Lecture 17: Common Source/Gate/Drain Amplifiers
EECS 105 Fall 2003, Lecture 17 Lecture 17: Common Source/Gate/Drain Amplifiers Prof. Niknejad Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Lecture Outline MOS Common Source Amp Current Source Active Load Common Gate Amp Common Drain Amp Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Common-Source Amplifier Isolate DC level Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Load-Line Analysis to find Q V −V I = DD out RD RD Q 1 5V slope = I = 10k D 10k 0V I = D 10k Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Small-Signal Analysis =∞ Rin Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port Parameters: Generic Transconductance Amp Rs + vs Rin Gmvin RL vin Rout − Find Rin, Rout, Gm =∞ Rin = = Gm gm RrRout o|| D Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port CS Model Reattach source and load one-ports: Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Maximize Gain of CS Amp =− AgRrv mD|| o Increase the gm (more current) Increase RD (free? Don’t need to dissipate extra power) Limit: Must keep the device in saturation =− > VVIRVDS DD D D DS, sat For a fixed current, the load resistor can only be chosen so large To have good swing we’d also like to avoid getting to close to saturation Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof.
[Show full text]