S-Carboxymethylcysteine Synthase from Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

S-Carboxymethylcysteine Synthase from Escherichia Coli Agric. Biol. Chem., 53 (9), 2481 -2487, 1989 2481 S-Carboxymethylcysteine Synthase from Escherichia coli Hidehiko Kumagai,* Hideyuki Suzuki, Hiroki Shigematsu and Tatsurokuro Tochikura Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan Received April 14, 1989 An enzyme that catalyzes the synthesis of S-carboxymethyl-L-cysteine from 3-chloro-L-alanine (3-Cl-Ala) and thioglycolic acid was found in Escherichia coli W3110 and was designated as S- carboxymethyl-L-cysteine synthase. It was purified from the cell-free extract to electrophoretic homogeneity and was crystallized. The enzymehas a molecular weight of 84,000 and gave one band corresponding to a molecular weight of 37,000 on SDS-polyacrylamide gel electrophoresis. The purified enzyme catalyzed the ^-replacement reactions between 3-Cl-Ala and various thiol compounds. The apparent Kmvalues for 3-Cl-Ala and thioglycolic acid were 40mMand 15.4mM.The enzyme showedvery low activity as to the a,/^-elimination reaction with 3-Cl-Ala and L-serine. It was not inactivated on the incubation with 3-Cl-Ala. Theabsorption spectrum of the enzymeshows a maximum at 412nm, indicating that it contains pyridoxal phosphate as a co factor. The N-terminal amino acid sequence was determined and the corresponding sequence was detected in the protein sequence data bank, but no homogeneous sequence was found. 3-Chloro-L-alanine (3-Cl-Ala) acts as a so- called suicide substrate for some pyridoxal- Materials and Methods phosphate (PLP) dependent enzymes, such Reagents. Casamino acids and Tryptone were obtained as glutamate-oxaloacetic acid transminase,1} from Difco Laboratories, yeast extract from Oriental glutamate-pyruvic acid transaminase2) and Yeast Co., amido black 10B from E. Merck AGand phenylmethylsulfonyl fluoride from Calbiochem-Behring. amino acid racemase.3) On the other hand, Sephadex G-150 and G-100, and blue dextran 2000 and someother PLPenzymes that catalyze the a,/?- molecular weight markers were from Pharmacia. DEAE- elimination and /^-replacement reactions were Cellulofine AHand Cellulofine GC-700-mwere from found to be insensitive to 3-Cl-Ala and to Chisso Co. SC-Cys was from Tokyo Kasei Co., 3-Cl-Ala utilize it as a preferable substrate.4~7) Fur- was a generous gift from ShowalDenko Co., and PLP was thermore, the development of chemical syn- kindly provided by Dainippon Pharmaceutical Co. Other thesis techniques has madeit possible to pro- chemicals were purchased from commercial sources. duce 3-Cl-Ala economically on a large scale.8) Bacterial strain and culture. Escherichia coli W3110 was These observations prompted us to inves- obtained from the stock culture of the Laboratory of tigate and to develop an enzymatic method Industrial Microbiology, Department of Food Science and for the synthesis of useful amino acids from 3- Technology, Faculty of Agriculture, Kyoto University. Cl-Ala. Cells were picked up from an agar plate containing LB medium,10) inoculated into a tube containing 5ml of LB This paper reports the purification and prop- broth and then grown at 37°C overnight with reciprocal erties of the enzyme responsible for the syn- shaking. This preculture was transferred to a 2-1 Sakaguchi thesis of S-carboxymethyl-L-cysteine (SC-Cys) flask containing 500ml of modified Vogel and Bonner from 3-Cl-Ala and thioglycolic acid (TGA). mediumn) containing 0.5% glucose, 0.2% citric acid - H2O, SC-Cys exhibits mucolytic activity and is use- 0.35% NaNH4HPO4-4H2O, 1% K2HPO4, 0.02% Mg- SO4 7H2O and 0.05% Casamino acids, and then grown ful for loosening mucus in the trachea.9) at 28°C for 24hr with reciprocal shaking. Two such sub- * Corresponding author. 2482 H. Kumagai et al. cultures were inoculated into a 30-1 jar fermentor (type Dowex 1x2 (OH form) column (3.6 by 34cm) and MSJ-U 301; Marubishi Co.) containing 201 of the elution was carried out with 0.2n acetic acid solution. modified Vogel and Bonner medium. Cultivation was carried out at 30°C for 24hr with aeration (0.51/1 of HPLC. HPLCwas performed with an M6000Apump, a medium per min) and agitation (150 rpm). The grown cells U6Kinjector and an M440 UVdetector (wavelength fixed were harvested with a refrigerated continuous flow at 280nm) (Waters Assoc, Milford, MA, U.S.A.). centrifuge (type GLE; Carl Padberg GmbH). Paper chromatography. Some products of the enzyme Enzymeassay. SC-Cys synthase activity was determined reaction were detected and determined by paper chroma- with an automatic amino acid analyzer (type K-101-AS; tography. Ten fil of the reaction mixture was applied on a Kyowa Seimitsu Co.; with Kyowa Gel 62210-S) by filter pater (Toyo No. 51A), followed by development in measuring the SC-Cys synthesized. The assay solution the descending modewith a solvent system of rc-butanol- contained 50 /miol of 3-Cl-Ala, 50 /miol ofTGA, 0.1 mmol acetic acid-water (4 : 1 : 1). The development was repeated of potassium phosphate (pH 7.8), 20nmol of PLP, to obtain a good separation. The products were detected 4.0/rniol of EDTAand the enzyme in a final volume of by spraying a 0.3% ninhydrin solution in a mixture of 1.0ml. The reaction was started by the addition of 3-C1- acetone and ethanol (3: 1). For determination of the Ala, and incubation was carried out at 37°C and stopped product, the spot was cut out and extracted with 5ml ofa by the addition of0.5ml of0.3n HCI. 75%ethanol solution in water containing one drop of 5% O-Acetylserine sulfhydrylase activity was determined CuSO4. The amount of the product was estimated spec- according to Kredick and Becker.12) trophotometrically by measuring the absorbance at The enzymatic a,/?-elimination reaction was assayed by measuring the amount of pyruvate by a spectrophotomet- ric method with lactate dehydrogenase and NADH.13) 500Spectrophotometric measurement.nm.Spectrophotometric One unit of an enzyme is defined as the amount of determination and measurement of absorption spectra enzyme that catalyzed the formation of 1 jiimol of the were carried out with a Hitachi 150-20 spectrophotometer. product under the assay conditions. Specific activity is expressed as units per mgprotein. lH-NMRspectrometric analysis. The ^-NMRspec- trum was measured in D2Owith a Hitachi Model R-22 Protein determination. Protein concentrations were de- (90 MHz)spectrometer and chemical shifts were expressed termined by the method of Lowry et al.l4) with bovine relative to DSSas an internal standard. serum albumin as a standard. Mass spectrometric analysis. The mass spectrum was Electrophoresis. Electrophoresis and protein staining measured with a Hitachi Model M-80 mass spectrometer were carried out according to the guide book from with electron impact ion at an ionizing voltage of 20eV. Pharmacia (Polyacrylamide Gel Electrophoresis-Labora- tory Techniques). Proteins on native gel electrophoresis Optical rotatory dispersion analysis. Optical rotatory were stained with amido black 10B and those on SDS dispersion was measured with a JASCO J-5 ORD re- polyacrylamide gel electrophoresis were stained with Co- corder. SC-Cys was dissolved in 1n HC1 at the con- omassie blue R-250. centration of 20 mg/ml. Molecular weight estimation. The molecular weight of Amino acid sequence analysis. Amino acid sequence the enzyme was determined by gel filtration on a high analysis was carried out by automated Edman degra- performance liquid chromatograph (HPLC) equipped dation with an Applied Biosystems gas phase sequencer with a TSK-GEL3,000 SWcolumn. The molecular weight (Model 470A) equipped online with a PTH-amino acid of a subunit was estimated by SDS polyacrylamide electro- analyzer (Model 120A). phoresis, using an LMWmolecular weight calibration kit purchased from Pharmacia. It was also determined by Purification ofSC-Cys synthasefrom E. coli W3110. All SDS gel filtration on a HPLC equipped with a TSK-GEL operation were carried out at 0 to 5°C unless otherwise 2,000 SWcolumn. stated. The pH of the enzyme solution was adjusted to 7.0 with a 2.5% ammoniumhydroxide solution after each Ion-exchange column chromatographies. Ion exchange addition of ammoniumsulfate. column chromatography was performed for the purifi- cation of SC-Cys produced through the enzyme reaction. Purification steps. Cation-exchange columnchromatography was performed (i) Preparation ofa cell extract. Cells harvested from 40 1 on a Dowex 50x8 (H+ form) column (3.6 by 25cm) and of culture (wet weight, 230g) were suspended in 1,150ml elution was carried out with a 0.25n NH4OHsolution. of 0.1 m potassium phosphate buffer, pH 7.8, containing Anion-exchange chromatography was performed on a 10mM2-mercaptoethanol, 20jjm PLP and 4.0mM EDTA E. coli S-Carboxymethylcysteine Synthase 2483 (this solution was namedBuffer A) and 1.0mMphenyl- eluted at the concentration of about 80mM. The active methyl sulfonyl fluoride, and disrupted with a Dyno-Mill fractions were combinedand concentrated by the addition (W. A. Bachofen, Maschinenfabrik, Basel, Switzerland) at of ammoniumsulfate to 90%saturation. the agitation rate of 3,000 rpm using glass beads of0.25 to (vii) Sephadex G-100 gel filtration. The enzyme solution 0.50mmin diameter. The supernatant solution was ob- was applied to a Sephadex G-100 column (2.0 by 102cm) tained by centrifugation. equilibrated with 50 mMBuffer A. The enzyme was eluted (ii) First ammoniumsulfate fractionation. Solid am- with the same buffer in 5-ml fractions. The active fractions moniumsulfate was addedto the enzymesolution to 35% were combined and concentrated by the addition of saturation. After standing for more than 1 hr, the super- ammoniumsulfate to 90%saturation. natant was collected by centrifugation and brought to 70% (viii) Sephadex G-150 gel filtration. The enzyme solution saturation in the same manner. After standing overnight, was applied to a Sephadex G-150 column (2.0 by 100cm) the precipitate was collected by centrifugation, dissolved equilibrated with 50 mMBuffer A.
Recommended publications
  • Biological Stains & Dyes
    BIOLOGICAL STAINS & DYES Developed for Biology, microbiology & industrial applications ACRIFLAVIN ALCIAN BLUE 8GX ACRIDINE ORANGE ALIZARINE CYANINE GREEN ANILINE BLUE (SPIRIT SOLUBLE) www.lobachemie.com BIOLOGICAL STAINS & DYES Staining is an important technique used in microscopy to enhance contrast in the microscopic image. Stains and dyes are frequently used in biology and medicine to highlight structures in biological tissues. Loba Chemie offers comprehensive range of Stains and dyes, which are frequently used in Microbiology, Hematology, Histology, Cytology, Protein and DNA Staining after Electrophoresis and Fluorescence Microscopy etc. Many of our stains and dyes have specifications complying certified grade of Biological Stain Commission, and suitable for biological research. Stringent testing on all batches is performed to ensure consistency and satisfy necessary specification particularly in challenging work such as histology and molecular biology. Stains and dyes offer by Loba chemie includes Dry – powder form Stains and dyes as well as wet - ready to use solutions. Features: • Ideally suited to molecular biology or microbiology applications • Available in a wide range of innovative chemical packaging options. Range of Biological Stains & Dyes Product Code Product Name C.I. No CAS No 00590 ACRIDINE ORANGE 46005 10127-02-3 00600 ACRIFLAVIN 46000 8063-24-9 00830 ALCIAN BLUE 8GX 74240 33864-99-2 00840 ALIZARINE AR 58000 72-48-0 00852 ALIZARINE CYANINE GREEN 61570 4403-90-1 00980 AMARANTH 16185 915-67-3 01010 AMIDO BLACK 10B 20470
    [Show full text]
  • Electrophoresis Proteins Enzymes
    ÚSTAV LÉKAŘSKÉ BIOCH EMIE A LABORATORNÍ D IAGNOSTIKY 1. LF UK A VFN Electrophoresis Proteins Enzymes Practical lesson on medical biochemistry General Medicine Jan Pláteník 2020/2021 1 1 Electrophoresis of serum proteins in 0.5% agarose Native electrophoresis of serum proteins in agarose gel is still one of the basic examinations in clinical chemistry, and in our practical lesson serves as a general example of electrophoretic separation of proteins. In this arrangement of electrophoresis the proteins are native, i.e., not denatured. In an alkaline buffer (pH 8.5-9) they gain negative charges and migrate from the negative electrode to the positive one. The support consists of an agarose gel, which, unlike acrylamide, has pores too large to substantially limit the protein movement. As a result, the proteins are separated according to their surface charge densities. If resolved in this way, the human serum yields several classical protein fractions: albumin moves the farthest, followed by several globulin bands, denoted consecutively as α1, α2, β (usually separated to β1 and β2), and finally γ globulins. + Albumin α1-globulins α2-globulins β1-globulins β2-globulins γ-globulins − Typical results of an authentic electrophoretic separation of human serum proteins, including densitometric evaluation (assembled from pictures available at www.sebia.com). The whole experiment consists of several steps: • Casting the agarose gel: agarose is a polysaccharide galactan obtained from seaweed. In order to get a liquid agarose solution, the mixture of buffer and solid agarose must be heated to boiling, then during cooling the agarose fibers in the solution non-covalently associate and form a gel.
    [Show full text]
  • Intermediates-3 1/89 Page
    Intermediates-3 1/89 page CAS Chemical Name 4163-60-4 BETA-D-GALACTOSE PENTAACETATE 129722-12-9 Aripiprazole 80-08-0 Bis(4-aminophenyl) Sulfone 92-88-6 4,4'-biphenol 1344-28-1 Aluminum oxide 18680-27-8 (1S,2S,3R,5S)-(+)-2,3-PINANEDIOL 4045-44-7 1,2,3,4,5-PENTAMETHYLCYCLOPENTADIENE 78-96-6 DL-1-Amino-2-propanol 2687-43-6 O-benzylhydroxy lamine hydrochloride 141-33-3 SODIUM BUTYL XANTHATE 4181-05-9 4-Formyltriphenylamine 25035-71-6 POLY(P-TOLUENESULFONAMIDE-CO-FORMALDEHYDE) 7440-50-8 COPPER 35NM 7440-50-8 COPPER 80NM 7440-50-8 COPPER 100NM 7440-48-4 COBALT 35NM 7440-48-4 COBALT 80NM 7440-48-4 COBALT 100NM 7440-02-0 NICKEL 35NM 7440-02-0 NICKEL 80NM 7440-02-0 NICKEL 100NM 7440-66-6 ZINC 35NM 7440-66-6 ZINC 80NM 7440-66-6 ZINC 100NM 7440-22-4 SILVER 35NM 7440-22-4 SILVER 80NM 7440-22-4 SILVER 100NM 7440-22-4 SILVER NANOPOWDER 150nm 5470-18-8 2-Chloro-3-nitropyridin 123-25-1 DIETHYL SUCCINATE 7206-70-4 4-amino-5-chloro-2-methoxybenzoic acid 109384-19-2 1-Boc-4-hydroxypiperidine 504-02-9 1,3-cyclohexanedione 59-88-1 phenylhydrazine HCl 79-21-0 Peracetic acid solution Mg+Er ナミキ商事株式会社 医薬化学品部 TEL:03-3354-4026/FAX:03-3352-2196/E-mail:[email protected] Intermediates-3 2/89 page CAS Chemical Name Mg+Ho Mg+Tm Mg+Tb Mg+Dy Mg+Gd 87392-07-2 (S)-(-)-Tetrahydro-2-furoic acid 7783-47-3 Tin (II) fluoride 111-36-4 Butyl Isocyanate 112-96-9 Octadecyl Isocyanate 132-98-9 Penicillin V potassium salt 90-98-2 4,4`-dichlorobenzophenone 8006-64-2 Turpentine oil 620-23-5 m-Tolualdehyde 22199-08-2 Silver sulfadiazine 2142-70-3 2'-IODOACETOPHENONE 77-52-1 Ursolic
    [Show full text]
  • Fire Diamond HFRS Ratings
    Fire Diamond HFRS Ratings CHEMICAL H F R Special Hazards 1-aminobenzotriazole 0 1 0 1-butanol 2 3 0 1-heptanesulfonic acid sodium salt not hazardous 1-methylimidazole 3 2 1 corrosive, toxic 1-methyl-2pyrrolidinone, anhydrous 2 2 1 1-propanol 2 3 0 1-pyrrolidinecarbonyl chloride 3 1 0 1,1,1,3,3,3-Hexamethyldisilazane 98% 332corrosive 1,2-dibromo-3-chloropropane regulated carcinogen 1,2-dichloroethane 1 3 1 1,2-dimethoxyethane 1 3 0 peroxide former 1,2-propanediol 0 1 0 1,2,3-heptanetriol 2 0 0 1,2,4-trichlorobenzene 2 1 0 1,3-butadiene regulated carcinogen 1,4-diazabicyclo(2,2,2)octane 2 2 1 flammable 1,4-dioxane 2 3 1 carcinogen, may form explosive mixture in air 1,6-hexanediol 1 0 0 1,10-phenanthroline 2 1 0 2-acetylaminofluorene regulated carcinogen, skin absorbtion 2-aminobenzamide 1 1 1 2-aminoethanol 3 2 0 corrosive 2-Aminoethylisothiouronium bromide hydrobromide 2 0 0 2-aminopurine 1 0 0 2-amino-2-methyl-1,3-propanediol 0 1 1 2-chloroaniline (4,4-methylenebis) regulated carcinogen 2-deoxycytidine 1 0 1 2-dimethylaminoethanol 2-ethoxyethanol 2 2 0 reproductive hazard, skin absorption 2-hydroxyoctanoic acid 2 0 0 2-mercaptonethanol 3 2 1 2-Mercaptoethylamine 201 2-methoxyethanol 121may form peroxides 2-methoxyethyl ether 121may form peroxides 2-methylamino ethanol 320corrosive, poss.sensitizer 2-methyl-3-buten-2-ol 2 3 0 2-methylbutane 1 4 0 2-napthyl methyl ketone 111 2-nitrobenzoic acid 2 0 0 2-nitrofluorene 0 0 1 2-nitrophenol 2 1 1 2-propanol 1 3 0 2-thenoyltrifluoroacetone 1 1 1 2,2-oxydiethanol 1 1 0 2,2,2-tribromoethanol 2 0
    [Show full text]
  • An Investigation of the Protein Metabolism in Healthy
    AN INVESTIGATION OF THE PROTEIN METABOLISM IN HEALTHY SUBJECTS AND WEIGHT-LOSING CANCER PATIENTS by DONALD CAMPBELL McMILLAN F.I.M.L.S. A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY to THE UNIVERSITY OF GLASGOW from RESEARCH CONDUCTED IN THE UNIVERSITY DEPARTMENT OF SURGERY, GLASGOW ROYAL INFIRMARY MARCH 1992 © DONALD C. McMILLAN 1 ProQuest Number: 11007691 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007691 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Glasgow UNIVERSITY LIBRARY 9 iia , 1 CONTENTS PAGE Contents 2 List of Tables 8 List of Figures 13 Acknowledgements 15 Declaration 17 Dedication 20 Summary 21 1. INTRODUCTION AND AIMS 1.1 Protein metabolism in man 24 1.2 Turnover measurements using isotope tracers 27 1.3 Measurement of stable isotopes 29 1.4 Protein turnover measurements 29 1.5 Cancer cachexia 1.5.1 Weight loss in cancer (cancer cachexia) 30 1.5.2 Body composition in cancer cachexia 32 1.5.3 Energy metabolism in cancer cachexia 33 1.5.4 Whole body protein metabolism in cancer cachexia 34 1.5.5 Tissue protein metabolism in cancer cachexia 36 1.6 Aims of the thesis 39 1.7 Plan of thesis 39 2 PAGE 2.
    [Show full text]
  • DDT-10-00042-OA Proof.Indd
    349 Drug Discoveries & Therapeutics. 2010; 4(5):349-354. Original Article Evaluation of therapeutic effects and pharmacokinetics of antibacterial chromogenic agents in a silkworm model of Staphylococcus aureus infection Tomoko Fujiyuki, Katsutoshi Imamura, Hiroshi Hamamoto, Kazuhisa Sekimizu* Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. ABSTRACT: The therapeutic effect of dye diseases, chemical compounds with antibacterial compounds with antibacterial activity was evaluated activity in vitro are tested for their therapeutic in a silkworm model of Staphylococcus aureus efficacy in vivo in animal infection models. A serious infection. Among 13 chromogenic agents that show problem is that most of compounds that exhibit antibacterial activity against S. aureus (MIC = 0.02 antibacterial activity in vitro do not have therapeutic to 19 μg/mL), rifampicin had a therapeutic effect. effects in animal infection models due to toxicity The ED50 value in the silkworm model was consistent and pharmacokinetic issues. Thus, for efficient drug with that in a murine model. Other 12 dyes did not discovery, protocols must be established to exclude increase survival of the infected silkworms. We agents without therapeutic effects at earlier stages of examined the reason for the lack of therapeutic drug development. Evaluation of the therapeutic effects efficacy. Amidol, pyronin G, and safranin were of potential antibiotics has been performed using toxic to silkworms, which explained the lack of mammalian models, but conventional methods using a therapeutic effects. Fuchsin basic and methyl green large number of mammals are problematic due to high disappeared quickly from the hemolymph after costs and ethical concerns. Therefore, the development injection, suggesting that they are not stable in the of a non-vertebrate infection model to test drug efficacy hemolymph.
    [Show full text]
  • Kinetics and Regulation of Mitochondrial Cation Transport Systems
    Kinetics and Regulation of Mitochondrial Cation Transport Systems Martin Jaburek B.S., Palacky University, 1992 A dissertation submitted to the faculty of the Oregon Graduate Institute of Science and Technology in partial fulfillment of the requirements for the degree Doctor of Philosophy III Biochemistry and Molecular Biology August 1999 The dissertation "Kinetics and Regulation of Mitochondrial Cation Transport Systems" by Martin Jaburek has been examined and approved by the following Examination Committee: Keith D. Garlid, Advisor Professor Gebre W~ldegi9rgis Associate Proressor /U_- /Peter A. Zuber Professor ~. -Jft~.rofessorKaple:m Oregon Health Sciences University 11 DEDICATION I would like to dedicate this thesis to my wife, Iva, my daughter, Veronika, and also to my parents, grandparents, and all the members of my large family, as an excuse for not being with them for such a long time. iii ACKNOWLEDGMENTS I would like to extend my gratitude to my major advisor, Dr. Keith Garlid. I am very fortunate to have had the opportunity to be a student in his laboratory, and I am very thankful for his support, guidance, and encouragement, without which I would not have been able to finish this degree. I would further like to thank Dr. Gebre Woldegiorgis for the many thought- provoking and valuable discussions we had. Thanks also to Drs. Peter Zuber and Jack Kaplan for their time and for serving as members of my thesis committee. My further thanks to Dr. Petr Paucek, who introduced me to the secrets of reconstitution; to Dr. Martin Modriansky, for being such a good roommate and for sharing the secrets of yeast expression of uncoupling proteins; to Dr.
    [Show full text]
  • Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls
    Journal Pre-proof Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls Karla Ilic´ Ðurdi–c´ (Conceptualization) (Investigation) (Writing - original draft), Raluca Ostafe (Methodology) (Validation), Aleksandra Ðurdevi– c´ Ðelmasˇ (Methodology) (Investigation), Nikolina Popovic´ (Validation) (Visualization), Stefan Schillberg (Writing - review and editing) (Resources), Rainer Fischer (Writing - review and editing) (Resources), Radivoje Prodanovic´ (Conceptualization) (Supervision) (Project administration) (Writing - review and editing) PII: S0141-0229(20)30002-8 DOI: https://doi.org/10.1016/j.enzmictec.2020.109509 Reference: EMT 109509 To appear in: Enzyme and Microbial Technology Received Date: 6 October 2019 Revised Date: 25 December 2019 Accepted Date: 11 January 2020 Please cite this article as: Ilic´ Ðurdi–c´ K, Ostafe R, Ðurdevi– c´ Ðelmasˇ A, Popovic´ N, Schillberg S, Fischer R, Prodanovic´ R, Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls, Enzyme and Microbial Technology (2020), doi: https://doi.org/10.1016/j.enzmictec.2020.109509 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Luminescent Metal Nanoclusters for Potential Chemosensor Applications
    chemosensors Review Luminescent Metal Nanoclusters for Potential Chemosensor Applications Muthaiah Shellaiah 1 and Kien Wen Sun 1,2,* 1 Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; [email protected] 2 Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan * Correspondence: [email protected] Received: 21 November 2017; Accepted: 8 December 2017; Published: 19 December 2017 Abstract: Studies of metal nanocluster (M-NCs)-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm) M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH), and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs. Keywords: nanoclusters; fluorescent assay; nanosensors; bio-imaging; real analysis; colorimetric recognition; biomolecules detection; bi-metallic clusters 1.
    [Show full text]
  • Structure and Mechanism of the Bacterial Transporter Leut
    STRUCTURE AND MECHANISM OF THE BACTERIAL TRANSPORTER LEUT By Chayne L. Piscitelli A DISSERTATION Presented to the Department of Biochemistry and Molecular Biology and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 2011 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the Ph.D. dissertation of Chayne L. Piscitelli has been approved ______________________________________ Eric Gouaux, Mentor/Advisor ______________________________________ David Farrens, member ______________________________________ Buddy Ullman, member ______________________________________ Francis Valiyaveetil, member ______________________________________ Ujwal Shinde, member TABLE OF CONTENTS Acknowledgements ........................................................................................................ v List of Abbreviations ..................................................................................................... vi Abstract ............................................................................................................................ ix Chapter 1 Introduction and Fundamental Concepts .................................................................. 1 Crossing the membrane ............................................................................................. 2 Sodium-coupled secondary transport ....................................................................... 5 Neurotransmitter
    [Show full text]
  • Www .Alfa.Com
    Bio 2013-14 Alfa Aesar North America Alfa Aesar Korea Uni-Onward (International Sales Headquarters) 101-3701, Lotte Castle President 3F-2 93 Wenhau 1st Rd, Sec 1, 26 Parkridge Road O-Dong Linkou Shiang 244, Taipei County Ward Hill, MA 01835 USA 467, Gongduk-Dong, Mapo-Gu Taiwan Tel: 1-800-343-0660 or 1-978-521-6300 Seoul, 121-805, Korea Tel: 886-2-2600-0611 Fax: 1-978-521-6350 Tel: +82-2-3140-6000 Fax: 886-2-2600-0654 Email: [email protected] Fax: +82-2-3140-6002 Email: [email protected] Email: [email protected] Alfa Aesar United Kingdom Echo Chemical Co. Ltd Shore Road Alfa Aesar India 16, Gongyeh Rd, Lu-Chu Li Port of Heysham Industrial Park (Johnson Matthey Chemicals India Toufen, 351, Miaoli Heysham LA3 2XY Pvt. Ltd.) Taiwan England Kandlakoya Village Tel: 866-37-629988 Bio Chemicals for Life Tel: 0800-801812 or +44 (0)1524 850506 Medchal Mandal Email: [email protected] www.alfa.com Fax: +44 (0)1524 850608 R R District Email: [email protected] Hyderabad - 501401 Andhra Pradesh, India Including: Alfa Aesar Germany Tel: +91 40 6730 1234 Postbox 11 07 65 Fax: +91 40 6730 1230 Amino Acids and Derivatives 76057 Karlsruhe Email: [email protected] Buffers Germany Tel: 800 4566 4566 or Distributed By: Click Chemistry Reagents +49 (0)721 84007 280 Electrophoresis Reagents Fax: +49 (0)721 84007 300 Hydrus Chemical Inc. Email: [email protected] Uchikanda 3-Chome, Chiyoda-Ku Signal Transduction Reagents Tokyo 101-0047 Western Blot and ELISA Reagents Alfa Aesar France Japan 2 allée d’Oslo Tel: 03(3258)5031 ...and much more 67300 Schiltigheim Fax: 03(3258)6535 France Email: [email protected] Tel: 0800 03 51 47 or +33 (0)3 8862 2690 Fax: 0800 10 20 67 or OOO “REAKOR” +33 (0)3 8862 6864 Nagorny Proezd, 7 Email: [email protected] 117 105 Moscow Russia Alfa Aesar China Tel: +7 495 640 3427 Room 1509 Fax: +7 495 640 3427 ext 6 CBD International Building Email: [email protected] No.
    [Show full text]
  • Important Early Synthetic Dyes
    IMPORTANT EARLY SYNTHETIC DYES Chemistry Constitution Date Properties Compiled by Textile Conservation Interns Andrea Bowes Stephen Collins Shannon Elliott La Tasha Harris Laura Hazl ett Ester M~ th~ Muhammadin Razak Pugi Yosep Subagiyo Edited by Mary W. Ballard, Senior Textile Conservator Conservation Analytical Laboratory Smithsonian Institution 1991 Preface This notebook presents information on a limited number of important early synthetic dyes as recommended by the extensive work of Dr. Helmut Schweppe in the field of dye analysis. A great deal of the data has been abstracted from the well-known encyclopedia on dye structure and properties, the Colour Index, published jointly by the American Association of textile Chemists and Colorists and the Society of Dyers and Colourists. The purpose of this manual is as an aid to textile conservators in their laboratories. It is distributed by the Conservation Analytical Laboratory, Smithsonian Institution, with the kind permission of the American Association of Textile Chemists and Colorists. For a complete review of all known dye structures and chemical properties of dyes, the reader is referred to the master volumes of the Colour Index. Mary W. Ballard, editor Senior Textile Conservator, CAL Senior Member, AATCC October, 1991 TABLE OF CONTENTS I). Listing of Early Synthetic Dyes (by Colour Index Number) (in chronological order by color) II). Glossary of Terms III). Chemistry, Constitution, Date, and Properties Bibliography IV). Toxicity Information a). General Health Hazard Protective Equipment b). Accidental Contact Occurrence General Procedures c). Toxicity Manufacturers Listing d). Toxicity Bibliography V). Chemistry, Constitution, Date and Properties Dye Information Section (Arrange by Colour Index Number) Commercial Name: Colour Index Discoverer, year: Generic Name: C.I.Number: 1) Picric Acid Acid Dye 10305 (Woulfe,l771) 2) Martius Yellow C.I.Acid Yello..
    [Show full text]