion of mitochondrial-spe- CCL 34, PtK-1, CV-1, and BSC-I. The human bladder carcinoma line cific to cytoplasmic-nonspecific localization of the drug was (E J) was provided by Dr.