Ten Little Dinosaurs Ebook Free Download

Total Page:16

File Type:pdf, Size:1020Kb

Ten Little Dinosaurs Ebook Free Download TEN LITTLE DINOSAURS PDF, EPUB, EBOOK Mike Brownlow,Simon Rickerty | 32 pages | 01 Oct 2015 | Hachette Children's Group | 9781408334010 | English | London, United Kingdom Ten Little Dinosaurs PDF Book The biggest allosaurid may have been more than 40 feet long. Family: Abelisauridae : The abelisaurids are a group of medium to large African and South American theropods characterized by short, tall skulls. Stegosaurs were the main armored dinosaurs of the Jurassic Period; ankylosaurs remained in the background. But not every reptile that lived during the Mesozoic era was a dinosaur. They had powerful jaws with hundreds of teeth for slicing tough plants. This process started when or even before the animal hatched and continued as long as it lived. Their limbs were stocky. Scelidosaurus was very much like both groups. About million years ago--give or take a few million years--the first dinosaurs evolved from a population of archosaurs , the "ruling lizards" that shared the earth with a host of other reptiles, including therapsids and pelycosaurs. Ranked after them would be feathered raptors and dino-birds , which could conceivably have flapped their proto-wings for additional bursts of speed. Find out more about this and other Late Cretaceous dinosaurs. Related Content " ". This spans the era of the Earth's history known as the Mesozoic era , which includes, from most ancient to most recent, the Triassic , Jurassic and Cretaceous. The armor was a double row of large bony plates that ran along the back from behind the head to the tail. Tyrannosaurus rex, one of the fiercest meat-eaters ever, is the animal that probably springs to mind when most of us hear the word "dinosaur. Most were small dinosaurs about six to ten feet long, but some Tenontosaurus species were as long as 22 feet. One clade includes all living reptiles, dinosaurs, ichthyosaurs, plesiosaurs, and birds the Sauropsida. Using Cladistics to Analyze Evolutionary Relationships. The neck was short, usually with 12 vertebrae. The smallest, such as Nanotyrannus, were about 18 feet long. By the start of the Jurassic period, dinosaurs had already started to diversify into the ecological niches left abandoned by their doomed cousins--the most important such event being the late Triassic split between saurischian "lizard-hipped" and ornithischian "bird-hipped dinosaurs. Rex Have Such Puny Arms? This is why Seeley called them saurischian, or "lizard-hipped" dinosaurs. Carnivorous dinosaurs were all theropods , bipedal animals with three-toed feet. Family: Allosauridae : This family is typical of the larger Jurassic and Early Cretaceous theropods that were from 15 to 35 feet long or longer. The skulls of hadrosaurines were generally longer and not as deep as those of lambeosaurines, and their ducklike beaks were flatter and broader. This shows that today's bird species are closely related and came from a common ancestor. Ten Little Dinosaurs Writer Family: Allosauridae : This family is typical of the larger Jurassic and Early Cretaceous theropods that were from 15 to 35 feet long or longer. A recent discovery may overturn our thinking about the South American origin of the first dinosaurs. No one knows exactly how many types of dinosaurs inhabited the planet. Saurischia: Theropoda. Aublysodon This carnivorous dinosaur was named more than one hundred years ago for an unusual tooth found in the Judith River Badlands of northern Montana. For example, the two-legged archosaur Marasuchus sometimes identified as Lagosuchus looked remarkably like an early dinosaur, and along with Saltopus and Procompsognathus inhabited that in-between "shadow zone" between these two forms of life. The tetanurans, the most advanced theropods, included several groups where the relationships are not well understood. As in all land animals, there were three bones in each side of the pelvis. Hypsilophodontids had small front limbs with tiny hands. It had a small, bony club at the end of its tail. In the Late Triassic, the world saw the first true dinosaurs. Most of the very first dinosaurs can be considered saurischians, as can the "sauropodomorphs" into which some of these early dinosaurs evolved--slender, two-legged herbivores and omnivores that eventually evolved into the giant prosauropods of the early Jurassic period and the even bigger sauropods and titanosaurs of the later Mesozoic Era. The earliest archosaurs are found in Permian rocks, formed before the Mesozoic Era began. Learn more about the Late Cretaceous dinosaurs that existed during this era, such as the Tyrannosaurus, Gallimimus, and Brachylophosaurus. Family: Therizinosauridae : The therizinosaurids were apparently herbivorous or omnivorous theropods known from the Late Cretaceous of Asia and North America. Cetiosaurids lasted until the Late Jurassic. The other clade is the mammals and the extinct mammallike reptiles the Theropsida. Late Cretaceous Dinosaurs. Bactrosaurus "reptile from Bactria" is known from many skull and skeletal pieces, but not a complete skeleton. Ceratopians -- like Triceratops -- had frills and horns on their heads. In fact, a lot of extinct animals that people think of as dinosaurs aren't classified as dinosaurs. Family: Spinosauridae : Spinosaurids are a distinctive group of theropods with long, crocodile-like snouts and elongated vertebral spines that may have formed sail-like structures on their backs. Living things usually decay and vanish after death. These early dinosaurs spawned a hardy breed that quickly at least in evolutionary terms radiated out to other continents. For example, species in the dog genus Canis look like one another because they all had a common ancestor. Dinosaurs lived for about million years, and during that time, the continents gradually spread to form the shapes we recognize today. The more traits two species share, the more likely they are closely related and got those traits from a shared ancestor. The back of the head of dome-headed dinosaurs was broadened into a shelf that often had bony lumps or short spikes. These changes did not take place in all archosaurs, but they happened in the dinosaurs. Ten Little Dinosaurs Reviews The theropods were all the predatory dinosaurs except the herrerasaurians. In the other family, the Pachycephalosauridae, the bones were raised into a very thick, high dome that was the main feature of the animal's appearance and even grew over the shelf as in Stegoceras. Family: Heterodontosauridae : These small, nimble bipedal plant-eaters have been found mainly in Early Jurassic rocks of southern Africa. Family: Cetiosauridae : This family is from the Middle Jurassic, perhaps from an ancestor from the Vulcanodontidae family. Family: Coeluridae : Ornitholestes and Coelurus, which lived during the Late Jurassic in western North America, were fast-running, lightly built theropods that were two to three feet tall at the hips and from six to ten feet long. Pachycephalosaur skeletons are rare, but their skull-domes, since they were solid bone, often were fossilized. For example, both sparrows and bats have arms and hands that are wings, but sparrow wings and bat wings are much different. Stegosaurs were the main armored dinosaurs of the Jurassic Period; ankylosaurs remained in the background. Also like birds, all theropods to some extent had hollow hones. Ornithiscia: Thyneophora. Family: Dryosauridae : This short-lived family arose about the same time as the Hypsilophodontidae. The left and right ilia singular: ilium firmly gripped the spine in the sacrum. The earliest ornithischian dinosaur was Pisanosaurus, a three-foot-long, two-legged bipedal plant-eater from the late Middle Triassic of Argentina. Rather than being separated by expansions of ocean, the continents were packed together in a mass known as Pangea. Foxes genus Vulpes and dogs genus Canis do not look as much alike because their common ancestor was farther back in time. They had large caninelike teeth cone-shaped, pointed teeth at the corners of the upper and lower jaws. Their front limbs were long, and their powerful rear legs were built for speed. There are currently about named species, but this probably represents a fraction of the dinosaurs that ever existed. Not one complete or nearly complete titanosaurid skull has been found. Family: Carcharodontosauridae : This group of giant theropods from Gondwana includes enormous predatory dinosaurs, Giganotosaurus from Argentina and Car-charodontosaurus from North Africa. Bedtime exploit this dynamic perfectly; by the last page, the dress-up dinosaur has finally settled down for a night's sleep, after winning a series of dramatic battles against a playground slide, a bowl of spaghetti, and talking grown-ups. They were also closer to the ground, with only a slight arch, if any, to their backs. Could you really outrun a Tyrannosaurus rex? Like today's elephants, sauropods had little fear of predators because of their size. This carnivorous dinosaur was named more than one hundred years ago for an unusual tooth found in the Judith River Badlands of northern Montana. Bones are rarely fossilized. Oviraptor got its name "egg predator" because specimens were found in Mongolia with what were originally thought to be nests of ceratopsian eggs. Also, an "eyelid" bone rimmed the upper part of the eye socket. In fact, a lot of extinct animals that people think of as dinosaurs aren't classified as dinosaurs. Ranked after them would be feathered raptors and dino-birds , which could conceivably have flapped their proto-wings for additional bursts of speed. Still, it may yet turn out that Nyasasaurus and its relatives represented a short-lived offshoot of the early dinosaur family tree, or that it was technically an archosaur rather than a dinosaur; it's now classified, somewhat unhelpfully, as a "dinosauriform. The first dinosaurs quickly made their way into the region of Pangea corresponding to North America the prime example is Coelophysis , thousands of fossils of which have been discovered at Ghost Ranch in New Mexico, and a recent discovery, Tawa , has been adduced as further evidence for the South American origin of dinosaurs.
Recommended publications
  • Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
    Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia.
    [Show full text]
  • Paleoherpetofauna Portuguesa
    Rev. Esp. Herp. (2002): 17-35 17 Paleoherpetofauna Portuguesa E.G. CRESPO Centro de Biologia Ambiental – Fac. Ciências Univ. Lisboa Resumo: Nos últimos anos a importância da paleoherpetofauna portuguesa tem sido posta em evidência sobre- tudo através do seu grupo mais mediático, os dinossauros. As recentes descobertas em Portugal de vestígios de vários dinossauros, incluindo ossos, ovos, embriões, gastrólitos e pegadas, têm merecido ampla cobertura jorna- lística e têm sido oportunamente acompanhadas por intensas campanhas de divulgação, levadas a cabo pelo Mu- seu Nacional de História Natural de Lisboa, encabeçadas pelo geólogo, Professor Galopim de Carvalho. As pro- longadas e por vezes polémicas acções de sensibilização pública e política que foi necessário empreender para se preservarem muitos dos locais onde esses vestígios foram encontrados, contribuiram também para sustentar e até aumentar o interesse por este grupo de grandes répteis. A importância da paleoherpetofauna portuguesa está porém longe de se limitar apenas aos dinossauros! Em Portugal viveram muitos outros répteis e anfíbios de que existem vestígios desde o começo do Mesozói- co –Quelónios, Crocodilos, Ictiossauros, Plesiossauros, Pterossauros, Lepidossauros, “Estegossauros” e Lis- samphia– que, embora geralmente muito menos conhecidos, têm um significado evolutivo, paleogeográfico e paleoclimático extremamente importante. Na sua descoberta e estudo estiveram envolvidos, já desde o século passado, numerosos investigadores por- tugueses e estrangeiros, dos quais se destacam, entre outros, Georges Zbyszewski, Miguel Telles Antunes, Vei- ga Ferreira, H. Sauvage, A.F. Lapparent, L. Ginsburg, R.Thulborn, P. Galton. Muitos destes estudos encontram- se todavia dispersos por uma vasta gama de publicações em que, frequentemente, as referências aos répteis e aos anfíbios ou são laterais ou são apresentadas em contextos zoológicos mais abrangentes, pelo que, como parece que tem acontecido, têm passado praticamente despercebidos à maioria daqueles que se dedicam aos estudo da nossa herpetofauna actual.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Coossified Tarsometatarsi in Theropod Dinosaurs and Their Bearing on the Problem of Bird Origins
    HALSZKA OSM6LSKA COOSSIFIED TARSOMETATARSI IN THEROPOD DINOSAURS AND THEIR BEARING ON THE PROBLEM OF BIRD ORIGINS OSM6LSKA, H. : Coossified tarsometatarsi in theropod dinosaurs and their bearing on the problem of bird origins, Palaeontologia Polonica, 42, 79-95, 1981. Limb remains of two small theropod dinosaurs from the Upper Cretaceous deposits of Mongolia display fused tarsometatarsi. Presence of fusion in the tarsometatarsus in some theropods is consi­ dered as additional evidence for the theropod origin of birds. E/misaurus rarus gen. et sp. n. is described based upon a fragmentary skeleton represented by limbs. Family Elmisauridae novo is erected to include Elmisaurus, Chirostenotes GlLMORE and Ma crophalangia STERNBERG. Key words: Dinosauria, Theropoda, bird origins, Upper Cretaceous, Mongolia. Halszka Osmolska , ZakladPaleobiologii, Polska Akademia Nauk, Al. Zw irki i Wigury 93,02-089 War­ szawa, Po/and. Received: June 1979. Streszczenie. - W pracy opisano szczatki malych dinozaur6w drapieznych z osad6w gornokredo­ wych Mongolii . Stopa tych dinozaur6w wykazuje obecnosc zrosnietego tarsomet atarsusa. Zrosniecie to stanowi dodatkowy dow6d na pochodzenie ptak6w od dinozaur6w drapieznych, Opisano nowy rodzaj i gatunek dinozaura drapieznego E/misaurus rarus, kt6ry zaliczono do nowej rodziny Elmisau­ ridae . Do rodziny tej, opr6cz Elmisaurus, naleza: Chirostenotes GILMORE i Macr opha/angia STERNBERG. Praca byla finansowana przez Polska Akademie Nauk w ramach problemu rniedzyresorto­ wego MR 11-6. INTRODUCTION During the Polish-Mongolian
    [Show full text]
  • 104Ornithodiraphyl
    Millions of Years Ago 252.3 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Euparkeria Crurotarsi ? Scleromochlus ? Archosauria Pterosauria Lagerpetidae Ornithodira Marasuchus Genasauria Dinosauromorpha Silesauridae Neornithsichia Thyreophora Ornithischia Eocursor (esp. Dinosauria) et al. (2011), Yates (2007) Yates et al. (2011), Nesbitt etal.(2009), Sues (2007), Martinezet al.(2011), Irmis etal. Ezcurra (2006), EzcurraandBrusatte (2011), Phylogeny after Brusatteetal.(2010), Butleretal.(2007), Heterodontosauridae Pisanosaurus Dinosauria Ornithodira Sauropodomorpha Herrerasauria Saurischia Eodromeus Theropoda Daemonosaurus Tawa Neotheropoda Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late (2009), Norman et al. (2004), Thompson etal. (2011) (2009), Norman etal. (2004), Phylogeny afterButler etal. (2007a,b), Carpenter (2001),Galton &Upchurch (2004), Maidment etal.(2008), Mateus etal. Cerapoda Ornithopoda Eocursor Marginocephalia Neornithischia Othnielosaurus Genasauria (esp. Thyreophora) Genasauria (esp. Hexinlusaurus Stormbergia Genasauria Lesothosaurus Scutellosaurus Thyreophora Scelidosaurus Stegosauridae Stegosaurinae Dacentrurinae Stegosauria Kentrosaurus Tuojiangosaurus Huayangosauridae Gigantspinosaurus Eurypoda Tianchiasaurus Ankylosauria Nodosauridae Ankylosauridae Millions of Years Ago 253.0 247.2 235.0 201.5 175.6 161.2 145.5 99.6 65.5 Triassic Jurassic Cretaceous
    [Show full text]
  • Uncompahgre Dinosaur Fauna: a Preliminary Report
    Great Basin Naturalist Volume 45 Number 4 Article 8 10-31-1985 Uncompahgre dinosaur fauna: a preliminary report James A. Jensen Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Jensen, James A. (1985) "Uncompahgre dinosaur fauna: a preliminary report," Great Basin Naturalist: Vol. 45 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/gbn/vol45/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. UNCOMPAHGRE DINOSAUR FAUNA: A PRELIMINARY REPORT James A. Jensen Abstract.—A diverse late Jurassic dinosaur fauna, discovered in western Colorado in 1963, contains many unde- scribed taxa that may represent evolutionary trends at the generic level not previously reported from the Morrison Formation. A preliminary faunal hst is given. Bones of the largest known dinosaur, Ultrasaurus , are present as are a variety of small animals, including Pterosaurs, in which one sacrum displays avianlike fused sacral neural spines. A new family, the Torvosauridae , erected, based on the genus Torvosaunis that is redescribed. One of the most diverse Jurassic dinosaur their field investigations "failed to find any faunas in North America was found on the convincing evidence of evolution at the Uncompahgre Upwarp in western Colorado generic level within the Morrison Forma- in 1963. This fauna contains more unde- tion." There are familiar forms in the Uncom- scribed taxa than has been encountered in any pahgre fauna, but there is also consistent evi- other North American Jurassic assemblage in dence of change, or "evolution at the generic this century.
    [Show full text]
  • Caracterización De Una Relación Alométrica En Theropoda (Dinosauria) Con Énfasis En Su Extensión E Implicaciones Evolutivas
    CARACTERIZACIÓN DE UNA RELACIÓN ALOMÉTRICA EN THEROPODA (DINOSAURIA) CON ÉNFASIS EN SU EXTENSIÓN E IMPLICACIONES EVOLUTIVAS Tesis Entregada A La Universidad De Chile En Cumplimiento Parcial De Los Requisitos Para Optar Al Grado De Magíster en Ciencias Biológicas Facultad De Ciencias Por José Antonio Palma Liberona Mayo, Año 2018 Director de Tesis Dr. Alexander O. Vargas Milne Co-Director de Tesis Dr. Marco A. Méndez Torres Proyecto Financiado mediante proyecto Anillo ACT172099 y Fondecyt 1150906 FACULTAD DE CIENCIAS UNIVERSIDAD DE CHILE INFORME DE APROBACIÓN TESIS DE MAGÍSTER Se informa a la Escuela de Postgrado de la Facultad de Ciencias que la Tesis de Magíster presentada por el candidato. José Antonio Palma Liberona Ha sido aprobada por la comisión de Evaluación de la tesis como requisito para optar al grado de Magíster en Ciencias Biológicas, en el examen de Defensa Privada de Tesis rendido el día 4 de Abril del 2018 Director de Tesis: D r . Alexander O. Vargas Milne ………………… Co-Director de Tesis D r . M a r c o A . Méndez Torres ………………… Comisión de Evaluación de la Tesis D r . Claudio P. Veloso Iriarte ………………… D r . Mauricio Canals Lambarri ………………… “He impaired his vision by holding the object too close. He might see, perhaps, one or two points with unusual clearness, but in doing so he, necessarily, lost sight of the matter as a whole. Thus there is such thing as being too profound.” ̶ Edgar Allan Poe, The Murders in the Rue Morgue iii BIOGRAFÍA José Antonio Palma Liberona nació el 1 de marzo de 1990, hijo de José Palma Keller y Flavia Liberona Céspedes.
    [Show full text]
  • Avialan Status for Oviraptorosauria
    Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes.
    [Show full text]
  • The Family Deinodontidae, with Notice of a New Genus from the Cretaceous of Alberta
    56.81,9(117:71.2) Article VI.—THE FAMILY DEINODONTIDAE, WITH NOTICE OF A NEW GENUS FROM THE CRETACEOUS OF ALBERTA By W. D. Matthew and Barnum Brown I. —Introductory note. II. —Distinctive Characters of the Megalosaurs, Ccelurids, Ornithomimids, and Deinodonts. III. —Chronological List of Described Species of Deinodontidse and Ornithomimidae. IV. —Provisional Systematic Arrangement. V. —Remarks upon the Nomenclature of the Deinodontidse. VI. —A New Genus of Carnivorous Dinosaurs from the Cretaceous of Alberta. I.—INTRODUCTORY NOTE This is the first of a series of preliminary notices to be published by Mr. Brown and myself to place upon record various contributions to a knowledge of the Cretaceous Dinosaurs resulting from the prepara­ tion of the collections secured in Alberta by the Museum parties of 1910 to 1915 under Mr. Brown’s leadership. It had been planned that these results should be studied and published by him, but owing to his absence from the Museum for some years past, mostly on field work abroad, his researches have been long delayed. Some obvious preliminary results we have thought advisable to publish now, postponing the more com­ plete research and publication of the material until Mr. Brown’s return to the Museum enables him to resume his more intensive studies upon the several groups of Cretaceous dinosaurs. As should appear from the situation above outlined, the junior author should be credited with the new evidence and data placed upon record, as the results of his splendidly successful series of expeditions in the Western Cretaceous formations. The senior author is chiefly re­ sponsible for the interpretation of the data, the revision of previous con­ clusions and taxonomy, and for various possible errors which will later be corrected in the extended researches planned by his absent friend and colleague, with whose approval and in the interest of the American Mu­ seum these contributions are placed upon record.—W.
    [Show full text]
  • New Data on Small Theropod Dinosaurs from the Upper Jurassic Morrison Formation of Como Bluff, Wyoming, USA
    Volumina Jurassica, 2014, Xii (2): 181–196 Doi: 10.5604/17313708 .1130142 New data on small theropod dinosaurs from the Upper Jurassic Morrison Formation of Como Bluff, Wyoming, USA Sebastian G. DALMAN1 Key words: dinosaurs, Theropoda, Upper Jurassic, Morrison Formation, Como Bluff, Wyoming, western USA. Abstract. In 1879, Othniel C. Marsh and Arthur Lakes collected in the Upper Jurassic Morrison Formation Quarry 12 at Como Bluff, Wyoming, USA, several isolated axial and appendicular skeletal elements of small theropod dinosaurs. Since the discovery the specimens remained unnoticed for over a century. The skeletal remains of small theropods are rare at Como Bluff and throughout the Morrison Forma- tion. Their bones are delicately constructed, so they are not as well-preserved as the bones of large-bodied theropods. The bones of small theropods described here were found mixed with isolated crocodile teeth and turtle shells. Comparison of the skeletal materials with other known theropods from the Morrison Formation reveals that some of the bones belong to a very small juvenile Allosaurus fragilis and Tor­ vosaurus tanneri and also to a new ceratosaur taxon, here named Fosterovenator churei, whereas the other bones represent previously unidentified juvenile taxa of basal tetanuran and coelurid theropods. The discovery and description of these fossil materials is significant because they provide important information about the Upper Jurassic terrestrial fauna of Quarry 12, Como Bluff, Wyoming. The presence of previously unidentified theropod taxa in the Morrison Formation indicates that the diversity of basal tetanuran and coelurid theropods may have been much greater than previously expected. Although the fossil material here described is largely fragmentary, it is tenable that theropods of different clades co-existed in the same ecosystems at the same time and most likely competed for the same food sources.
    [Show full text]
  • T Riassic Jurassic Cretaceous
    Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Avemetatarsalia Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Scleromochlus Pterosauria Ornithodira Lagerpetidae Marasuchus Dinosauromorpha Genasauria Silesauridae Neornithsichia Nyasasaurus Dinosauriformes Thyreophora Ornithischia Eocursor ? Heterodontosauridae Pisanosaurus Dinosauria Sauropodomorpha Herrerasauria Saurischia Eodromaeus Theropoda Daemonosaurus Tawa Neotheropoda Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Triassic Jurassic Cretaceous Early Middle Late Early Middle Late Early Late Cerapoda Ornithopoda Marginocephalia Eocursor Parksosauridae Laquintasaura Kulindadromeus Othnielosaurus Jeholosauridae Neornithischia Leaellynasaura Hexinlusaurus Agilisaurus Stegosauridae Lesothosaurus Stegosaurinae Stegosauria Dacentrurinae Kentrosaurus Tuojiangosaurus Thyreophoroidea Struthiosaurinae Genasauria Huayangosauridae Eurypoda Gigantspinosaurus Panoplosaurinae Nodosauridae Sauropelta Polacanthinae Scelidosaurus Gargoyleosaurus Ankylosauridae Thyreophora Scutellosaurus Kunbarrasaurus Ankylosauria Hylaeosurus Shamosaurinae Ankylosaurinae Pinacosaurus Tianchiasaurus Ankylosaurini Millions of Years Ago 252.17 247.2 237.0 201.3 174.1 163.5 145.0 100.5 66.0 Triassic Jurassic Cretaceous Euhadrosauria Early Middle Late Early Middle Late Early Late Hadrosaurinae Hadrosauridae Hadrosauromorpha Lambeosaurinae Eotrachodon Tethyshadros Hadrosauriformes Hadrosauria Telmatosaurus Bactrosaurus Protohadros Styracosterna
    [Show full text]
  • Zhao 1985 Trans.Rtf
    Original Article- Zhao Xijin, 1985. The Jurassic Reptilia. In Wang Si-en, Cheng Zhengwu and Wang Neiwen (eds.). The Jurassic System of China. Stratigraphy of China. 11, 286-289, 347, plates 10 and 11. Translation by Leo W Sham, January 3, 2011. (6) Jurassic Reptilian Fauna The Jurassic period was a time of profuse development of reptiles, especially dinosaurs. For convenience of description, [we will] now separate our analysis into the following three stages. Early Jurassic The Early Jurassic was an early stage of dinosaur evolution. Dinosaurs and other Mesozoic reptiles then were largely primitive. Fossils are not only few but also relatively poorly preserved. These primitive bauplans dictate the paucity of difference between genera; it is more difficult to determine the identity of fossils compared to later times. The Early Jurassic was the starting stage of dinosaur evolution. Exposed strata were most developed [ sic ] in southwestern China, for example, Lower Lufeng Group (alas Fengjiahe Formation) of Yunnan, Lower Ziliujing Group of Sichuan, and Daye Group of Tibet. The large amount of dinosaurian and other reptilian fossils preserved in these strata provided strong evidence to determine the chronology these terrestrial strata. Here, we first analyze the fauna of the representative Lower Lufeng Group to demonstrate their primitiveness. Sauropods and prosauropods coexisted in the Lower Lufeng Group. In general, sauropods appeared at the beginning of the Jurassic; thus the existence of sauropod fossils in a stratum would point to its earliest Jurassic age because prosauropods, evolving since the Late Triassic, had much declined with lineages lingering into the Early Jurassic. This phenomenon is particular in Lufeng, Yunnan, where the prosauropod Lufengosaurus described by Professor CC Young coexisted with the primitive sauropod Dachongosaurus yunnanensis , which also showed certain advanced characteristics.
    [Show full text]