Of the Jurassic Period

Total Page:16

File Type:pdf, Size:1020Kb

Of the Jurassic Period VOLUMINA JURASSICA, 2016, XIV: 159–164 DOI: A review of the basal tyrannosauroids (Saurischia: Theropoda) of the Jurassic Period Changyu YUN Key words: tyrannosauroid, Saurischia, theropod, Jurassic Abstract. The well supported clade Tyrannosauroidea represents one of the most basal coelurosaurian theropods. Given that current fossil records of earliest coelurosaur theropods are extremely scarce, basal-most tyrannosauroid materials are key to understanding the origin and diversification of coelurosaurs. Here, I present a brief overview of currently known basal tyrannosauroids of Jurassic age, discussing their systematics and distribution. The currently oldest known Jurassic tyrannosauroids are from Europe continent, possibly suggesting the European origin of the superfamily. INTRODUCTION the oldest tyrannosauroid material plays an important role in understanding coelurosaurian origin and diversification. The Coelurosauria is the only dinosaurian clade which This paper aims to present a review of the currently survives today as birds, and it is one of the most diverse known Jurassic tyrannosauroids, and a general description theropod clades comprising many herbivorous and carnivo- of each taxon or subclade. My hope is that this paper will be rous taxa. Therefore, the diversification of the Coelurosauria a helpful guide to understanding tyrannosauroid or coeluro- is one of the most interesting subject of the evolutionary his- saurian origin and/or distribution. tory of the dinosaurs. Unfortunately, most of the oldest known coelurosaurian fossils are largely fragmentary so it is POSSIBLE CASES currently very dificult to understand the clade’s diversifica- tion. One putative record from the Early Jurassic of China might be the oldest known therizinosaurian (Zhao, Xu, Iliosuchus incognitus (Huene, 1932) 1998; Barrett, 2009) but its exact age and taxonomic status Age: Middle Bathonian, Middle Jurassic are controversial (Kirkland, Wolfe, 2001; Kirkland et al., 2005). Occurrence: Stonesfield Slate, England The Tyrannosauroidea is considered as a basal-most clade of Coelurosauria by a majority of recent phylogenetic Comments: Only 3 small ilia are the currently known analyses (e.g. Loewen et al., 2013; Brusatte et al., 2014) but material of this taxon. Though this material is very small in some analyses found them to be more derived than the size (being 9 to 10 cm long), a vertical iliac ridge is clearly Compsognathidae (e.g. Rauhut et al., 2010; Novas et al., present similar to other tyrannosauroids. So this taxon was 2013). What is clear is that the tyrannosauroids represent traditionally allied with the tyrannosauroids (Galton, 1976), a clade close to the origin of the Coelurosauria. Therefore though the fact that some other theropods belonging to the 1 Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea, Biological Sciences, Inha University, Incheon 22212, Republic of Korea; e-mail: [email protected]. 160 C. YUN Tetanurae such as Megalosaurus or Piatnitzkysaurus have tion. However, the ilium of Tanycolagreus is currently un- similar feature makes this referral uncertain (Benson, 2009). known so the direct comparison of the taxa is currently im- Recent studies have considered Iliosuchus to be an indeter- possible (the distinctive bones of Stokesosaurus being the minate avetheropod or a juvenile Megalosaurus (Benson, ilia). If this taxon indeed forms the clade Coeluridae and 2009; Carrano et al., 2012) but such fragmentary material is belongs to the tyrannosauroid, it is probably close to the not enough for accurate classification. base (Senter, 2007). The taxon had a large, enlongated skull If Iliosuchus is indeed a tyrannosauroid, it would be the and long legs, and gracile general morphology. earliest genus in the clade or maybe even in the whole Coe- lurosauria itself (Rauhut, 2003). CERTAIN CASES Coeluridae (Marsh, 1881) Definition: The most inclusive clade containing Coelu­ Proceratosauridae (Averianov et al., 2010) rus fragilis but not Proceratosaurus bradleyi, Tyrannosau­ rus rex, Allosaurus fragilis, Compsognathus longipes, Orni­ Definition: A node based taxon including Proceratosau­ thomimus edmontonicus and Deinonychus antirrhopus rus bradleyi and Kileskus aristotocus, their most recent (Hendrickx et al., 2015) common ancestor and all its decendants (Averianov et al., Comments: Whether or not this clade is monophyletic is 2010). controversial, and some taxon or whole members of the Comments: Rauhut et al. (2010) first suggested the defi- clade might not belong to the Tyrannosauroidea at all (Choi- nition for the Proceratosauridae as “all theropods that are niere et al., 2014). Many of the recent analyses found that more closely related to Proceratosaurus than to Tyranno­ this clade belongs to the basal tyrannosauroids (e.g. Senter, saurus, Allosaurus, Compsognathus, Coelurus, Ornithomi­ 2007; Brusatte et al., 2014). There are currently two genera mus, or Deinonychus”. Averianov et al. (2010) pointed out in this clade, which are Coelurus and Tanycolagreus. This that this definition suggested by Rauhut et al. (2010) does clade comprises small carnivorous coelurosaurs which are not meet ICZN’s requirements, so their “Proceratosauridae” likely have hunted small prey. is a nomen nudum. There are currently 5 valid taxa belong to this clade, based on the parsimony analysis of Brusatte, Carr Coelurus fragilis (Marsh, 1879) (2016) and 3 of them are from the Jurassic period. This clade comprises small to large basal tyranno- Age: Middle, Late Kimmeridgian, Late Jurassic sauroids (Brusatte, Carr, 2016) characterized by crests on Occurrence: Morrison Formation, Wyoming, USA their head. Since the crests of these dinosaurs are thin, they might have served as display organs. Comments: The exact position of this taxon’s theropoda phylogenetical tree is uncertain. Some consider Coelurus as Guanlong wucaii (Xu et al., 2006) more derived than the tyrannosauroids (Turner et al., 2007), or even than the basal maniraptoran (Zanno, 2010). If this Age: Oxfordian, Late Jurassic taxon indeed forms a clade Coeluridae and belongs to the Occurrence: Shishugou Formation, Xinjiang, China tyrannosauroid, it is probably close to the base (Senter, 2007). This taxon had a relatively long neck and trunk, and Comments: This is a taxon famous for its highly distinc- a long slender hindlimb. This suggests it was a small, gracile tive crest on its skull (Fig. 1A). Carr (2006) suggested that theropod with great speed ability. this taxon is actually a Carnosauria sister to Monolophosau­ rus or even possibly synonymous with it. This was support- Tanycolagreus topwilsoni (Carpenter et al., 2005) ed by Paul (2010) as he described this taxon as Monolopho­ saurus wucaii. However, no other analyses have found them Age: Middle, Late Kimmeridgian, Late Jurassic as closely related (e.g. Loewen et al., 2013; Brusatte, Carr, Occurrence: Morrison Formation, Wyoming, USA 2016). As this taxon had long forelimbs with a large manus and a small skull with small teeth, it is likely that its fore- Comments: This taxon could be synonymous with the limbs played an important role in hunting unlike the more tyrannosauroid Stokesosaurus clevelandi, since they are derived tyrannosauroids, as their forelimbs are very short- similar sized coelurosaurs from the same geological forma- ened. A review of the basal tyrannosauroids (Saurischia: Theropoda) of the Jurassic Period 161 Fig. 1. Skull reconstructions of the two Jurassic proceratosaurids A. Guanlong. B. Proceratosaurus. Reconstructions by Tracy Ford Proceratosaurus bradleyi Aviatyrannis jurassica (Rauhut, 2003) (Woodward, 1910; Huene, 1926) Age: Early Kimmeridgian, Late Jurassic Age: Middle Bathonian, Middle Jurassic Occurrence: Alcobaca Formation, Portugal Occurrence: Great Oolite, England Comments: This is one of the oldest tyrannosauroids Comments: Once considered as a taxon closely related ever found. The holotype ilium was once originally referred to Ceratosaurus (Huene, 1926), this is now considered as to Stokesosaurus, though later study described it as a new the currently oldest definite tyrannosauroid and coelurosaur genus (Rauhut, 2003). However, it is probable that this ge- of all time (Rauhut et al., 2010). The currently only known nus is in fact a Portuguese species of Stokesosaurus. Some skull has a small “horn” on the end of its snout, but this is material such as an ilium (now lost) and an isolated tooth probably the trace of a broken delicate crest similar that pre- from the North American Morrison Formation were once re- sent in Guanlong (Rauhut et al., 2010; Fig. 1B). It had ferred to Stokesosaurus, but might actually belong to Avia­ a small, subrectangular head and it probably had a similar tyrannis (Rauhut, 2003). These findings, and the cases of lifestyle to Guanlong. Portuguese Allosaurus or Torvosaurus (Mateus et al., 2006), support the Kimmeridgian land connections between North Kileskus aristotocus (Averianov et al., 2010) America and Europe. Age: Bathonian, Middle Jurassic Juratyrant langhami Occurrence: Itat Formation, Russia (Benson, 2008; Brusatte, Benson, 2013) Comments: This is only known from very fragmentary Age: Early Tithonian, Late Jurassic cranial material, but this is very similar to Proceratosaurus. Occurrence: Kimmeridge Clay, England This is one of the most basal coelurosaur and tyrannosauroid genera, and one of the oldest records of these clades. This Comments: Once thought to be a species of Stokeso­ taxon probably hunted small vertebrates such as fishes,
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
    Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).
    [Show full text]
  • Late Jurassic Theropod Dinosaur Bones from the Langenberg Quarry
    Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago Serjoscha W. Evers1 and Oliver Wings2 1 Department of Geosciences, University of Fribourg, Fribourg, Switzerland 2 Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany ABSTRACT Marine limestones and marls in the Langenberg Quarry provide unique insights into a Late Jurassic island ecosystem in central Europe. The beds yield a varied assemblage of terrestrial vertebrates including extremely rare bones of theropod from theropod dinosaurs, which we describe here for the first time. All of the theropod bones belong to relatively small individuals but represent a wide taxonomic range. The material comprises an allosauroid small pedal ungual and pedal phalanx, a ceratosaurian anterior chevron, a left fibula of a megalosauroid, and a distal caudal vertebra of a tetanuran. Additionally, a small pedal phalanx III-1 and the proximal part of a small right fibula can be assigned to indeterminate theropods. The ontogenetic stages of the material are currently unknown, although the assignment of some of the bones to juvenile individuals is plausible. The finds confirm the presence of several taxa of theropod dinosaurs in the archipelago and add to our growing understanding of theropod diversity and evolution during the Late Jurassic of Europe. Submitted 13 November 2019 Accepted 19 December 2019 Subjects Paleontology,
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
    Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia.
    [Show full text]
  • A New Crested Theropod Dinosaur from the Early Jurassic of Yunnan
    第55卷 第2期 古 脊 椎 动 物 学 报 pp. 177-186 2017年4月 VERTEBRATA PALASIATICA figs. 1-3 A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China WANG Guo-Fu1,2 YOU Hai-Lu3,4* PAN Shi-Gang5 WANG Tao5 (1 Fossil Research Center of Chuxiong Prefecture, Yunnan Province Chuxiong, Yunnan 675000) (2 Chuxiong Prefectural Museum Chuxiong, Yunnan 675000) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (4 College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049) (5 Bureau of Land and Resources of Lufeng County Lufeng, Yunnan 650031) Abstract A new crested theropod, Shuangbaisaurus anlongbaoensis gen. et sp. nov., is reported. The new taxon is recovered from the Lower Jurassic Fengjiahe Formation of Shuangbai County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, and is represented by a partial cranium. Shuangbaisaurus is unique in possessing parasagittal crests along the orbital dorsal rims. It is also distinguishable from the other two lager-bodied parasagittal crested Early Jurassic theropods (Dilophosaurus and Sinosaurus) by a unique combination of features, such as higher than long premaxillary body, elevated ventral edge of the premaxilla, and small upper temporal fenestra. Comparative morphological study indicates that “Dilophosaurus” sinensis could potentially be assigned to Sinosaurus, but probably not to the type species. The discovery of Shuangbaisaurus will help elucidate the evolution of basal theropods, especially the role of various bony cranial ornamentations had played in the differentiation of early theropods.
    [Show full text]
  • Paleoherpetofauna Portuguesa
    Rev. Esp. Herp. (2002): 17-35 17 Paleoherpetofauna Portuguesa E.G. CRESPO Centro de Biologia Ambiental – Fac. Ciências Univ. Lisboa Resumo: Nos últimos anos a importância da paleoherpetofauna portuguesa tem sido posta em evidência sobre- tudo através do seu grupo mais mediático, os dinossauros. As recentes descobertas em Portugal de vestígios de vários dinossauros, incluindo ossos, ovos, embriões, gastrólitos e pegadas, têm merecido ampla cobertura jorna- lística e têm sido oportunamente acompanhadas por intensas campanhas de divulgação, levadas a cabo pelo Mu- seu Nacional de História Natural de Lisboa, encabeçadas pelo geólogo, Professor Galopim de Carvalho. As pro- longadas e por vezes polémicas acções de sensibilização pública e política que foi necessário empreender para se preservarem muitos dos locais onde esses vestígios foram encontrados, contribuiram também para sustentar e até aumentar o interesse por este grupo de grandes répteis. A importância da paleoherpetofauna portuguesa está porém longe de se limitar apenas aos dinossauros! Em Portugal viveram muitos outros répteis e anfíbios de que existem vestígios desde o começo do Mesozói- co –Quelónios, Crocodilos, Ictiossauros, Plesiossauros, Pterossauros, Lepidossauros, “Estegossauros” e Lis- samphia– que, embora geralmente muito menos conhecidos, têm um significado evolutivo, paleogeográfico e paleoclimático extremamente importante. Na sua descoberta e estudo estiveram envolvidos, já desde o século passado, numerosos investigadores por- tugueses e estrangeiros, dos quais se destacam, entre outros, Georges Zbyszewski, Miguel Telles Antunes, Vei- ga Ferreira, H. Sauvage, A.F. Lapparent, L. Ginsburg, R.Thulborn, P. Galton. Muitos destes estudos encontram- se todavia dispersos por uma vasta gama de publicações em que, frequentemente, as referências aos répteis e aos anfíbios ou são laterais ou são apresentadas em contextos zoológicos mais abrangentes, pelo que, como parece que tem acontecido, têm passado praticamente despercebidos à maioria daqueles que se dedicam aos estudo da nossa herpetofauna actual.
    [Show full text]
  • Xjiiie'icanj/Useum
    XJiiie'ican1ox4tatreJ/useum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I8I JUNE 4, I964 Relationships of the Saurischian Dinosaurs BY EDWIN H. COLBERT1 INTRODUCTION The word "Dinosauria" was coined by Sir Richard Owen in 1842 as a designation for various genera and species of extinct reptiles, the fossil bones of which were then being discovered and described in Europe. For many years this term persisted as the name for one order of reptiles and thus became well intrenched within the literature of paleontology. In- deed, since this name was associated with fossil remains that are frequently of large dimensions and spectacular shape and therefore of considerable interest to the general public, it in time became Anglicized, to take its proper place as a common noun in the English language. Almost every- body in the world is today more or less familiar with dinosaurs. As long ago as 1888, H. G. Seeley recognized the fact that the dino- saurs are not contained within a single reptilian order, but rather are quite clearly members of two distinct orders, each of which can be de- fined on the basis of many osteological characters. The structure of the pelvis is particularly useful in the separation of the two dinosaurian orders, and consequently Seeley named these two major taxonomic categories the Saurischia and the Ornithischia. This astute observation by Seeley was not readily accepted, so that for many years following the publication of his original paper proposing the basic dichotomy of the dinosaurs the 1 Chairman and Curator, Department ofVertebrate Paleontology, the American Museum of Natural History.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Upper Cretaceous), Brazil
    Rev. Mus. Argentino Cienc. Nat., n.s. 7(1): 31-36, 2005 Buenos Aires, ISSN 1514-5158 Maniraptoran theropod ungual from the Marília Formation (Upper Cretaceous), Brazil Fernando E. NOVAS1, Luiz Carlos BORGES RIBEIRO2,3 & Ismar de SOUZA CARVALHO4 1CONICET - Museo Argentino de Ciencias Naturales «Bernardino Rivadavia», Av. Angel Gallardo 470, Buenos Aires (1405), Argentina, E-mail: [email protected]. 2Fundação Municipal de Ensino Superior de Uberaba- FUMESU/Centro de Pesquisas Paleontológicas L. I. Price. Av. Randolfo Borges Jr., n° 1.250. Universidade, 38.066-005, Uberaba- MG, Brazil, E-mail: [email protected]. 3Universidade de Uberaba-UNIUBE/Instituto de Formação de Educadores-Departamento de Biologia, Av. Nenê Sabino, n° 1.801. Universitário, Uberaba-MG, 38.055-500, Brazil, E-mail: [email protected]. 4Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO. 21.949-900 Cidade Universitária-Ilha do Fundão, Rio de Janeiro-RJ, Brazil, E-mail: [email protected] Abstract: A new theropod record from the Marília Formation (Late Cretaceous, Minas Gerais, Brazil) is here described. It consists of an isolated manual ungual which exhibits derived maniraptoran features (e.g., presence of proximodorsal lip). The ungual distinguishes by a set of unique features (e.g., dorsoventrally low and proximodistally elongate profile in side view; block-like flexor tuberosity; proximal articular surface more dorsally oriented than in other theropods; cutting «keel» located distally on ventral surface) suggesting that the animal that produced it was a member of an unknown group of derived maniraptoran theropods, other than alvarezsaurids, deinonychosaurians and oviraptorosaurians already recorded in South America.
    [Show full text]
  • The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
    The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds.
    [Show full text]