Rule Booklet

Total Page:16

File Type:pdf, Size:1020Kb

Rule Booklet Dig for fossils, build skeletons, and attract the most visitors to your museum! TM SCAN FOR VIDEO RULES AND MORE! FOSSILCANYON.COM Dinosaurs of North America edimentary rock formations of western North America are famous for the fossilized remains of dinosaurs The rules are simple enough for young players, but and other animals from the Triassic, Jurassic, and serious players can benefit Cretaceous periods of the Mesozoic Era. Your objective from keeping track of the cards that is to dig up fossils, build complete skeletons, and display have appeared, reasoning about them in your museum to attract as many visitors as possible. probabilities and expected returns, and choosing between aggressive Watch your museum’s popularity grow using jigsaw-puzzle and conservative plays. scoring that turns the competition into a race! GAME CONTENTS TM 200,000300,000 160,000 VISITORS VISITORS PER YEAR 140,000 VISITORS PER YEAR 180,000 VISITORS PER YEAR 400,000 VISITORS PER YEAR Dig for fossils, build skeletons, and 340,000 VISITORS PER YEAR RD COLOR ELETONS CA GENUS PERIODDIET SK FOSSIL VISITORSPARTS 360,000 VISITORS PER YEAR PER YEAR attract the most visitors to your museum! VISITORS PER YEAR PER YEAR Tyrannosaurus K C 1 4 500,000 Brachiosaurus J H 1 3 400,000 ON YOUR TURN: TM SCAN FOR VIDEO Triceratops K H 1 3 380,000 RULES AND MORE! Allosaurus J C 2 Dig3 a first360,000 card. If it is a fossil, keep it hidden. FOSSILCANYON.COM Ankylosaurus K H 2 If it3 is an340,000 action card, perform the action. TYRANNOSAURUS BRACHIOSAURUS TRICERATOPS Then dig a second card. 500,000 visitors/yr 400,000 visitors/yr 380,000 visitors/yr Quetzalcoatlus K C 2 3 320,000 Parasaurolophus K H 2 Trade3 300,000(optional). Trade fossils one-for-one with another player. A second trade costs Deinonychus K C 1 two2 fossils240,000 to get one, and a third costs three. Stegosaurus J H 1 2 220,000 Bonus? If you completed one or more ×2 ×2 ×2 ×2 Pachycephalosaurus K H 2 skeletons2 200,000 in steps 1 or 2, dig one bonus card. Coelophysis T C 2 (A2 maximum 180,000 of one bonus card per turn.) ALLOSAURUS ANKYLOSAURUS QUETZALCOATLUS PARASAUROLOPHUS Dilophosaurus J C 2 Adjust2 160,000 your hand to have three or fewer 360,000 visitors/yr 340,000 visitors/yr 320,000 visitors/yr 300,000 visitors/yr Mosasaurus K C 4 hidden2 140,000 cards. TABLE KEY PARASAUROLOPHUS OPTIONAL END-GAME BONUSES PACHYCEPHALOSAURUSPARASAUROLOPHUS K = Cretaceous Period (145–66 Ma) C = Carnivore (pair-uh-sore-AH-luh-fus) • “near crested lizard” J = Jurassic Period (201–145 Ma) H = Herbivore DILOPHOSAURUS(PAK-ee-SEF-uh-loh-SORE-us) • “thick-headed lizard” SMALL MEDIUM LARGE MOSASAURUS ×2 ×2 ×2 ×4 T = Triassic Period (252–201 Ma) COELOPHYSIS(die-LOHF-oh-SORE-us) • “two-crested lizard” 140,000 200,000 240,000 Dinosaurs of BRACHIOSAURUS(MOH-zuh-SORE-us)DIET • “Meuse river lizard” BRACHIOSAURUS(SEE-loh-FIE-sis) • “hollow form” visitors/year visitors/year visitors/year ALLOSAURUSANKYLOSAURUSPERIOD ALLOSAURUS(brack-ee-oh-SORE-us) • “arm lizard” ANKYLOSAURUSDIET (al-loh-SORE-us)(an-KIE-loh-SORE-us) • “di erentWEIGHT • lizard”“fusedPERIOD lizard” DIET Most carnivore Most Jurassic One of each North America PERIODWEIGHT LENGTHDIET DEINONYCHUS STEGOSAURUS COELOPHYSIS PACHYCEPHALOSAURUS DILOPHOSAURUS MOSASAURUS PERIOD LENGTHWEIGHTLENGTHWEIGHTLENGTHWEIGHT DIET skeletons skeletons Cretaceous LENGTHLENGTHLENGTHLENGTH WEIGHTWEIGHTWEIGHTDIET 240,000 visitors/yr 220,000 visitors/yr 180,000 visitors/yr 200,000 visitors/yr 160,000 visitors/yr 140,000 visitors/yr PERIOD 1,800 kg DIET PERIOD 5,000 kg 75 Ma 10 m DIET herbivore PERIODPERIOD 10 m 7 m193 Ma20 mLate3 mCretaceous45,00017Carnivore66 m Ma kg725 m kg13,0004.5 m kg400 kg (4,00066 Ma (11,000lb) lb) Herbivore(33 ft) 450 3,000kg kg 215 Ma Late Cretaceous(100,000(56 ft) (23 (55lb) ft) lb)(29,000(15Herbivore ft) lb) 15066 Ma Ma(33 ft) (23Early ft) (66 Jurassic ft) (10 ft) (880Carnivore (1,000lb) (6,600 lb) lb) This card is not normally used in the game, but you can 150 Ma Late CretaceousParasaurolophus was a hadrosaur, Carnivoreor “duck-billed”Carnivore dinosaur, Late JurassicLate TriassicThe diet of Pachycephalosaurus is uncertain. Some teethHerbivoreHerbivore were use it as a wild card or write on it to replace a card, Late Cretaceous 11 create a new action card, or even add your own dinosaur. Late Jurassic suitedA kink for in chewing thewith upper aplants, flattened jaw but(and snoutsome a gap likewere in thethe sharp billteeth) oflike a duck.carnivores CoelophysisMosasaurus is one had of twothe earliestrows of teeth17 SMALL MEDIUM LARGE AllosaurusWithAnkylosaurus its long was neck an was apexand heavily uprightpredatorwas characteristic armored posture, Brachiosaurus of Dilophosaurus 05 . known dinosaursin its upper in Northjaw, like America. snakes. couldand had eat leavesa clubbed from tail treetops for defense. 10 m (33 ft) high. 39 BONUS! that may have preyed on Stegosaurus. 51 ’. 140,000 visitors/yr BONUS! BONUS! 47 200,000 visitors/yr 240,000 visitors/yr 43 29 64 playing cards Six paleontologist 32 puzzle pieces Eight helper cards Rule booklet TYRANNOSAURUS player tokensBRACHIOSAURUS TRICERATOPS for scoring 58 fossil cards 500,000 visitors/yr 400,000 visitors/yr 380,000 visitors/yr Six player reference cards Includes an forming 23 skeletons Not used in the Six museums, and two customizable cards educational section ALLOSAURUS ANKYLOSAURUS QUETZALCOATLUS PARASAUROLOPHUS (see back cover for details)360,000 visitors/yr standard340,000 visitors/yr game320,000 visitors/yr 300,000 visitors/yr 23 skeletons, and that can be used as wild cards, about the science and six action cards three bonus pieces custom action cards, or behind the game DEINONYCHUS STEGOSAURUS COELOPHYSIS PACHYCEPHALOSAURUS DILOPHOSAURUS MOSASAURUS 240,000 visitors/yr 220,000 visitors/yr 180,000 visitors/yr 200,000 visitors/yr 160,000 visitors/yr 140,000 visitors/yr replacement cards SMALL MEDIUM LARGE BONUS! 140,000 visitors/yr BONUS! BONUS! 200,000 visitors/yr 240,000 visitors/yr How to play A player has completed a skeleton if they have one of each fossil type (e.g., skull, body, etc.) of the same genus. If a player Setup (See the illustrations on the next page.) has completed a skeleton, they must hand the fossils to the scorekeeper, who adds the skeleton to the player’s museum and One player is chosen to be the scorekeeper. This player keeps the puts the cards out of the game. puzzle pieces nearby and must have enough room on the table for the scoring puzzle. Each player chooses a color and takes the At the end of the setup phase, each player chooses up to three corresponding player reference card. The scorekeeper attaches fossils to keep hidden from other players. All of the player’s other the players’ museum puzzle pieces to each other in the order of fossils must be placed face up so other players can see. (Hidden play, with the first player’s museum at the top. fossils represent a paleontologist’s professional competitiveness; face-up fossils represent their scientific openness!) All players Shuffle the 64 playing cards (not the two customizable cards), reveal their face-up cards at the same time. If a player has two randomly discard four cards (don’t look at them!), and spread the or more face-up fossils of the same genus, the cards should be remaining 60 cards face down on the table. This is the dig site. placed on top of each other, but staggered, so the type of each STARTING HAND Each player-paleontologist digs (draws) a fossil is visible. See the illustrations on the next page. 2p 10 number of cards from the dig site according to the number of players (see the table at left) Playing 3p 8 without showing their cards to others. Players take turns in sequence. Your turn consists of four steps: 4p 6 If a player gets an action card (a card that is digging up cards, trading fossils, possibly collecting a bonus card, 5p 5 not a fossil), that player sets the card aside, and adjusting your hidden hand. 6p 4 face up, and takes a replacement card. After 1) Dig. (If there are no cards left to dig at the beginning of your each player has their full set of fossil cards, turn, go to “Ending the game.”) Dig a card from the dig site. If it is any face-up action cards are returned to the dig site, face down, a fossil, keep it hidden. If it is an action card, perform the action. and reshuffled into the dig site. Then, if there is another card in the dig site, dig a second card. 3 140,000 200,000 180,000 VISITORS VISITORS VISITORS PER YEAR PER YEAR PER YEAR 360,000 360,000 VISITORS VISITORS PER YEAR PER YEAR TM TM MOSASAURUS PACHYCEPHALOSAURUS COELOPHYSIS TM 360,000 360,000 (MOH-zuh-SORE-us) • “Meuse river lizard” (PAK-ee-SEF-uh-loh-SORE-us) • “thick-headed lizard” (SEE-loh-FIE-sis) • “hollow form” VISITORS VISITORS PER YEAR PER YEAR PERIOD LENGTH WEIGHT DIET PERIOD LENGTH WEIGHT DIET PERIOD LENGTH WEIGHT DIET 17 m 13,000 kg 4.5 m 450 kg 3 m 25 kg 66 Ma (56 ft) (29,000 lb) 66 Ma (15 ft) (1,000 lb) 215 Ma (10 ft) (55 lb) Late Cretaceous Carnivore Late Cretaceous Herbivore Late Triassic Carnivore Mosasaurus constantly shed and replaced its teeth, The type species of Pachycephalosaurus is P. wyomingensis, Coelophysis had a long, S-shaped curved neck. so fossilized Mosasaurus teeth are plentiful. named for its discovery in Wyoming. Theropods of the late Cretaceous had relatively shorter necks.
Recommended publications
  • GIS in the Paleontology
    GIS in the Paleontology Notes from the field By Vincent Bruscas SECRET STUFF • SEC. 6309. CONFIDENTIALITY. • Information concerning the nature and specific location of a paleontological resource shall be exempt from disclosure under section 552 of title 5, United States Code, and any other law unless the Secretary determines that disclosure would-- • (1) further the purposes of this subtitle; • (2) not create risk of harm to or theft or destruction of the resource or the site containing the resource; and • (3) be in accordance with other applicable laws. MAP OF GRASSLANDS Paleo digs in Thunder Basin, Buffalo Gap, and Oglala National Grasslands. FS has a geodatabase program for Paleo that is called PaleoEX. The “ex” is an arcmap extension. The database has fields ranging from specific site location, geology, stratigraphic markers, types of fossils, preservation of fossils, unauthorized collection evidence, to the museum side with accessioning and even site mitigation. The program also allows to store photos of sites, reports, theft reports, court documents, etc. and it will produce reports as well. Needless to say it is way too cumbersome for 2 paleos to keep up to date. VOLUNTEER OPPURTUNITY, INTERESTED? Wyoming First dino dig with JR. It was his first year at University of Idaho. We packed all of his dorm stuff with camp equipment. He was a little stuffed. Devil’s Tower Interesting geological feature in the area. All of the area’s we work in are part of the Lance Creek or Hell’s Creek formation. Geology formation The Hell Creek Formation is an intensively-studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana.
    [Show full text]
  • MEET the DINOSAURS! WHAT’S in a NAME? a LOT If You Are a Dinosaur!
    MEET THE DINOSAURS! WHAT’S IN A NAME? A LOT if you are a dinosaur! I will call you Dyoplosaurus! Most dinosaurs get their names from the ancient Greek and Latin languages. And I will call you Mojoceratops! And sometimes they are named after a defining feature on their body. Their names are made up of word parts that describe the dinosaur. The name must be sent to a special group of people called the International Commission on Zoological Nomenclature to be approved! Did You The word DINOSAUR comes from the Greek word meaning terrible lizard and was first said by Know? Sir Richard Owen in 1841. © 2013 Omaha’s Henry Doorly Zoo & Aquarium® | 3 SEE IF YOU CAN FIND OUT THE MEANING OF SOME OF OUR DINOSAUR’S NAMES. Dinosaur names are not just tough to pronounce, they often have meaning. Dinosaur Name MEANING of Dinosaur Name Carnotaurus (KAR-no-TORE-us) Means “flesh-eating bull” Spinosaurus (SPY-nuh-SORE-us) Dyoplosaurus (die-o-pluh-SOR-us) Amargasaurus (ah-MAR-guh-SORE-us) Omeisaurus (Oh-MY-ee-SORE-us) Pachycephalosaurus (pak-ee-SEF-uh-low-SORE-us) Tuojiangosaurus (toh-HWANG-uh-SORE-us) Yangchuanosaurus (Yang-chew-ON-uh-SORE-us) Quetzalcoatlus (KWET-zal-coe-AT-lus) Ouranosaurus (ooh-RAN-uh-SORE-us) Parasaurolophus (PAIR-uh-so-ROL-uh-PHUS) Kosmoceratops (KOZ-mo-SARA-tops) Mojoceratops (moe-joe-SEH-rah-tops) Triceratops (try-SER-uh-TOPS) Tyrannosaurus rex (tuh-RAN-uh-SORE-us) Find the answers by visiting the Resource Library at Carnotaurus A: www.OmahaZoo.com/Education. Search word: Dinosaurs 4 | © 2013 Omaha’s Henry Doorly Zoo & Aquarium® DINO DEFENSE All animals in the wild have to protect themselves.
    [Show full text]
  • Anomalously High Variation in Postnatal Development Is Ancestral for Dinosaurs but Lost in Birds
    Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds Christopher T. Griffina,1 and Sterling J. Nesbitta aDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved November 3, 2016 (received for review August 19, 2016) Compared with all other living reptiles, birds grow extremely fast sequence analysis (OSA) (32) to reconstruct growth sequences of and possess unusually low levels of intraspecific variation during these early dinosaurs, two avian species (Branta canadensis and postnatal development. It is now clear that birds inherited their high Meleagris gallopavo), and a single crocodylian species (Alligator rates of growth from their dinosaurian ancestors, but the origin of mississippiensis), and demonstrate that the earliest dinosaurs the avian condition of low variation during development is poorly developed differently than living archosaurs. constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus)showsimilarly Results low variation to birds, contrasting with higher variation in extant Our OSAs indicate that both C. bauri and M. rhodesiensis pos- crocodylians. Here, we show that deep within Dinosauria, among sessed a high level of intraspecific variation, both in sequence the earliest-diverging dinosaurs, anomalously high intraspecific var- polymorphism and in body size at different levels of morpho- iation is widespread but then is lost in more derived theropods. This logical maturity (Figs. 1 and 2). Analysis of the 27 ontogenetic style of development is ancestral for dinosaurs and their closest characters for C. bauri reconstructed 136 equally parsimonious relatives, and, surprisingly, this level of variation is far higher than developmental sequences (Fig.
    [Show full text]
  • Offer Your Guests a Visually Stunning and Interactive Experience They Won’T Find Anywhere Else World of Animals
    Creative Arts & Attractions Offer Your Guests a Visually Stunning and Interactive Experience They Won’t Find Anywhere Else World of Animals Entertain guests with giant illuminated, eye-catching displays of animals from around the world. Animal displays are made in the ancient Eastern tradition of lantern-making with 3-D metal frames, fiberglass, and acrylic materials. Unique and captivating displays will provide families and friends with a lifetime of memories. Animatronic Dinosaurs Fascinate patrons with an impressive visual spectacle in our exhibitions. Featured with lifelike appearances, vivid movements and roaring sounds. From the very small to the gigantic dinosaurs, we have them all. Everything needed for a realistic and immersive experience for your patrons. Providing interactive options for your event including riding dinosaurs and dinosaur inflatable slides. Enhancing your merchandise stores with dinosaur balloons and toys. Animatronic Dinosaur Options Abelisaurus Maiasaura Acrocanthosaurus Megalosaurus Agilisaurus Olorotitan arharensis Albertosaurus Ornithomimus Allosaurus Ouranosaurus nigeriensis Ankylosaurus Oviraptor philoceratops Apatosaurus Pachycephalosaurus wyomingensis Archaeopteryx Parasaurolophus Baryonyx Plateosaurus Brachiosaurus Protoceratops andrewsi Carcharodontosaurus Pterosauria Carnotaurus Pteranodon longiceps Ceratosaurus Raptorex Coelophysis Rugops Compsognathus Spinosaurus Deinonychus Staurikosaurus pricei Dilophosaurus Stegoceras Diplodocus Stegosaurus Edmontosaurus Styracosaurus Eoraptor Lunensis Suchomimus
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • At Carowinds
    at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]
  • Paleopathological Analysis of a Sub-Adult Allosaurus Fragilis (MOR
    Paleopathological analysis of a sub-adult Allosaurus fragilis (MOR 693) from the Upper Jurassic Morrison Formation with multiple injuries and infections by Rebecca Rochelle Laws A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Rebecca Rochelle Laws (1996) Abstract: A sub-adult Allosaurus fragilis (Museum of the Rockies specimen number 693 or MOR 693; "Big Al") with nineteen abnormal skeletal elements was discovered in 1991 in the Upper Jurassic Morrison Formation in Big Horn County, Wyoming at what became known as the "Big Al" site. This site is 300 meters northeast of the Howe Quarry, excavated in 1934 by Barnum Brown. The opisthotonic position of the allosaur indicated that rigor mortis occurred before burial. Although the skeleton was found within a fluvially-deposited sandstone, the presence of mud chips in the sandstone matrix and virtual completeness of the skeleton showed that the skeleton was not transported very far, if at all. The specific goals of this study are to: 1) provide a complete description and analysis of the abnormal bones of the sub-adult, male, A. fragilis, 2) develop a better understanding of how the bones of this allosaur reacted to infection and trauma, and 3) contribute to the pathological bone database so that future comparative studies are possible, and the hypothesis that certain abnormalities characterize taxa may be evaluated. The morphology of each of the 19 abnormal bones is described and each disfigurement is classified as to its cause: 5 trauma-induced; 2 infection-induced; 1 trauma- and infection-induced; 4 trauma-induced or aberrant, specific origin unknown; 4 aberrant; and 3 aberrant, specific origin unknown.
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • Science WORK PACK SCIENCE
    SCIENCE SPECIFIC TOPICS FOR KEY STAGE 2 AGED 7 - 11 IN YEAR GROUPS 3 - 6 DINOSAURS science WORK PACK SCIENCE NOTES FOR TEACHERS SCIENCE-SPECIFIC TOPICS FOR KS2 CHILDREN AGED 7-11 IN YEAR GROUPS 3-6 Life Processes and Living Things G variation and classification G life processes G living things in their environment Mathematics / numeracy G arithmetic - addition G reasoning English / literacy G vocabulary extension General: The worksheets require: G observational skills G reading skills G arithmatic skills G The pupils need to apply some prior knowledge, but all the information required is on the sheets, posters or the actual exhibit, facilitating use on site or at school. G Specifically from the Dinosaur Family Tree worksheet, they will learn that organisms can be classified on the basis of their similarities, and that elementary arithmatic can be used to support (through quantification) observational (qualative) classification schemes. G Like with human families, family trees can be constructed over time periods.The Family Tree worksheet enables the children to place fifteen well known dinosaurs into a simplified Dinosaur Family Tree, by identifying (numerically) which line each individual sits on, and using the date given, its position on that line. G The tree also introduces the concept of geological time, and the large numbers used in its construction. Additionally, they will notice that geological time is divided and names given to those divisions. G The work can be extended, some children will notice that four distinct groupings of dinosaurs are formed as time blocks (Triassic, Late Jurassic, Early Cretaceous and Late Cretaceous).
    [Show full text]