Cranial Osteology of Beipiaosaurus Inexpectus

Total Page:16

File Type:pdf, Size:1020Kb

Cranial Osteology of Beipiaosaurus Inexpectus 第57卷 第2期 古 脊 椎 动 物 学 报 pp. 117–132 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.190115 Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria) LIAO Chun-Chi1,2,3 XU Xing1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Abstract Beipiaosaurus inexpectus, a key taxon for understanding the early evolution of therizinosaurians, has not been fully described since it was briefly reported on by Xu, Tang and Wang in 1999. Here we present a detailed description of the cranial anatomy of the holotype of this theropod dinosaur. B. inexpectus is unique in some of its cranial features such as the postorbital process of the frontal is large and its abrupt transition from the orbital rim, a long and sharp anterior process of the parietal, the elongate ventral ramus of the squamosal process of parietal, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. A number of plesiomorphic cranial features (such as relatively large dentary and less downturned degree of dentary symphysis) suggest that B. inexpectus is an early-branching Therizinosaurian, as proposed by previous studies. New information derived from our study is not only important for our understanding of the cranial anatomy of B. inexpectus but also significant to the study of the evolution of Therizinosauria. Key words Beipiao, Liaoning, Early Cretaceous, Theropoda, Therizinosauria, cranial osteology Citation Liao C C, Xu X, 2019. Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria). Vertebrata PalAsiatica, 57(2): 117–132 Therizinosauria is a maniraptoran theropod clade, which is defined here as the most inclusive clade including Therizinosaurus, but not Ornithomimus velox or Oviraptor philoceratops (Zanno, 2010a). The late-branching members of this clade, i.e., the Therizinosauridae (defined as the least inclusive clade including Therizinosaurus and Erlianosaurus), have a distinctive combination of skeletal features, such as rostrally edentulous snout, dentary with a lateral shelf, small tightly packed lanceolate teeth, elongate neck, extremely broad and opisthopubic pelvis, shortened tibia, and tetradactyl pes (Clark et al., 1994, 2004; Zanno, 2006, 2010b). To date, this clade is known from the Cretaceous period of Asia and North America (Barsbold, 1976; Perle, 1979; Russell and Dong, 1993; Xu et al., 1999; Kirkland et al., 2005), although Eshanosaurus deguchiianus from the Lufeng Formation, 国家自然科学基金(批准号:41688103, 91514302)和中国科学院战略性先导科技专项(B类) (编号: XDB18030504)资助。 收稿日期:2018-06-05 118 Vertebrata PalAsiatica, Vol. 57, No. 2 Yunnan, China might represent an Early Jurassic taxon (Xu et al., 2001; Barrett, 2010). Beipiaosaurus inexpectus from the Lower Cretaceous Yixian Formation in Liaoning, China is a key taxon for understanding therizinosaurian evolution because its discovery provides direct evidence for the presence of filamentous feathers in this clade and demonstrates the independent evolution of sauropodomorphan-like features such as the tetradactyl pes in late-branching members of the clade (Xu et al., 1999). Despite the importance of Beipiaosaurus, only three brief papers have been published on the skeletal and integumentary features of this taxon (Xu et al., 1999, 2003, 2009). A detailed osteological description of the holotype specimen (IVPP V 11559) is needed in order to fully understand this important taxon. Here we present such a description of the cranial osteology, which will certainly shed new light on the cranial evolution within Therizinosauria. Institutional abbreviations IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; UMNH VP, Utah Museum of Natural History, Salt Lake City, Utah. Anatomical abbreviations a.f, frontal articulation; amp, anteromedial process; an, angular; ap.fp, accessory process of frontal process; a.sup, supraoccipital articulation; dt, denticles; emf, external mandibular fenestra; en, external naris; ff, floccular fossa; fp, frontal process; f.pp, postorbital process of frontal; jp, jugal process; lf, lateral foramina; l.p, left parietal; ls, lateral shelf; mc, mandibular condyle; mg, Mecklian groove; ob, orbital; pld, posterolateral depression; po.sqp, squamosal process of postorbital; p.pp, postorbital process of parietal; pqf, paraquadrate foramen; p.sqp, squamosal process of parietal; ptf, pterygoid flange; r.f, right frontal; r.ls, right laterosphenoid; rp, replacement pits; sa, surangular; stf, supratemporal fenestra; tc, tooth crown; tr, tooth root; vo, vomer; V2, foramen for maxillary branch of the trigeminal nerve; VII, foramen for the facial nerve; VIII, foramen for the vestibulocochlear nerve. 1 Systematic paleontology Dinosauria Owen, 1842 Theropoda Marsh, 1881 Coelurosauria sensu Gauthier, 1986 Therizinosauria Russell & Dong, 1993 Therizinosauroidea Maleev, 1954 Beipiaosaurus inexpectus Xu et al., 1999 (Figs. 1–3) Holotype1) IVPP V 11559, a partial, semi-articulated skeleton including some cranial 1) After Beipiaosaurus inexpectus was named in 1999, additional material of the holotype (IVPP V 11559) was collected from the type locality (Xu et al., 2003). The holotype thus comprises more skeletal elements than listed in the original naming paper. Liao & Xu - Cranial osteology of Beipiaosaurus inexpectus 119 elements and most of the postcranial elements. Type locality and horizon Sihetun locality near Beipiao, Liaoning, China. Lower Cretaceous (Aptian) Yixian Formation (Swisher et al., 2001). Revised diagnosis (from cranium only) A small therizinosaurian distinguishable from other therizinosaurians in having the following cranial autapomorphies: postorbital process of frontal large and abruptly transits from orbital rim, parietal with a long and sharp anterior process, ventral ramus of parietal squamosal process extremely long, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. 2 Description and comparisons The orbit is large and probably more anteriorly than laterally positioned as indicated by the triangular frontal with a strongly laterally extended postorbital process (Fig. 1A). The supratemporal fenestra is relatively small as indicated by transversely wide parietals, and it is sub-trapezoidal in outline, with the medial border being much shorter than the lateral border (Fig. 1B). The external mandibular fenestra is large, dorsoventrally deep, and located close to the posterior end of the mandible (Fig. 1C, D). This is mostly probably apomorphic for Beipiaosaurus inexpectus. 2.1 Skull Nasal One thin bone is tentatively identified as a nasal, but it is unknown which side of the snout it comes from (Fig. 2A). It is a flat bone with a slender anterior portion, which represents the premaxillary process, and a wide posterior portion, which represents the main body. The posteriormost portion of the bone is missing. The bone lacks a transverse arching that is typical of the theropod nasal, but this might be due to a postmortem distortion. As in Erlikosaurus (Clark et al., 1994; Lautenschlager et al., 2014) and Jianchangosaurus (Pu et al., 2013), the nasal is an elongate bone to join the formation of a long rostrum, unlike the robust and subtriangular outline of Falcarius (Zanno, 2010b). The premaxillary process is extremely slender, about one-third of the main body in width, and this ratio is smaller than in Erlikosaurus where it nearly reaches 50% (Clark et al., 1994). It tapers anteriorly with a straight ventral margin to form the posterodorsal border of the external naris as in Erlikosaurus (Clark et al., 1994) and Jianchangosaurus (Pu et al., 2013). The elongated premaxillary process indicates the presence of a long external naris as in other therizinosaurians such as Jianchangosaurus and Erlikosaurus. Also similar to other therizinosaurians, no distinct maxillary process (subnarial process) is present. The main body is flat and few informative features are available. Frontal The posterior half of the right frontal is preserved in dorsal view (Fig. 1A). The frontal is inferred to be sub-triangular in outline as in other therizinosaurians, including Falcarius (Zanno, 2010b), Jianchangosaurus (Pu et al., 2013), and Erlikosaurus (Clark et al., 1994), but its posterior portion is transversely broader relative to the anterior portion 120 Vertebrata PalAsiatica, Vol. 57, No. 2 Fig. 1 Close-up photographs of cranial elements of Beipiaosaurus inexpectus (IVPP V 11559) A. right frontal, left parietal, and right laterosphenoid in dorsal view; B. right parietal in dorsal view; C. left surangular and left angular in lateral view; D. vomer and right dentary in medial view; E. right postorbital in lateral view Scale bars for A–C and E equal 1 cm; for D equal 2 cm Liao & Xu - Cranial osteology of Beipiaosaurus inexpectus 121 Fig. 2 Close-up photographs of cranial elements of Beipiaosaurus inexpectus (IVPP V 11559) A. partial nasal; B. right quadrate in posterolateral view; C. left prootic in medial view. Scale bars equal 1 cm (three times as wide as the latter), which is in contrast to that in most other therizinosaurians (typically twice as wide). The frontal is flattened dorsally as in Falcarius (Zanno, 2010b) and Jianchangosaurus
Recommended publications
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • LETTER Doi:10.1038/Nature14423
    LETTER doi:10.1038/nature14423 A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings Xing Xu1,2*, Xiaoting Zheng1,3*, Corwin Sullivan2, Xiaoli Wang1, Lida Xing4, Yan Wang1, Xiaomei Zhang3, Jingmai K. O’Connor2, Fucheng Zhang2 & Yanhong Pan5 The wings of birds and their closest theropod relatives share a ratios are 1.16 and 1.08, respectively, compared to 0.96 and 0.78 in uniform fundamental architecture, with pinnate flight feathers Epidendrosaurus and 0.79 and 0.66 in Epidexipteryx), an extremely as the key component1–3. Here we report a new scansoriopterygid short humeral deltopectoral crest, and a long rod-like bone articu- theropod, Yi qi gen. et sp. nov., based on a new specimen from the lating with the wrist. Middle–Upper Jurassic period Tiaojishan Formation of Hebei Key osteological features are as follows. STM 31-2 (Fig. 1) is inferred Province, China4. Yi is nested phylogenetically among winged ther- to be an adult on the basis of the closed neurocentral sutures of the opods but has large stiff filamentous feathers of an unusual type on visible vertebrae, although this is not a universal criterion for maturity both the forelimb and hindlimb. However, the filamentous feath- across archosaurian taxa12. Its body mass is estimated to be approxi- ers of Yi resemble pinnate feathers in bearing morphologically mately 380 g, using an empirical equation13. diverse melanosomes5. Most surprisingly, Yi has a long rod-like The skull and mandible are similar to those of other scansoriopter- bone extending from each wrist, and patches of membranous tissue ygids, and to a lesser degree to those of oviraptorosaurs and some basal preserved between the rod-like bones and the manual digits.
    [Show full text]
  • Luis V. Rey & Gondwana Studios
    EXHIBITION BY LUIS V. REY & GONDWANA STUDIOS HORNS, SPIKES, QUILLS AND FEATHERS. THE SECRET IS IN THE SKIN! Not long ago, our knowledge of dinosaurs was based almost completely on the assumptions we made from their internal body structure. Bones and possible muscle and tendon attachments were what scientists used mostly for reconstructing their anatomy. The rest, including the colours, were left to the imagination… and needless to say the skins were lizard-like and the colours grey, green and brown prevailed. We are breaking the mould with this Dinosaur runners, massive horned faces and Revolution! tank-like monsters had to live with and defend themselves against the teeth and claws of the Thanks to a vast web of new research, that this Feathery Menace... a menace that sometimes time emphasises also skin and ornaments, we reached gigantic proportions in the shape of are now able to get a glimpse of the true, bizarre Tyrannosaurus… or in the shape of outlandish, and complex nature of the evolution of the massive ornithomimids with gigantic claws Dinosauria. like the newly re-discovered Deinocheirus, reconstructed here for the first time in full. We have always known that the Dinosauria was subdivided in two main groups, according All of them are well represented and mostly to their pelvic structure: Saurischia spectacularly mounted in this exhibition. The and Ornithischia. But they had many things exhibits are backed with close-to-life-sized in common, including structures made of a murals of all the protagonist species, fully special family of fibrous proteins called keratin fleshed and feathered and restored in living and that covered their skin in the form of spikes, breathing colours.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Lautenschlager 2012 Therizinosaur Brain
    Lautenschlager, S., Rayfield, E. J., Altangerel, P., & Witmer, L. M. (2012). The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE, 7(12), [e52289]. https://doi.org/10.1371/journal.pone.0052289 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0052289 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ The Endocranial Anatomy of Therizinosauria and Its Implications for Sensory and Cognitive Function Stephan Lautenschlager1*, Emily J. Rayfield1, Perle Altangerel2, Lindsay E. Zanno3,4, Lawrence M. Witmer5 1 School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 2 National University of Mongolia, Ulaanbaatar, Mongolia, 3 Nature Research Center, NC Museum of Natural Sciences, Raleigh, North Carolina, United States of America, 4 Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America, 5 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America Abstract Background: Therizinosauria is one of the most enigmatic and peculiar clades among theropod dinosaurs, exhibiting an unusual suite of characters, such as lanceolate teeth, a rostral rhamphotheca, long manual claws, and a wide, opisthopubic pelvis. This specialized anatomy has been associated with a shift in dietary preferences and an adaptation to herbivory.
    [Show full text]
  • Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow.
    [Show full text]
  • Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
    ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • A New Crested Theropod Dinosaur from the Early Jurassic of Yunnan
    第55卷 第2期 古 脊 椎 动 物 学 报 pp. 177-186 2017年4月 VERTEBRATA PALASIATICA figs. 1-3 A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China WANG Guo-Fu1,2 YOU Hai-Lu3,4* PAN Shi-Gang5 WANG Tao5 (1 Fossil Research Center of Chuxiong Prefecture, Yunnan Province Chuxiong, Yunnan 675000) (2 Chuxiong Prefectural Museum Chuxiong, Yunnan 675000) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (4 College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049) (5 Bureau of Land and Resources of Lufeng County Lufeng, Yunnan 650031) Abstract A new crested theropod, Shuangbaisaurus anlongbaoensis gen. et sp. nov., is reported. The new taxon is recovered from the Lower Jurassic Fengjiahe Formation of Shuangbai County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, and is represented by a partial cranium. Shuangbaisaurus is unique in possessing parasagittal crests along the orbital dorsal rims. It is also distinguishable from the other two lager-bodied parasagittal crested Early Jurassic theropods (Dilophosaurus and Sinosaurus) by a unique combination of features, such as higher than long premaxillary body, elevated ventral edge of the premaxilla, and small upper temporal fenestra. Comparative morphological study indicates that “Dilophosaurus” sinensis could potentially be assigned to Sinosaurus, but probably not to the type species. The discovery of Shuangbaisaurus will help elucidate the evolution of basal theropods, especially the role of various bony cranial ornamentations had played in the differentiation of early theropods.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Feathered Dinosaurs and the Origin of Flight
    Feathered Dinosaurs and the Origin of Flight Exhibition Organized and Circulated by: The Dinosaur Museum, Utah The Fossil Administration Office, Liaoning, China Beipiao City Paleontological Research Center, Liaoning, China THE PREHISTORIC WORLD OF LIAONING The fossils of Liaoning represent a complex ecosystem creating a more complete picture of this particular age of dinosaurs than ever before. Life of the Early Cretaceous, 120 million years ago, was far more than a world of dinosaurs. The fossils include a remarkable variety of plants, crustaceans, insects, fish, amphibians, lizards, crocodiles, aquatic reptiles, flying reptiles, as well as birds that could fly and others which were flightless. FEATHERS BEFORE BIRDS Included are graphics and photos which show developmental stages of feathers. The fossil of the flying reptile, Pterorhynchus is preserved with details of what pterosaurs looked like which have never been seen before. The body is covered with down-like feathers which resemble those also found on the dinosaur, Sinosauropteryx. Because feathers are now known to exist on animals other than birds, this discovery changes the definition of what a bird is. Pterorhynchus Sinosauropteryx FLYING DROMAEOSAURS AND THE MISTAKEN IDENTITY Dromaeosaurs have been thought to be ground-dwelling dinosaurs that represented ancestral stages of how birds evolved. Fossils in this exhibit show that they have been misinterpreted as dinosaurs when they are actually birds. Feather impressions reveal that they had flight feathers on the wings and a second set on the hind legs. Even without the feathers preserved, the avian characteristics of the skeleton demonstrate that these dromaeosaurs are birds. This discovery means that the larger dromaeosaurs, like Deinonychus and Velociraptor of “Jurassic Park” fame, were really feathered and are secondarily flightless birds.
    [Show full text]