New Data on Small Theropod Dinosaurs from the Upper Jurassic Morrison Formation of Como Bluff, Wyoming, USA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mesozoic—Dinos!
MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr. -
September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -Mtfo-EA
U.S. Department of the Interior Bureau of Land Management July 2019 September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -MtFO-EA Monticello Field Office 365 North Main PO Box 7 Monticello, UT 84535 DOI-BLM-UT-0000-2019-0003_Other NEPA-MtFO-EA July 2019 Table of Contents Chapter 1 Purpose & Need .................................................................................................................... 4 1.1 Project Location and Legal Description ........................................................................................ 4 1.2 Introduction ................................................................................................................................... 4 1.3 Background ................................................................................................................................... 4 1.4 Purpose and Need ......................................................................................................................... 6 1.5 Decision to be Made ..................................................................................................................... 6 1.6 Plan Conformance Review............................................................................................................ 6 1.7 Relationship to Statutes, Regulations, Policies or Other Plans ..................................................... 9 1.8 Issues Identified ......................................................................................................................... -
Dinosaur Wars Program Transcript
Page 1 Dinosaur Wars Program Transcript Narrator: For more than a century, Americans have had a love affair with dinosaurs. Extinct for millions of years, they were barely known until giant, fossil bones were discovered in the mid-nineteenth century. Two American scientists, Edward Drinker Cope and Othniel Charles Marsh, led the way to many of these discoveries, at the forefront of the young field of paleontology. Jacques Gauthier, Paleontologist: Every iconic dinosaur every kid grows up with, apatosaurus, triceratops, stegosaurus, allosaurus, these guys went out into the American West and they found that stuff. Narrator: Cope and Marsh shed light on the deep past in a way no one had ever been able to do before. They unearthed more than 130 dinosaur species and some of the first fossil evidence supporting Darwin’s new theory of evolution. Mark Jaffe, Writer: Unfortunately there was a more sordid element, too, which was their insatiable hatred for each other, which often just baffled and exasperated everyone around them. Peter Dodson, Paleontologist: They began life as friends. Then things unraveled… and unraveled in quite a spectacular way. Narrator: Cope and Marsh locked horns for decades, in one of the most bitter scientific rivalries in American history. Constantly vying for leadership in their young field, they competed ruthlessly to secure gigantic bones in the American West. They put American science on the world stage and nearly destroyed one another in the process. Page 2 In the summer of 1868, a small group of scientists boarded a Union Pacific train for a sightseeing excursion through the heart of the newly-opened American West. -
Rival Species Recast Significance of 'First Bird'
NEWS IN FOCUS PALAEONTOLOGY Rival species recast significance of ‘first bird’ Archaeopteryx’s status is changing, but the animal is still key to the dinosaur–bird transition. BY EWEN CALLAWAY bird,” says Gareth Dyke, a vertebrate palaeon- brains of Archaeopteryx and a variety of dino- tologist at the University of Southampton, UK. saurs related to it were, like modern birds, all he iconic status of Archaeopteryx, the “They’d rather cut off one of their legs than relatively large for their body sizes. Because SCIENCE first animal discovered with both bird admit it has nothing to do with bird origins.” earlier dinosaurs did not fly as well as modern and dinosaur features, is under attack. New specimens of Archaeopteryx are birds, if they flew at all, the finding suggests that TMore-recently discovered rival species show also reinvigorating research. There are now the brain expansion occurred well before flight a similar mix of traits. But Archaeopteryx still 12 known fossils of the creature, and at the emerged. It is yet another clue that Archaeop- hogged the opening symposium at the 2014 symposium Kundrat unveiled the first scien- teryx may not have been any more bird-like VLADIMIR NIKOLOV. SILHOUETTE: Society of Vertebrate Paleontology meeting tific description of the eighth to be discovered. than other suggested transitional species. “It’s in Berlin last month, and even festooned the Researchers lost track of the ‘phantom’ after it another piece of data that has taken away from official conference beer glasses. was found in Germany in the early 1990s, until the specialness of Archaeopteryx,” says Balanoff. -
A Mysterious Giant Ichthyosaur from the Lowermost Jurassic of Wales
A mysterious giant ichthyosaur from the lowermost Jurassic of Wales JEREMY E. MARTIN, PEGGY VINCENT, GUILLAUME SUAN, TOM SHARPE, PETER HODGES, MATT WILLIAMS, CINDY HOWELLS, and VALENTIN FISCHER Ichthyosaurs rapidly diversified and colonised a wide range vians may challenge our understanding of their evolutionary of ecological niches during the Early and Middle Triassic history. period, but experienced a major decline in diversity near the Here we describe a radius of exceptional size, collected at end of the Triassic. Timing and causes of this demise and the Penarth on the coast of south Wales near Cardiff, UK. This subsequent rapid radiation of the diverse, but less disparate, specimen is comparable in morphology and size to the radius parvipelvian ichthyosaurs are still unknown, notably be- of shastasaurids, and it is likely that it comes from a strati- cause of inadequate sampling in strata of latest Triassic age. graphic horizon considerably younger than the last definite Here, we describe an exceptionally large radius from Lower occurrence of this family, the middle Norian (Motani 2005), Jurassic deposits at Penarth near Cardiff, south Wales (UK) although remains attributable to shastasaurid-like forms from the morphology of which places it within the giant Triassic the Rhaetian of France were mentioned by Bardet et al. (1999) shastasaurids. A tentative total body size estimate, based on and very recently by Fischer et al. (2014). a regression analysis of various complete ichthyosaur skele- Institutional abbreviations.—BRLSI, Bath Royal Literary tons, yields a value of 12–15 m. The specimen is substantially and Scientific Institution, Bath, UK; NHM, Natural History younger than any previously reported last known occur- Museum, London, UK; NMW, National Museum of Wales, rences of shastasaurids and implies a Lazarus range in the Cardiff, UK; SMNS, Staatliches Museum für Naturkunde, lowermost Jurassic for this ichthyosaur morphotype. -
Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia. -
Rule Booklet
Dig for fossils, build skeletons, and attract the most visitors to your museum! TM SCAN FOR VIDEO RULES AND MORE! FOSSILCANYON.COM Dinosaurs of North America edimentary rock formations of western North America are famous for the fossilized remains of dinosaurs The rules are simple enough for young players, but and other animals from the Triassic, Jurassic, and serious players can benefit Cretaceous periods of the Mesozoic Era. Your objective from keeping track of the cards that is to dig up fossils, build complete skeletons, and display have appeared, reasoning about them in your museum to attract as many visitors as possible. probabilities and expected returns, and choosing between aggressive Watch your museum’s popularity grow using jigsaw-puzzle and conservative plays. scoring that turns the competition into a race! GAME CONTENTS TM 200,000300,000 160,000 VISITORS VISITORS PER YEAR 140,000 VISITORS PER YEAR 180,000 VISITORS PER YEAR 400,000 VISITORS PER YEAR Dig for fossils, build skeletons, and 340,000 VISITORS PER YEAR RD COLOR ELETONS CA GENUS PERIODDIET SK FOSSIL VISITORSPARTS 360,000 VISITORS PER YEAR PER YEAR attract the most visitors to your museum! VISITORS PER YEAR PER YEAR Tyrannosaurus K C 1 4 500,000 Brachiosaurus J H 1 3 400,000 ON YOUR TURN: TM SCAN FOR VIDEO Triceratops K H 1 3 380,000 RULES AND MORE! Allosaurus J C 2 Dig3 a first360,000 card. If it is a fossil, keep it hidden. FOSSILCANYON.COM Ankylosaurus K H 2 If it3 is an340,000 action card, perform the action. -
Paleoherpetofauna Portuguesa
Rev. Esp. Herp. (2002): 17-35 17 Paleoherpetofauna Portuguesa E.G. CRESPO Centro de Biologia Ambiental – Fac. Ciências Univ. Lisboa Resumo: Nos últimos anos a importância da paleoherpetofauna portuguesa tem sido posta em evidência sobre- tudo através do seu grupo mais mediático, os dinossauros. As recentes descobertas em Portugal de vestígios de vários dinossauros, incluindo ossos, ovos, embriões, gastrólitos e pegadas, têm merecido ampla cobertura jorna- lística e têm sido oportunamente acompanhadas por intensas campanhas de divulgação, levadas a cabo pelo Mu- seu Nacional de História Natural de Lisboa, encabeçadas pelo geólogo, Professor Galopim de Carvalho. As pro- longadas e por vezes polémicas acções de sensibilização pública e política que foi necessário empreender para se preservarem muitos dos locais onde esses vestígios foram encontrados, contribuiram também para sustentar e até aumentar o interesse por este grupo de grandes répteis. A importância da paleoherpetofauna portuguesa está porém longe de se limitar apenas aos dinossauros! Em Portugal viveram muitos outros répteis e anfíbios de que existem vestígios desde o começo do Mesozói- co –Quelónios, Crocodilos, Ictiossauros, Plesiossauros, Pterossauros, Lepidossauros, “Estegossauros” e Lis- samphia– que, embora geralmente muito menos conhecidos, têm um significado evolutivo, paleogeográfico e paleoclimático extremamente importante. Na sua descoberta e estudo estiveram envolvidos, já desde o século passado, numerosos investigadores por- tugueses e estrangeiros, dos quais se destacam, entre outros, Georges Zbyszewski, Miguel Telles Antunes, Vei- ga Ferreira, H. Sauvage, A.F. Lapparent, L. Ginsburg, R.Thulborn, P. Galton. Muitos destes estudos encontram- se todavia dispersos por uma vasta gama de publicações em que, frequentemente, as referências aos répteis e aos anfíbios ou são laterais ou são apresentadas em contextos zoológicos mais abrangentes, pelo que, como parece que tem acontecido, têm passado praticamente despercebidos à maioria daqueles que se dedicam aos estudo da nossa herpetofauna actual. -
Chronostratigraphy and New Vertebrate Sites from the Upper Maastrichtian of Huesca (Spain), and Their Relation with the K/Pg Boundary
Accepted Manuscript Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/Pg boundary E. Puértolas-Pascual, I. Arenillas, J.A. Arz, P. Calvín, L. Ezquerro, C. García-Vicente, M. Pérez-Pueyo, E.M. Sánchez-Moreno, J.J. Villalaín, J.I. Canudo PII: S0195-6671(17)30487-1 DOI: 10.1016/j.cretres.2018.02.016 Reference: YCRES 3817 To appear in: Cretaceous Research Received Date: 9 November 2017 Revised Date: 24 January 2018 Accepted Date: 22 February 2018 Please cite this article as: Puértolas-Pascual, E., Arenillas, I., Arz, J.A., Calvín, P., Ezquerro, L., García- Vicente, C., Pérez-Pueyo, M., Sánchez-Moreno, E.M., Villalaín, J.J., Canudo, J.I., Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/ Pg boundary, Cretaceous Research (2018), doi: 10.1016/j.cretres.2018.02.016. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/Pg boundary E. Puértolas-Pascual1,4, I. Arenillas5, J.A. Arz5, P. Calvín2, L. -
Paleopathological Analysis of a Sub-Adult Allosaurus Fragilis (MOR
Paleopathological analysis of a sub-adult Allosaurus fragilis (MOR 693) from the Upper Jurassic Morrison Formation with multiple injuries and infections by Rebecca Rochelle Laws A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Rebecca Rochelle Laws (1996) Abstract: A sub-adult Allosaurus fragilis (Museum of the Rockies specimen number 693 or MOR 693; "Big Al") with nineteen abnormal skeletal elements was discovered in 1991 in the Upper Jurassic Morrison Formation in Big Horn County, Wyoming at what became known as the "Big Al" site. This site is 300 meters northeast of the Howe Quarry, excavated in 1934 by Barnum Brown. The opisthotonic position of the allosaur indicated that rigor mortis occurred before burial. Although the skeleton was found within a fluvially-deposited sandstone, the presence of mud chips in the sandstone matrix and virtual completeness of the skeleton showed that the skeleton was not transported very far, if at all. The specific goals of this study are to: 1) provide a complete description and analysis of the abnormal bones of the sub-adult, male, A. fragilis, 2) develop a better understanding of how the bones of this allosaur reacted to infection and trauma, and 3) contribute to the pathological bone database so that future comparative studies are possible, and the hypothesis that certain abnormalities characterize taxa may be evaluated. The morphology of each of the 19 abnormal bones is described and each disfigurement is classified as to its cause: 5 trauma-induced; 2 infection-induced; 1 trauma- and infection-induced; 4 trauma-induced or aberrant, specific origin unknown; 4 aberrant; and 3 aberrant, specific origin unknown. -
Coossified Tarsometatarsi in Theropod Dinosaurs and Their Bearing on the Problem of Bird Origins
HALSZKA OSM6LSKA COOSSIFIED TARSOMETATARSI IN THEROPOD DINOSAURS AND THEIR BEARING ON THE PROBLEM OF BIRD ORIGINS OSM6LSKA, H. : Coossified tarsometatarsi in theropod dinosaurs and their bearing on the problem of bird origins, Palaeontologia Polonica, 42, 79-95, 1981. Limb remains of two small theropod dinosaurs from the Upper Cretaceous deposits of Mongolia display fused tarsometatarsi. Presence of fusion in the tarsometatarsus in some theropods is consi dered as additional evidence for the theropod origin of birds. E/misaurus rarus gen. et sp. n. is described based upon a fragmentary skeleton represented by limbs. Family Elmisauridae novo is erected to include Elmisaurus, Chirostenotes GlLMORE and Ma crophalangia STERNBERG. Key words: Dinosauria, Theropoda, bird origins, Upper Cretaceous, Mongolia. Halszka Osmolska , ZakladPaleobiologii, Polska Akademia Nauk, Al. Zw irki i Wigury 93,02-089 War szawa, Po/and. Received: June 1979. Streszczenie. - W pracy opisano szczatki malych dinozaur6w drapieznych z osad6w gornokredo wych Mongolii . Stopa tych dinozaur6w wykazuje obecnosc zrosnietego tarsomet atarsusa. Zrosniecie to stanowi dodatkowy dow6d na pochodzenie ptak6w od dinozaur6w drapieznych, Opisano nowy rodzaj i gatunek dinozaura drapieznego E/misaurus rarus, kt6ry zaliczono do nowej rodziny Elmisau ridae . Do rodziny tej, opr6cz Elmisaurus, naleza: Chirostenotes GILMORE i Macr opha/angia STERNBERG. Praca byla finansowana przez Polska Akademie Nauk w ramach problemu rniedzyresorto wego MR 11-6. INTRODUCTION During the Polish-Mongolian -
Science WORK PACK SCIENCE
SCIENCE SPECIFIC TOPICS FOR KEY STAGE 2 AGED 7 - 11 IN YEAR GROUPS 3 - 6 DINOSAURS science WORK PACK SCIENCE NOTES FOR TEACHERS SCIENCE-SPECIFIC TOPICS FOR KS2 CHILDREN AGED 7-11 IN YEAR GROUPS 3-6 Life Processes and Living Things G variation and classification G life processes G living things in their environment Mathematics / numeracy G arithmetic - addition G reasoning English / literacy G vocabulary extension General: The worksheets require: G observational skills G reading skills G arithmatic skills G The pupils need to apply some prior knowledge, but all the information required is on the sheets, posters or the actual exhibit, facilitating use on site or at school. G Specifically from the Dinosaur Family Tree worksheet, they will learn that organisms can be classified on the basis of their similarities, and that elementary arithmatic can be used to support (through quantification) observational (qualative) classification schemes. G Like with human families, family trees can be constructed over time periods.The Family Tree worksheet enables the children to place fifteen well known dinosaurs into a simplified Dinosaur Family Tree, by identifying (numerically) which line each individual sits on, and using the date given, its position on that line. G The tree also introduces the concept of geological time, and the large numbers used in its construction. Additionally, they will notice that geological time is divided and names given to those divisions. G The work can be extended, some children will notice that four distinct groupings of dinosaurs are formed as time blocks (Triassic, Late Jurassic, Early Cretaceous and Late Cretaceous).