Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vacuum Tube Theory, a Basics Tutorial – Page 1
Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode. -
Nojivw&Ohn? *Joto Omaj
Dec. 18, 1962 W. R. SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March la, l960 3 Sheets-Sheet 1. r LIMAS9.NIHO BOHABO ??31=== IWWBO-BNI-NOI.-OL SV78EWIlCJE OMAJ.*JOTOO NOJIVW&JOHN? MABIA9.NI BOV-38ñS [] [] INVENTOR. WILLIAM R. SLOAN BY ????????? ? ???? AT TORNEYS Dec. 18, 1962 W. R, SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3. Sheets-Sheet 2 GN2&#OTOO ea? ?——?? AT TORNEYS Dec. 18, 1962 W. R. SOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3 Sheets-Sheet 3 – E. T =-4 HORIZONAL ? SWEEP GENERATOR 44 68 256 K.C. GENERATORPULSE ( BSTABLE BSTABLE B|STABLE ? B|STABLE BSTABLE ??? ? ??82 m232 -- 198 lost 3 -- SAS JS JAAYeASeSYe SAuSJSJASJLLLTLTMSTTLTTTLLLSLLSS LL LLL LLLLLL DISPLAY SURFACE HORIZONTAL SWEEP GENERATOR INVENTOR. WLLAM R. SOAN ATTORNEYS 3,069,681 United States Patent Office Patented Dec. 18, 1962 2 3,069,681 when the electrodes are respectively pulsed. Each of the SYSTEM FOR LARGE-AREA DISPLAY OF pluralities of electrodes is in spaced-apart alignment along TWO,-COLOR ENSFORMATION one dimension of the sheet and the two pluralities of William R. Sloan, Fort Wayne, Ind., assignor to Inter electrodes are respectively spaced-apart along the other national Telephone and Telegraph Corporation dimension of the sheet. Means are provided for moving Filed Mar. 14, 1960, Ser. No. 14,743 the sheet with respect to the electrodes along the other 9 Claims. (Cl, 346-74) dimension. First switching means is provided sequen tially coupling the first electrodes to the converting means This invention relates to a system for presenting in for sampling one of the color-responsive signals at dis two colors alpha-numeric information, i.e., words and Crete intervals and for pulsing the first electrodes respon numbers, and graphical information, such as maps, sive to the presence of the one color signal at the respec graphs, etc., visually on a large-area display for group tive intervals. -
Teelllliedi Siteeifieatittil CONTENTS
'. INTERACTIVE GRAPHIC SYSTEMS t;DSn teellllieDI Siteeifieatittil CONTENTS Section Page Section Page 1 Introducing GDS II ........................................... 1-1 4 Specifications ................................................ 4-1 2 General Description .......................................... 2-1 4.1 Database Features ....................................... 4-1 4.2 Input/Editing ............................................ 4-1 2.1 The Problems of VLSI .................................... 2-1 4.3 Display Control .......................................... 4-3 2.2 The Solution - GDS II .................................... 2-1 4.4 Background Programs ................................... 4-4 2.3 Exploiting the Latest Technology .................. , ...... 2-2 4.5 Application Programming Tools .......................... 4-5 4.6 Hardware ............................................... 4-6 3 System Operation ............................................ 3-1 5 Software ..................................................... 5-1 3.1 Database Extensibility ................................... 3-1 3.2 Database Elements ...................................... 3-1 5.1 Multiground RDOS ...................................... 5-1 3.3 Database Construction ................................... 3-2 5.2 Database Management System ........................... 5-3 3.4 Menu Operations ........................................ 3-2 5.3 GPL™ ................................................... 5-7 3.5 Graphic Display ......................................... 3-2 -
I. Common Base / Common Gate Amplifiers
I. Common Base / Common Gate Amplifiers - Current Buffer A. Introduction • A current buffer takes the input current which may have a relatively small Norton resistance and replicates it at the output port, which has a high output resistance • Input signal is applied to the emitter, output is taken from the collector • Current gain is about unity • Input resistance is low • Output resistance is high. V+ V+ i SUP ISUP iOUT IOUT RL R is S IBIAS IBIAS V− V− (a) (b) B. Biasing = /α ≈ • IBIAS ISUP ISUP EECS 6.012 Spring 1998 Lecture 19 II. Small Signal Two Port Parameters A. Common Base Current Gain Ai • Small-signal circuit; apply test current and measure the short circuit output current ib iout + = β v r gmv oib r − o ve roc it • Analysis -- see Chapter 8, pp. 507-509. • Result: –β ---------------o ≅ Ai = β – 1 1 + o • Intuition: iout = ic = (- ie- ib ) = -it - ib and ib is small EECS 6.012 Spring 1998 Lecture 19 B. Common Base Input Resistance Ri • Apply test current, with load resistor RL present at the output + v r gmv r − o roc RL + vt i − t • See pages 509-510 and note that the transconductance generator dominates which yields 1 Ri = ------ gm µ • A typical transconductance is around 4 mS, with IC = 100 A • Typical input resistance is 250 Ω -- very small, as desired for a current amplifier • Ri can be designed arbitrarily small, at the price of current (power dissipation) EECS 6.012 Spring 1998 Lecture 19 C. Common-Base Output Resistance Ro • Apply test current with source resistance of input current source in place • Note roc as is in parallel with rest of circuit g v m ro + vt it r − oc − v r RS + • Analysis is on pp. -
ECE 255, MOSFET Basic Configurations
ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor DC biased at the appropriate point (Q point or operating point), linear relations can be derived between the small voltage signal and current signal. We will continue this analysis with MOSFETs, starting with the common-source amplifier. 1 Common-Source (CS) Amplifier The common-source (CS) amplifier for MOSFET is the analogue of the common- emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved. 1.1 Chararacteristic Parameters of the CS Amplifier Figure 1(a) shows the small-signal model for the common-source amplifier. Here, RD is considered part of the amplifier and is the resistance that one measures between the drain and the ground. The small-signal model can be replaced by its hybrid-π model as shown in Figure 1(b). Then the current induced in the output port is i = −gmvgs as indicated by the current source. Thus vo = −gmvgsRD (1.1) By inspection, one sees that Rin = 1; vi = vsig; vgs = vi (1.2) Thus the open-circuit voltage gain is vo Avo = = −gmRD (1.3) vi Printed on March 14, 2018 at 10 : 48: W.C. Chew and S.K. Gupta. 1 One can replace a linear circuit driven by a source by its Th´evenin equivalence. -
Basic Electronics
14 Basic Electronics In this chapter, we lead you through a study of the basics of electronics. After completing the chapter, you should be able to Understand the physical structure of semiconductors. Understand the essence of the diode function. Understand the operation of diodes. Realize the applications of diodes and their use in the design of rectifiers. Understand the physical operation of bipolar junction transistors. Realize the applications of bipolar junction transistors. Understand the physical operation of field-effect transistors. Realize the application of field-effect transistors. Perform rapid analysis of transistor circuits. REFERENCES 1. Giorgio Rizzoni, Principles and Applications of Electrical Engineering, McGraw Hill, 2003. 2. J. R. Cogdel, Foundations of Electronics, Prentice Hall, 1999. 3. Donald A., Neaman, Electronic Circuit Analysis and Design, McGraw Hill, 2001. 4. Sedra/Smith, Microelectronic Circuits, Oxford, 1998. 1 Basic Electronics 2 14.1 INTRODUCTION Electronics is one of the most important fields in existence today. It has greatly influenced everything since early 1900s. Everyone nowadays realize the impact of electronics on our daily life. Table 14-1 shows many important areas with tremendous impact of electronics. Table 14-1 Various Application Areas of Electronics Area Examples of Applications Automotives Electronic ignition system, antiskid braking system, automatic suspension adjustment, performance optimization. Aerospace Airplane controls, spacecrafts, space missiles. Telecommunications Radio, television, telephones, mobile and cellular communications, satellite communications, military communications. Computers Personal computers, mainframe computers, supercomputers, calculators, microprocessors. Instrumentation Measurement equipment such as meters and oscilloscopes, medical equipment such as MRI, X- ray machines, etc. Microelectronics Microelectronic circuits, microelectromechanical systems. Power electronics Converters, Radar Air traffic control, security systems, military systems, police traffic radars. -
The Beginner's Handbook of Amateur Radio
FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. -
1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual................................................................. -
Of 38 an Inexpensive VTCT Adapter for All Tektronix Scts Version. 1.04.1
Page 1 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Page 2 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Figure 1 Front cover—Tektronix 577 Semiconductor Curve Tracer displaying the characteristic curves of a TRIODE VACUUM TUBE. Page 3 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 AN INEXPENSIVE VACUUM TUBE CURVE TRACER ADAPTER FOR ALL TEKTRONIX SEMICONDUCTOR CURVE TRACERS © Dennis Tillman W7pF, [email protected], Version 1.04.1, Mar. 10, 2020 CONTENTS INTRODUCTION ................................................................................................................................... 5 TEKTRONIX CURVE TRACER FEATURE COMPARISON .................................................................. 6 TEKTRONIX CURVE TRACERS .......................................................................................................... 6 VACUUM TUBE TESTER FEATURE COMPARISON .......................................................................... 8 THEORY OF OPERATION .................................................................................................................. 11 EICO 667 MODIFICATIONS................................................................................................................ 13 WHAT CAN I EXPECT WITH THE CURVE TRACER I MAY ALREADY OWN? ................................ 13 WHAT YOU WILL NEED TO MAKE THIS VTCT ................................................................................ 14 TWO CHARACTERISTIC CURVES -
The Electron Volt
ApPENDIX A The Electron Volt Before we discuss the electron volt (e V) let us go over the following phe nomenon without the use of that unit. When a potential difference exists between two points, and a charged particle is in that field, a force is exerted on this particle by the electric field. An example of this is the beam of electrons in a TV picture tube. Each electron in this beam is accelerated by the force exerted on it by the electric field. As it is accelerated its kinetic energy is increased until it is maximum just prior to striking the screen at the front of the picture tube. When it strikes the front of the picture tube this energy must be conserved so the kinetic energy is converted into the form of electromagnetic energy or x rays. One problem is to find a description of the emitted x-ray photon. Let us assume that the accelerating voltage in the TV picture tube was 20 kV. Without the use of the electron volt as a unit the following units would be required in this calculation: 1. The charge on an electron (q) = 1.602 x 10- 19 coulomb. 2. Planck's constant (h) = 6.547 x 10-27 erg-second. 3. One angstrom (A) = 1 x 10- 10 meter (used to measure the wavelength of light). 4. The velocity of light (C) = 3 x 1010 cm/s. The force on an electron, due to the presence of an electric field, can be ex pressed as qE, where q is the charge on an electron and E is the potential differ ence, in volts, between the two points, divided by the distance between the two points, in meters. -
Department of Electrical Engineering
Display of digitally processed data Item Type text; Thesis-Reproduction (electronic) Authors Jurich, Samuel, 1929- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 17:48:33 Link to Item http://hdl.handle.net/10150/551403 DISPLAY OP DIGITALLY PROCESSED DATA ■ v : ' hJ Sarauel Jurlch A Thesis Submitted to the Faculty of the : - ‘ DEPARTMENT OF ELECTRICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of : o ' MASTER OF SCIENCE : ' In the Graduate College A UNIVERSITY OF ARIZONA 1 9 5 9 This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: This thesis has been approved on the date shown below: 6 4f/?y /9S~<7 John R. -
Lecture 19 Common-Gate Stage
4/7/2008 Lecture 19 OUTLINE • Common‐gate stage • Source follower • Reading: Chap. 7.3‐7.4 EE105 Spring 2008 Lecture 19, Slide 1Prof. Wu, UC Berkeley Common‐Gate Stage AvmD= gR • Common‐gate stage is similar to common‐base stage: a rise in input causes a rise in output. So the gain is positive. EE105 Spring 2008 Lecture 19, Slide 2Prof. Wu, UC Berkeley EE105 Fall 2007 1 4/7/2008 Signal Levels in CG Stage • In order to maintain M1 in saturation, the signal swing at Vout cannot fall below Vb‐VTH EE105 Spring 2008 Lecture 19, Slide 3Prof. Wu, UC Berkeley I/O Impedances of CG Stage 1 R = in λ =0 RRout= D gm • The input and output impedances of CG stage are similar to those of CB stage. EE105 Spring 2008 Lecture 19, Slide 4Prof. Wu, UC Berkeley EE105 Fall 2007 2 4/7/2008 CG Stage with Source Resistance 1 g vv= m Xin1 + RS gm 1 vv g AgR==out x m vmD1 vvxin + RS gm R gR ==D mD 1 1+ gRmS + RS gm • When a source resistance is present, the voltage gain is equal to that of a CS stage with degeneration, only positive. EE105 Spring 2008 Lecture 19, Slide 5Prof. Wu, UC Berkeley Generalized CG Behavior Rgout= (1++g mrR O) S r O • When a gate resistance is present it does not affect the gain and I/O impedances since there is no potential drop across it (at low frequencies). • The output impedance of a CG stage with source resistance is identical to that of CS stage with degeneration.