EECS 105 Fall 2003, Lecture 17

Lecture 17:

Common Source/Gate/Drain

Prof. Niknejad

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Lecture Outline

 MOS Amp

 Active Load

 Amp

 Amp

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Common-Source

Isolate DC level

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Load-Line Analysis to find Q

V −V I = DD out RD RD

Q 1 5V slope = I = 10k D 10k

0V I = D 10k

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Small-Signal Analysis

=∞ Rin

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port Parameters:

Generic Amp

Rs

+

vs Rin Gmvin RL vin Rout −

Find Rin, Rout, Gm

=∞ Rin

= = Gm gm RrRout o|| D Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port CS Model

Reattach source and load one-ports:

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Maximize of CS Amp

=− AgRrv mD|| o

 Increase the gm (more current)  Increase RD (free? Don’t need to dissipate extra power)  Limit: Must keep the device in saturation =− > VVIRVDS DD D D DS, sat

 For a fixed current, the load resistor can only be chosen so large  To have good swing we’d also like to avoid getting to close to saturation

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Current Source Supply

 Solution: Use a current source!

 Current independent of voltage for ideal source

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CS Amp with Current Source Supply

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Load Line for DC

Both the I-source and the are idealized for DC bias analysis

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port Parameters

From current source supply

=∞ Rin = Gm gm = Rrrout o|| oc

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad P-Channel CS Amplifier

DC bias: VSG = VDD – VBIAS sets drain current –IDp = ISUP

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Two-Port Model Parameters

Small-signal model for PMOS and for rest of circuit

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Common Gate Amplifier

DC bias: == IISUP BIAS I DS

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad

CG as a Current Amplifier: Find Ai

==− ioutii d t =− Ai 1

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CG Input Resistance

=− vvgs t

vv− At input: =− + + t out igvgvtmgsmbt ro Output voltage: =− = voutdocLtocLir( || R ) ir ( || R )

v − ()rRi|| =+ +t oc L t igvgvtmtmbt ro

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Approximations…

 We have this messy result 1 gg++ i mmbr 1 ==t o Rv r || R in t 1+ oc L ro  But we don’t need that much precision. Let’s start approximating: 1 R +>> L ≈ ggmmb r || RR≈ 0 r ocL L o ro

1 R = in + ggm mb

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CG Output Resistance

vvv− sst−−−+ = gvmgs( g mbs v)0 RrSo

v 11+++=t vggsmmb RrrS oo

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CG Output Resistance

Substituting vs = itRS  11++ + =vt iRtS g m g mb RrrS oo

The output resistance is (vt / it)|| roc

r =+++o RrRout oc||1 S grgr m o mb o RS

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Approximating the CG Rout

= + + + Rout roc || [ro gmro RS gmbro RS RS ] The exact result is complicated, so let’s try to make it simpler: ≈ µ ≈Ωµ ≈ gm 500 S gmb 50 S ro 200k ≅ + + Rout roc || [ro gmro RS RS ]

Assuming the source resistance is less than ro, ≈ + = + Rout roc || [ro gmro RS ] roc || [ro (1 gm RS )]

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CG Two-Port Model

Function: a current buffer • Low • High

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad Common-Drain Amplifier

W 1 IC=−µ ( VV)2 DS oxL 2 GS T

2I VV=+ DS GS T W µC ox L Weak IDS dependence

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CD Voltage Gain

Note vgs = vt –vout vout =− gvm gs g mb v out rroc|| o v out =−−() gvvm t out gv mb out rroc|| o

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CD Voltage Gain (Cont.)

v out =−−() KCL at source node: gvvm t out gv mb out rroc|| o  1 ++ = ggvgvmb m out m t rroc|| o

Voltage gain (for vSB not zero):

vgout= m 1 vin ++ ggmbm rroc|| o vg out≈≈ m 1 + vggin mb m

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CD Output Resistance

Sum currents at output (source) node: v Rrr= ||||t i =+gv g v out o oc i t mt mbt t 1 R ≈ out + ggm mb Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad CD Output Resistance (Cont.)

ro || roc is much larger than the inverses of the  ignore 1 R ≈ out + ggm mb

Function: a voltage buffer • High Input Impedance • Low Output Impedance

Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Prof. A. Niknejad

Department of EECS University of California, Berkeley