I. Common Base / Common Gate Amplifiers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PH-218 Lec-12: Frequency Response of BJT Amplifiers
Analog & Digital Electronics Course No: PH-218 Lec-12: Frequency Response of BJT Amplifiers Course Instructors: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 High frequency Response of CE Amplifier At high frequencies, internal transistor junction capacitances do come into play, reducing an amplifier's gain and introducing phase shift as the signal frequency increases. In BJT, C be is the B-E junction capacitance, and C bc is the B-C junction capacitance. (output to input capacitance) At lower frequencies, the internal capacitances have a very high reactance because of their low capacitance value (usually only a few pf) and the low frequency value. Therefore, they look like opens and have no effect on the transistor's performance. As the frequency goes up, the internal capacitive reactance's go down, and at some point they begin to have a significant effect on the transistor's gain. High frequency Response of CE Amplifier When the reactance of C be becomes small enough, a significant amount of the signal voltage is lost due to a voltage-divider effect of the source resistance and the reactance of C be . When the reactance of Cbc becomes small enough, a significant amount of output signal voltage is fed back out of phase with the input (negative feedback), thus effectively reducing the voltage gain. 3 Millers Theorem The Miller effect occurs only in inverting amplifiers –it is the inverting gain that magnifies the feedback capacitance. vin − (−Av in ) iin = = vin 1( + A)× 2π × f ×CF X C Here C F represents C bc vin 1 1 Zin = = = iin 1( + A)× 2π × f ×CF 2π × f ×Cin 1( ) Cin = + A ×CF 4 High frequency Response of CE Amp.: Millers Theorem Miller's theorem is used to simplify the analysis of inverting amplifiers at high-frequencies where the internal transistor capacitances are important. -
Common Drain - Wikipedia, the Free Encyclopedia 10-5-17 下午7:07
Common drain - Wikipedia, the free encyclopedia 10-5-17 下午7:07 Common drain From Wikipedia, the free encyclopedia In electronics, a common-drain amplifier, also known as a source follower, is one of three basic single- stage field effect transistor (FET) amplifier topologies, typically used as a voltage buffer. In this circuit the gate terminal of the transistor serves as the input, the source is the output, and the drain is common to both (input and output), hence its name. The analogous bipolar junction transistor circuit is the common- collector amplifier. In addition, this circuit is used to transform impedances. For example, the Thévenin resistance of a combination of a voltage follower driven by a voltage source with high Thévenin resistance is reduced to only the output resistance of the voltage follower, a small resistance. That resistance reduction makes the combination a more ideal voltage source. Conversely, a voltage follower inserted between a small load resistance and a driving stage presents an infinite load to the driving stage, an advantage in coupling a voltage signal to a small load. Characteristics At low frequencies, the source follower pictured at right has the following small signal characteristics.[1] Voltage gain: Current gain: Input impedance: Basic N-channel JFET source Output impedance: (the parallel notation indicates the impedance follower circuit (neglecting of components A and B that are connected in parallel) biasing details). The variable gm that is not listed in Figure 1 is the transconductance of the device (usually given in units of siemens). References http://en.wikipedia.org/wiki/Common_drain Page 1 of 2 Common drain - Wikipedia, the free encyclopedia 10-5-17 下午7:07 1. -
Cascode Amplifiers by Dennis L. Feucht Two-Transistor Combinations
Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination in the analog designer's circuit library combines a common-emitter (CE) input configuration with a common-base (CB) output. This article presents the design equations for the basic cascode amplifier and then offers other useful variations. (FETs instead of BJTs can also be used to form cascode amplifiers.) Together, the two transistors overcome some of the performance limitations of either the CE or CB configurations. Basic Cascode Stage The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. The voltage gain is, by the transresistance method, the ratio of the resistance across which the output voltage is developed by the common input-output loop current over the resistance across which the input voltage generates that current, modified by the α current losses in the transistors: v R A = out = −α ⋅α ⋅ L v 1 2 β + + + vin RB /( 1 1) re1 RE where re1 is Q1 dynamic emitter resistance. This gain is identical for a CE amplifier except for the additional α2 loss of Q2. The advantage of the cascode is that when the output resistance, ro, of Q2 is included, the CB incremental output resistance is higher than for the CE. For a bipolar junction transistor (BJT), this may be insignificant at low frequencies. The CB isolates the collector-base capacitance, Cbc (or Cµ of the hybrid-π BJT model), from the input by returning it to a dynamic ground at VB. -
Notes for Lab 1 (Bipolar (Junction) Transistor Lab)
ECE 327: Electronic Devices and Circuits Laboratory I Notes for Lab 1 (Bipolar (Junction) Transistor Lab) 1. Introduce bipolar junction transistors • “Transistor man” (from The Art of Electronics (2nd edition) by Horowitz and Hill) – Transistors are not “switches” – Base–emitter diode current sets collector–emitter resistance – Transistors are “dynamic resistors” (i.e., “transfer resistor”) – Act like closed switch in “saturation” mode – Act like open switch in “cutoff” mode – Act like current amplifier in “active” mode • Active-mode BJT model – Collector resistance is dynamically set so that collector current is β times base current – β is assumed to be very high (β ≈ 100–200 in this laboratory) – Under most conditions, base current is negligible, so collector and emitter current are equal – β ≈ hfe ≈ hFE – Good designs only depend on β being large – The active-mode model: ∗ Assumptions: · Must have vEC > 0.2 V (otherwise, in saturation) · Must have very low input impedance compared to βRE ∗ Consequences: · iB ≈ 0 · vE = vB ± 0.7 V · iC ≈ iE – Typically, use base and emitter voltages to find emitter current. Finish analysis by setting collector current equal to emitter current. • Symbols – Arrow represents base–emitter diode (i.e., emitter always has arrow) – npn transistor: Base–emitter diode is “not pointing in” – pnp transistor: Emitter–base diode “points in proudly” – See part pin-outs for easy wiring key • “Common” configurations: hold one terminal constant, vary a second, and use the third as output – common-collector ties collector -
ECE 255, MOSFET Basic Configurations
ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor DC biased at the appropriate point (Q point or operating point), linear relations can be derived between the small voltage signal and current signal. We will continue this analysis with MOSFETs, starting with the common-source amplifier. 1 Common-Source (CS) Amplifier The common-source (CS) amplifier for MOSFET is the analogue of the common- emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved. 1.1 Chararacteristic Parameters of the CS Amplifier Figure 1(a) shows the small-signal model for the common-source amplifier. Here, RD is considered part of the amplifier and is the resistance that one measures between the drain and the ground. The small-signal model can be replaced by its hybrid-π model as shown in Figure 1(b). Then the current induced in the output port is i = −gmvgs as indicated by the current source. Thus vo = −gmvgsRD (1.1) By inspection, one sees that Rin = 1; vi = vsig; vgs = vi (1.2) Thus the open-circuit voltage gain is vo Avo = = −gmRD (1.3) vi Printed on March 14, 2018 at 10 : 48: W.C. Chew and S.K. Gupta. 1 One can replace a linear circuit driven by a source by its Th´evenin equivalence. -
Dynamic Microphone Amplifier
Dynamic Microphone Preamp Description: A low noise pre-amplifier suitable for amplifying dynamic microphones with 200 to 600 ohm output impedance. Notes: This is a 3 stage discrete amplifier with gain control. Alternative transistors such as BC109C, BC548, BC549, BC549C may be used with little change in performance. The first stage built around Q1 operates in common base configuration. This is unusuable in audio stages, but in this case, it allows Q1 to operate at low noise levels and improves overall signal to noise ratio. Q2 and Q3 form a direct coupled amplifier, similar to my earlier mic preamp . Input and Output Impedance: As the signal from a dynamic microphone is low typically much less than 10mV, then there is little to be gained by setting the collector voltage voltage of Q1 to half the supply voltage. In power amplifiers, biasing to half the supply voltage allows for maximum voltage swing, and highest overload margin, but where input levels are low, any value in the linear part of the operating characteristics will suffice. Here Q1 operates with a collector voltage of 2.4V and a low collector current of around 200uA. This low collector current ensures low noise performance and also raises the input impedance of the stage to around 400 ohms. This is a good match for any dynamic microphone having an impedances between 200 and 600 ohms. The output impedance at Q3 is low, the graph of input and output impedance versus frequency is shown below: Gain and Frequency Response: The overall gain of this pre-amplifier is around +39dB or about 90 times. -
Precision Current Sources and Sinks Using Voltage References
Application Report SNOAA46–June 2020 Precision Current Sources and Sinks Using Voltage References Marcoo Zamora ABSTRACT Current sources and sinks are common circuits for many applications such as LED drivers and sensor biasing. Popular current references like the LM134 and REF200 are designed to make this choice easier by requiring minimal external components to cover a broad range of applications. However, sometimes the requirements of the project may demand a little more than what these devices can provide or set constraints that make them inconvenient to implement. For these cases, with a voltage reference like the TL431 and a few external components, one can create a simple current bias with high performance that is flexible to fit meet the application requirements. Current sources and sinks have been covered extensively in other Texas Instruments application notes such as SBOA046 and SLYC147, but this application note will cover other common current sources that haven't been previously discussed. Contents 1 Precision Voltage References.............................................................................................. 1 2 Current Sink with Voltage References .................................................................................... 2 3 Current Source with Voltage References................................................................................. 4 4 References ................................................................................................................... 6 List of Figures 1 Current -
Lecture23-Amplifier Frequency Response.Pptx
EE105 – Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) Lecture23-Amplifier Frequency Response 1 Common-Emitter Amplifier – ωH Open-Circuit Time Constant (OCTC) Method At high frequencies, impedances of coupling and bypass capacitors are small enough to be considered short circuits. Open-circuit time constants associated with impedances of device capacitances are considered instead. 1 ωH ≅ m ∑RioCi i=1 where Rio is resistance at terminals of ith capacitor C with all other v ! R $ i R = x = r #1+ g R + L & capacitors open-circuited. µ 0 π 0 m L ix " rπ 0 % For a C-E amplifier, assuming C = 0 L 1 1 ωH ≅ = Rπ 0 = rπ 0 Rπ 0Cπ + Rµ 0Cµ rπ 0CT Lecture23-Amplifier Frequency Response 2 1 Common-Emitter Amplifier High Frequency Response - Miller Effect • First, find the simplified small -signal model of the C-E amp. • Replace coupling and bypass capacitors with short circuits • Insert the high frequency small -signal model for the transistor ! # rπ 0 = rπ "rx +(RB RI )$ Lecture23-Amplifier Frequency Response 3 Common-Emitter Amplifier – ωH High Frequency Response - Miller Effect (cont.) v R r Input gain is found as A = b = in ⋅ π i v R R r r i I + in x + π R || R || (r + r ) r = 1 2 x π ⋅ π RI + R1 || R2 || (rx + rπ ) rx + rπ Terminal gain is vc Abc = = −gm (ro || RC || R3 ) ≅ −gm RL vb Using the Miller effect, we find CeqB = Cµ (1− Abc )+Cπ (1− Abe ) the equivalent capacitance at the base as: = Cµ (1−[−gm RL ])+Cπ (1− 0) = Cµ (1+ gm RL )+Cπ Chap 17-4 Lecture23-Amplifier Frequency Response 4 2 Common-Emitter Amplifier – ωH High Frequency Response - Miller Effect (cont.) ! # • The total equivalent resistance ReqB = rπ 0 = rπ "rx +(RB RI )$ at the base is • The total capacitance and CeqC = Cµ +CL resistance at the collector are ReqC = ro RC R3 = RL • Because of interaction through 1 ω = Cµ, the two RC time constants p1 ! # rπ 0 "Cπ +Cµ (1+ gm RL )$+ RL (Cµ +CL ) interact, giving rise to a dominant pole. -
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline • NMOS inverter with resistor pull-up –The inverter • NMOS inverter with current-source pull-up • Complementary MOS (CMOS) inverter • Static analysis of CMOS inverter Reading Assignment: Howe and Sodini; Chapter 5, Section 5.4 6.012 Spring 2007 Lecture 12 1 1. NMOS inverter with resistor pull-up: Dynamics •CL pull-down limited by current through transistor – [shall study this issue in detail with CMOS] •CL pull-up limited by resistor (tPLH ≈ RCL) • Pull-up slowest VDD VDD R R VOUT: VOUT: HI LO LO HI V : VIN: IN C LO HI CL HI LO L pull-down pull-up 6.012 Spring 2007 Lecture 12 2 1. NMOS inverter with resistor pull-up: Inverter design issues Noise margins ↑⇒|Av| ↑⇒ •R ↑⇒|RCL| ↑⇒ slow switching •gm ↑⇒|W| ↑⇒ big transistor – (slow switching at input) Trade-off between speed and noise margin. During pull-up we need: • High current for fast switching • But also high incremental resistance for high noise margin. ⇒ use current source as pull-up 6.012 Spring 2007 Lecture 12 3 2. NMOS inverter with current-source pull-up I—V characteristics of current source: iSUP + 1 ISUP r i oc vSUP SUP _ vSUP Equivalent circuit models : iSUP + ISUP r r vSUP oc oc _ large-signal model small-signal model • High current throughout voltage range vSUP > 0 •iSUP = 0 for vSUP ≤ 0 •iSUP = ISUP + vSUP/ roc for vSUP > 0 • High small-signal resistance roc. 6.012 Spring 2007 Lecture 12 4 NMOS inverter with current-source pull-up Static Characteristics VDD iSUP VOUT VIN CL Inverter characteristics : iD = V 4 3 VIN VGS I + DD SUP roc 2 1 = vOUT vDS VDD (a) VOUT 1 2 3 4 VIN (b) High roc ⇒ high noise margins 6.012 Spring 2007 Lecture 12 5 PMOS as current-source pull-up I—V characteristics of PMOS: + S + VSG _ VSD G B − _ + IDp 5 V + D − V + G − V − D − ID(VSG,VSD) (a) = VSG 3.5 V 300 V = V + V = V − 1 V 250 (triode SD SG Tp SG region) V = 3 V 200 SG − IDp (µA) (saturation region) 150 = VSG 25 100 = 0, 0.5, VSG 1 V (cutoff region) V = 2 V 50 SG = VSG 1.5 V 12345 VSD (V) (b) Note: enhancement-mode PMOS has VTp <0. -
Chapter 10 Differential Amplifiers
Chapter 10 Differential Amplifiers 10.1 General Considerations 10.2 Bipolar Differential Pair 10.3 MOS Differential Pair 10.4 Cascode Differential Amplifiers 10.5 Common-Mode Rejection 10.6 Differential Pair with Active Load 1 Audio Amplifier Example An audio amplifier is constructed as above that takes a rectified AC voltage as its supply and amplifies an audio signal from a microphone. CH 10 Differential Amplifiers 2 “Humming” Noise in Audio Amplifier Example However, VCC contains a ripple from rectification that leaks to the output and is perceived as a “humming” noise by the user. CH 10 Differential Amplifiers 3 Supply Ripple Rejection vX Avvin vr vY vr vX vY Avvin Since both node X and Y contain the same ripple, their difference will be free of ripple. CH 10 Differential Amplifiers 4 Ripple-Free Differential Output Since the signal is taken as a difference between two nodes, an amplifier that senses differential signals is needed. CH 10 Differential Amplifiers 5 Common Inputs to Differential Amplifier vX Avvin vr vY Avvin vr vX vY 0 Signals cannot be applied in phase to the inputs of a differential amplifier, since the outputs will also be in phase, producing zero differential output. CH 10 Differential Amplifiers 6 Differential Inputs to Differential Amplifier vX Avvin vr vY Avvin vr vX vY 2Avvin When the inputs are applied differentially, the outputs are 180° out of phase; enhancing each other when sensed differentially. CH 10 Differential Amplifiers 7 Differential Signals A pair of differential signals can be generated, among other ways, by a transformer. -
Transistor Current Source
PY 452 Advanced Physics Laboratory Hans Hallen Electronics Labs One electronics project should be completed. If you do not know what an op-amp is, do either lab 2 or lab 3. A written report is due, and should include a discussion of the circuit with inserted equations and plots as appropriate to substantiate the words and show that the measurements were taken. The report should not consist of the numbered items below and short answers, but should be one coherent discussion that addresses most of the issues brought out in the numbered items below. This is not an electronics course. Familiarity with electronics concepts such as input and output impedance, noise sources and where they matter, etc. are important in the lab AND SHOULD APPEAR IN THE REPORT. The objective of this exercise is to gain familiarity with these concepts. Electronics Lab #1 Transistor Current Source Task: Build and test a transistor current source, , +V with your choice of current (but don't exceed the transistor, power supply, or R ratings). R1 Rload You may wish to try more than one current. (1) Explain your choice of R1, R2, and Rsense. VCE (a) In particular, use the 0.6 V drop of VBE - rule for current flow to calculate I in R2 VBE Rsense terms of Rsense, and the Ic/Ib rule to estimate Ib hence the values of R1&R2. (2) Try your source over a wide range of Rload values, plot Iload vs. Rload and interpret. You may find it instructive to look at VBE and VCE with a floating (neither side grounded) multimeter. -
Current Source & Source Transformation Notes
EE301 – CURRENT SOURCES / SOURCE CONVERSION Learning Objectives a. Analyze a circuit consisting of a current source, voltage source and resistors b. Convert a current source and a resister into an equivalent circuit consisting of a voltage source and a resistor c. Evaluate a circuit that contains several current sources in parallel Ideal sources An ideal source is an active element that provides a specified voltage or current that is completely independent of other circuit elements. DC Voltage DC Current Source Source Constant Current Sources The voltage across the current source (Vs) is dependent on how other components are connected to it. Additionally, the current source voltage polarity does not have to follow the current source’s arrow! 1 Example: Determine VS in the circuit shown below. Solution: 2 Example: Determine VS in the circuit shown above, but with R2 replaced by a 6 k resistor. Solution: 1 8/31/2016 EE301 – CURRENT SOURCES / SOURCE CONVERSION 3 Example: Determine I1 and I2 in the circuit shown below. Solution: 4 Example: Determine I1 and VS in the circuit shown below. Solution: Practical voltage sources A real or practical source supplies its rated voltage when its terminals are not connected to a load (open- circuited) but its voltage drops off as the current it supplies increases. We can model a practical voltage source using an ideal source Vs in series with an internal resistance Rs. Practical current source A practical current source supplies its rated current when its terminals are short-circuited but its current drops off as the load resistance increases. We can model a practical current source using an ideal current source in parallel with an internal resistance Rs.