Supporting Multi Stakeholder Involvement for Flood Risk Management Planning

Natasa Manojlovic, Niloufar Behzadnia, Sandra Hellmers, Dmitrijs Barbarins, Erik Pasche†, University of Technology-TUHH

Belgrade, 6th, September 2012 Contents

• Introduction • SAWA-HH Governance Approach – DSS for FRMP • Implementation • Lessons learned and conclusions

Introduction

D: Climate change P: Rapid urbanisation

(Flood Directive, EC 2007/60 )

1. preliminary risk assessment

2. flood hazard and risk map

3. flood risk management plan (FRMP) Due – end of 2015 Introduction

What says the Flood Directive EC 2007/60

(Article 10 (1)) : Member States shall make available to the public the preliminary flood risk assessment, the flood hazard maps, the flood risk maps and the flood risk management plans.

(Article 10 (2)) : Member States shall encourage active involvement of interested parties in the production, review and updating of the flood risk management.

Open Question in the context of FRMP

What are efficient ways of public and stakeholder participation in the planning procedure?

What is the appropriate method to quantify the efficiency and effectiveness of the developed strategies for FRMP? Introduction

Governance is a process

Definition: the process of decision-making and the process by which decisions are implemented (UN – Economic and social commission of Asia and the Pacific)

- It is about how authorities, institutions and social organizations interact with citizens when making decisions

Good Governance

stands for . multifaceted decision making process where the societal goals are pursued with the interactions of all the interested actors in all specific fields of development . and in which ethical and democratic issues are respected, such as responsibility, accountability, transparency, equity, and fairness

SAWA-HH Governance Approach

Bottom up governance strategy for development of a Flood Risk Management Plan:

(Adapted from Ashley et al, 2008) SAWA-HH Governance Approach 1. Scoping

4. Evaluation

Sn, SQ Sn, kw, se Maßnahmen Beschreibung ...... Maßnahmen Beschreibung ...... Social Competences Stakeholder Analysis HWRMP- M1 HWRMP- M1 MaßnahmenHWRMP- M2Beschreibung ...... MaßnahmenHWRMP- M2Beschreibung ...... HWRMP-HWRMP- M1 M3 HWRMP-HWRMP- M1 M3 MaßnahmenHWRMP-HWRMP- M2Beschreibung M4 ...... MaßnahmenHWRMP-HWRMP- M2Beschreibung M4 ...... HWRMP-HWRMP- M1 ...M3 HWRMP-HWRMP- M1 ...M3 HWRMP-HWRMP- M2 M4 HWRMP-HWRMP- M2 M4 HWRMP-... M3 HWRMP-... M3 2. Understanding & Envisioning HWRMP- M4 HWRMP- M4 ......

Development of shared vision of where to get to 3. Experimenting Flood Risk Management Plan

Generating different planning options SAWA-HH Governance Approach

Models are required to support the planning process For both decision making and capacity building of stakeholders

Methods and tools supporting the planning process

Social a) Guidance for role assignment (stakeholder analysis) b) Conflict analysis c) Social learning methods Manojlovic et al (2011, 2012) Pasche et al (2010) Technical d) Raising risk awareness e) Capacity building

f) Decision support tools

SAWA-HH Governance Approach How to assess the efficiency of different options of flood risk management planning? How to support multistakeholder planning?

Sn, SQ Sn, kw, se Maßnahmen Beschreibung ...... Maßnahmen Beschreibung ...... HWRMP- M1 HWRMP- M1 MaßnahmenHWRMP- M2Beschreibung ...... MaßnahmenHWRMP- M2Beschreibung ...... HWRMP-HWRMP- M1 M3 HWRMP-HWRMP- M1 M3 MaßnahmenHWRMP-HWRMP- M2Beschreibung M4 ...... MaßnahmenHWRMP-HWRMP- M2Beschreibung M4 ...... HWRMP-HWRMP- M1 ...M3 HWRMP-HWRMP- M1 ...M3 HWRMP-HWRMP- M2 M4 HWRMP-HWRMP- M2 M4 HWRMP-... M3 HWRMP-... M3 HWRMP- M4 HWRMP- M4 ...... Option 1 Option n Efficiency ???

 Decision support systems are required Implementation

Wandse Catchment Area- Hamburg (~88 km2, 21,5 km)

Learning&Action Alliances

 Objective: development of a flood risk management plan (EU Flood Directive, 2007) Implementation Upper catchment- nature protection area Implementation mid&low catchment- mixed urban typology

(here: highly urbanised area of centre) Implementation

 Institutional/Legislative context

Formal leader: responsible authority LSBG Implementation

Structure:  Formal leader: responsible authority LSBG (legitimacy- high)

• Kick of meeting (constitution) – Increasing profile of the LAAs – Raising awareness among decision makers/ politicians

• Series of workshops (14 Working sessions), once a month/ 2months, 2 h each – Working sessions following the phases of the governance approach – Core part of the LAAs

• One site visits – Assessing the criticality of the system on site – Embedded into the phases of the governance approach

• Online participation – Scoping the expertise of the participants – Consensus finding process Phase 1: Scoping

 Development of shared vision of the problem (Flood Risk) 1

Stakeholder Analysis Phase 1: Scoping

Stakeholder analysis Method: snowballing, direct contacts LAA configuration /per numbers of stakeholder groups (in total 25) 1

Categories of Stakeholders Nr of partic Strategic flood and drainage 4 Spatial & management Urban landscape development planning Implementation and 3 maintenance Urban development 2 Emergency Agriculture 0 Nature services Urban and landscape design 1 Conservation Water Environmental protection & 3 management nature conservation Emergency services 1 Private Politicians 2 Agriculture, stakeholders Forestry NGOs 2 Public interest groups 2 Insurance Economy and Industry 1 Research 4 (source: LAWA, 2010) Phase 1: Scoping

3 2 1

Building Social Competences and mutual trust Confronting with flood risk and raising awareness

Understanding the system drivers and Flood Maps pressures, sensitivity, response Phase 2: Understanding & Envisioning

 Development of shared vision of where to get to 2 1

Toolbox of adaptive (NSM) measures

Flood Probability Reduction Measures (FPRM) Flood Resilience Measures (FReM) 8.50 8.40 Stat 8.208.30 8.10 u… 7.908.00 7.707.80 7.60 Formulate options of adaptive flood risk management 7.407.50 7.207.30 7.007.10 3.604 3.610 3.741 3.814 3.832 3.920 3.937 3.988 4.112 4.158 4.181 4.201

Synergies with WFD Phase 3: Experimenting

 Formulate options of adaptive flood risk management by NSM 3 2 1

Development of planning options

Multi touch interactive planning

Discussions Phase 3: Experimenting

Decision support tool 3 Kalypso Planner Client 2 - Open source modelling platform 1

Comparison with Planning Interactive baseline scenario area planning workflow / scenario Gauging definition stations Hydrographs Map layers Phase 3: Experimenting

 Kalypso baseline models 3 2  Rainfall-runoff 1  1D steady flow

 1D/2D unsteady flow

 Flooded areas

 Flood risk

 Planner Client Coordinator

 Baseline model database

 Define model chain Phase 3: Experimenting PLC Model Chain

KalypsoHydrology KalypsoWSPM 3 Rainfall-Runoff Model 1D Flow Model 2 1 KalypsoRisk KalypsoFlood Flood Damage / Flood Depth Model Flood Risk Model Kalypso1D2D 1D-2D Coupled Flow Model

• Can disable parts of the chain • Start with either rainfall-runoff or flow model • Terminate with either flood depth maps or risk map • Prepare events of different annuality for risk calculation

Phase 3: Experimenting

Role of PLC in FRMP 3 2 1

Physically based Web based GUI Assessment of the efficiency of the measures

……. Phase 3: Experimenting

3 2 Multi touch technology for GUI 1 Phase 3: Experimenting

Catchment Water course Local “Hotspots“ 3 2 1 Wandse + +

E i c h ta lte i c h

- Dezentrale Regenwasserbewirtschaftungsmaßnahmen -Wandse 2. Natürlicher (Gründach und Versickerung- Schule Eichtalpark) Wasserrückhalt Var 1: Kleingärten aus Überschwemmungsgebiet 2. Natürlicher herausnehmen - Totholzfang an der Brücke „Bei den Hopfenkarre“ Berner Au-Wandse Wasserrückhalt - Gewässerunterhaltung 3. Technischer - Objektschutz Var 1: Kleingärten aus Überschwemmungsgebiet Hochwasserschutz Var 2: Kleingartenanlage als Grünanlage ausbauen Var 1: Optimierung der Steuerung des RHB-Eichtalteich 2. Natürlicher herausnehmen - Wall zwischen Berner Au und Wandse entfernen und als Wasserrückhalt Var 2: Optimierung des Umlaufgewässers 3. Technischer Biotop ausbauen Var 2: Kleingartenanlage als Grünanlage ausbauen H o lz m ü h le n te i c h Hochwasserschutz - Gewässerunterhaltung - Durchgängigkeit des Holzmühlenteiches herstellen - Wall zwischen Berner Au und Wandse entfernen und- Optimierung als der Steuerung von HRB Berner2. Natürlicher Au Biotop ausbauen 3. Technischer Var 1: Ausbau des Ostender Teichs als RHBWasserrückhalt (Oberhalb von Hochwasserschutz - Gewässerunterhaltung 7,7100 km Durchlass in Ostender Teich nach Gutachten öffnen - Optimierung der Steuerung von HRB Berner Au Var 1: Ausbau des RHBs Holzmühlenteich Var 2: Optimierung der Steuerung Var 1: Ausbau des Ostender Teichs als RHB (Oberhalb von 3. Technischer Var 2: Status Quo bei dem Ostender Teich Hochwasserschutzbeibehalten (Als 7,7100 km Durchlass in Ostender Teich nach Gutachten öffnen - Gewässerunterhaltung Freibad beibehalten) Var 2: Status Quo bei dem Ostender Teich beibehaltenHochwasserangepasste (Als Nutzung und ObjektschutzMühlenteich der bis an Freibad beibehalten) das Gewässer reichenden Bebauung - Dezentrale Regenwasserbewirtschaftungsmaßnahmen ( HochwasserangepassteN ord Nutzung m a rkte und i c hObjektschutz der bis an Gründach HANSA-Kolleg) das Gewässer reichenden Bebauung 2. Natürlicher - Durchgängigkeit an der Mühlenstraße herstellen Wasserrückhalt - Strukturverbesserung der (Höhe Ahrensburgerstr.) Var 1: Gewässerrenaturierung N o rd m a rk te i c h 2. Natürlicher und Umbau des Absturzes und Nutzung der Rahlau als Var 2: Vorlandabsenkung - StrukturverbesserungWasserrückhalt der Rahlau (Höhe Ahrensburgerstr.)Umlaufgewässer 3. Technischer 2. Natürlicher und Umbau des Absturzes und Nutzung der Rahlau als - Gewässerunterhaltung Hochwasserschutz Wasserrückhalt Umlaufgewässer - Totholzfang an der Brücke „Nordmarkstraße“ - Gewässerunterhaltung - Totholzfang an der3. Brücke Technischer „Nordmarkstraße“ - Objektschutz - GewässerunterhaltungHochwasserschutz Var 1: Ausbau RHB-Nordmarkteich und Ölmühlenteich (als ein 3. Technischer - Objektschutz gemeinsamer großes RHB) Hochwasserschutz Var 1: Ausbau RHB-Nordmarkteich und Ölmühlenteich Var (als2: Verbesserung ein der Steuerung des RHBs gemeinsamer großes RHB) Not quantifiable Var 2: Verbesserung der Steuerung des RHBs Consideration of SUDS in urban Maintnance Capacity building of development plans „Hitchhiking“ on WFD stakeholders

Quantifiable Restoraiton of rivers SUDS „Local“ measures  Polders Phase 4: Evaluation& Decision

 Hydrologic efficeincy 4  Adopt the final FRMP  Implementation pontetial 3 Cost efficiency  Harmonisation with WFD 2 1

Evaluate effectiveness of adaptive measures

Evaluate conflicts and find ways of minimizing them

SAWA- Flood Risk Management Plan Lessons learned & Conclusions

• Flood Risk Management Planning involves a range of tools and methods (social, hydrodynamic, learning) and needs interdisciplinary teams  Application of DSS time and resources is intensive but necessary! It is important to deliver facts and figures  Good understanding of the system and delivering facts are the key to keep the interest (flood maps, drivers&pressures assessed, quantification of the effect of WFD measures and NSM…)

• The sessions have to be inviting for participants especially in the initial phase  Social games can improve the mutual trust  Dare to try something new 

• Optimisation of the process duration and resources (2 years too long)  Workshops vs. Online participation (tools)

 Further development of the calculation chaining (CORFU Project)

Acknowledgement:

http://laa-wandse.wb.tu-harburg.de/ Implementation of the concept

•Existing Links and Ties of LAA-members: Informing

State 1 •Existing Links and Ties of authorityLAA- members: Approval - Relationship District Authorities

Policy

Public Implementation of the concept

•Existing Links and Ties of LAA-members: Participatory Planning

State 1 authority

District Authorities

Policy

Public

 Still underdeveloped DSS-FPRM

Decision making process for selection on appropriate FPRM:

1. Planning area analysis 3. Redesign 2. Concernment analysis

Planning Option- FPRM 4. Risk assessment

5. (Re)design / measures 7. Optimisation 6. Evaluation

8. Adopted Option Physically based modelling of FPRM DSS-FPRM

Physically based approach for modelling of FPRM:

Freebord Green roof: NB = Rainfall

Qoverflow

hex Etp(1) L1 hov L1 Perk (1)

Inf (2) Eta(2)

Spill substrate L2 Perk (2)

Et (3) Q Inf (3) a drain Drainage layer L3 hw Roof Spill DSS-FPRM

Physically based approach for modelling of FPRM:

Swale:

NB ,Nvers, QGreenroof

L1 Swale Etp(1) Perk(1) Q overflow L2 Perk(2) Eta(2)

Ground water DSS-FPRM

Physically based approach for modelling of FPRM:

Swale with filter drain:

NB ,Nvers, QGründach

L1 Swale Etp(1) Perk(1) Q überlauf L2 Swale layer 2 Geotextil Perk(2) Eta(2)

Perk1Et a(3) L3 Drain

drohr Perk(3)

hw Q L4 Soil layer Eta(4) drain Perk(4) Groundwater DSS-FPRM

Integration of single SUDS elements:

District level:

35 DSS-FPRM

Modelling of SUDS elements as a basis for DSS

Planning level: Model level Definition of SUDS in the Representation of the SUDS planning area element in the model

Development plan

Planning area

Planning area with Definition of the the atrributes of SUDS element by a the defined SUDS planner element DSS-FPRM

Modelling Concept: SUDS element as a hydrotope (HRU)

Verschneidung Hydrotopes (HRU) are the areas with the same hydrologic characteristics. Landuse Hydrotope

Planning area with the SUDS element  + Soil types (pedology and hydrology) SUDS are additional hydrotpe areas in the model PLC „Travel Adaptors“

KalypsoHydrology Peak Discharge KalypsoWSPM Rainfall-Runoff Model at 1D River Nodes 1D Flow Model

Water Stage KalypsoWSPM KalypsoFlood 1D Flow Model at 1D River Nodes Flood Depth Model and 1D Profile Lines

KalypsoRisk KalypsoFlood Flood Damage / Flood Depth Model Flood Depth Raster Flood Risk Model

• Adaptors between models transfer relevant results • Only one kind of each model implemented so far Implementation- FPRM

HTTP request Kalypso WPS server HTTP response Calc core RRM Input Output Input Output Input Calc core WSPM Output Input Calc core Risk

HTTP request Data adapter HTTP response Input WPS service Input Output Output Output Output Output Output •All calculations are implemented as remote services •Automatic calculation chaining Implementation-FPRM

Kalypso- Planner Client Implementation- FPRM

Pervious pavements: Implementation- FPRM

Green Roofs: Implementation- FPRM

Swales: Implementation- FPRM

Swales with filter drains: Implementation- FPRM

Natural restoration of rivers: Implementation-FPRM Calculation chaining

 Single models from RR, 1D, 2D, risk assessment are automatically connected and executed Implementation- FPRM

HTTP request Kalypso WPS server HTTP response Calc core RRM Input Output Input Output Input Calc core WSPM Output Input Calc core Risk

HTTP request Data adapter HTTP response Input WPS service Input Output Output Output Output Output Output •All calculations are implemented as remote services •Automatic calculation chaining Implementation- FPRM

Efficiency assessment for FPRM

[mm]

+10% Percipitation, Status Quo: 0.408 m³/s

Percipitation

+10% Percipitation, Swales with filter drains systems. 0.315 m³/s +10% Percipitation, Green roofs with SwFDS: 0.283 m³/s [m³/s]

Qoverflow: +10% Percipitation, SwFDS : 0.034 m³/s

QDrain: +10% Precipitation, MRS: 0.010 m³/s Discharge

Datum Results for a 10 year precipitation event