Electrically powered BRT Systems BRT Tenth Annual Conference Erik Lenz 01.12.2015 Glasgow

2 Modern e-bus propulsion systems Content

Concept presentation e-bus  Company presentation: Kiepe in the Vossloh Group  Why electrical traction?  Propulsion systems for e-buses  Charging concepts  Why Kiepe? Corporate Structure Kiepe in the Vossloh group

Core Components Customised Modules Lifecycle Solutions Transportation

Mass-produced products, Vossloh has been fitting rail Services to secure asset retention Diesel locomotives, urban public developed and industrially networks with complete switch of railway lines. In particular, transport rail vehicles and electrical manufactured in house, that are systems and associated these include preventive care, components for and buses. needed in large numbers for rail components for decades - and to maintenance/repair as well as Business units: infrastructure projects – first and cover all fields of application. just-in-time rail logistics. foremost for track fastening Vossloh Locomotives Focus: modular solutions Focus: specialised services to systems. Vossloh Kiepe customised to suit specific projects cover the rail lifecycle. Focus: standardised products in Turnover: €233.8 million Turnover: €473.1 million Turnover: €69.6 million large numbers. Employees: 1,295 Employees: 2,555 Employees: 346 Turnover: €331.0 million Employees: 636

5 Vossloh Kiepe Facts and Figures

Vossloh Kiepe GmbH – Düsseldorf

Electrical Systems / Components / Service / Modernization

Vossloh Vossloh APS Vossloh Vossloh Vossloh Vossloh Vossloh Vossloh Kiepe S.A. Kiepe Electronic Kiepe Kiepe UK Kiepe Kiepe Kiepe Kiepe (PTY) Ltd. Ges.m.b.H. AG S.r.l. Ltd. Corp. Inc. Sp.zo.o. d.o.o. South Africa Austria Switzerland Italy UK Canada USA Poland Serbia

 Sales  Business  Sales  Sales  Sales  Sales  Sales  Sales  Sales Unit HVAC  Service  Service  Service  Service  Service  Service  Service  Service  Sales  Components  Engineering  Production  Production  Service  Development  Components  Production  Representation

 Development

 Production

International Representations Vossloh Kiepe Facts and Figures

Vossloh Kiepe GmbH – Düsseldorf

Electrical Systems / Components / Service / Modernization

Vossloh Vossloh APS Vossloh Vossloh Vossloh Vossloh Vossloh Vossloh Kiepe S.A. Kiepe Electronic Kiepe Kiepe UK Kiepe Kiepe Kiepe Kiepe (PTY) Ltd. Ges.m.b.H. AG S.r.l. Ltd. Corp. Inc. Sp.zo.o. d.o.o. South Africa Austria Switzerland Italy UK Canada USA Poland Serbia

 Sales  Business  Sales  Sales  Sales  Sales  Sales  Sales  Sales Unit HVAC  Service  Service  Service  Service  Service  Service  Service  Service  Sales  Components  Engineering  Production  Production  Service  Development  Components  Production  Representation Birmingham 2012  Development

 Production Transys Projects Ltd. (TPL)

International Representations Vossloh Kiepe Product Lines / Market

Electrical Systems for Rail Vehicles References (Selection)

 Germany: Bonn, Bremen, Düsseldorf, Cologne, Hannover, Halberstadt, Karlsruhe*, Leipzig, Rostock*, Schwerin, Saarbrücken, Dortmund Kassel, Karlsruhe,

 Great Britain: Croydon, Edinburgh, Manchester, London

 Austria: Graz, Vienna

 Poland: Cracow, Danzig, Posen

 Portugal: Porto

 Netherlands: Province of Geldern, Amsterdam

 Serbia: Belgrade

 Spain: Palma de Mallorca*, Leon*

* Vossloh Rail Vehicle History Vossloh Kiepe - yesterday and today

2006 Vossloh Kiepe celebrates its 100th anniversary. 2003 Kiepe Elektrik GmbH is renamed Vossloh Kiepe GmbH. 2002 The Kiepe Group is now part of Vossloh AG, Werdohl. 1996 Schaltbau AG acquires Kiepe from ADtranz (JV AEG and ABB transport units) 1993 AEG's business sector for traction systems acquires Kiepe Group. 1988 Alsthom S.A. (later GEC-Alsthom N.V.) acquires Kiepe stake from ACEC S.A. 1973 Belgium’s ACEC S.A. takes over the family business. 1959 Establishment of the subsidiary Kiepe Bahn und Kran Electric Ges.mbH, Vienna. 1952 An order of 700 for Argentina (built by Daimler-Benz, MAN and Henschel) 1950/51 First orders received for complete traction equipment for and . 1906 Theodor Kiepe establishes a "special workshop for the repair of electrical-arc lamps" Modern e-bus propulsion systems Why electrical traction?

 No energy loss at a standstill (e.g. at traffic lights)  Electrical Motor = Electrical Generator  Energy recovery when braking (start stop / downhill)  Excellent acceleration (maximum momentum from standstill)  High efficiency  Minimum of energy consumption  Powering e.g. two axles  allows traction for longer vehicles  higher passengers capacity  Lowest possible noise level  No exhaust / CO2 / particle emissions at the site

 Highest level of environmental friendly transport technology Modern e-bus propulsion systems Electro Bus concepts and their application

Outside city Diesel bus Long distances between stops CNG bus High transport capacity / BRT Trolley bus

Inner city Hybrid bus Short distance between bus stops Trolley bus Flat street profile Systems from Battery bus Low noise Vossloh ZERO Free of gases (exhaust & CO2) Fuel Cell bus Kiepe Trolley bus EMISSION 100% Electric

Gradients Trolley bus bus Modern e-bus propulsion systems Trolley Bus Propulsion System System Integrator make it work reliable optimize 4 6 homologation 3 2 long term availability

1 6

5

1 Energy Management Controlling Units, Diagnostics

2 Brake Resistor 3 Power Electronics 4 Current Collector 5 Traction Motor 6 Auxiliary Power Unit (APU)

27 Modern e-bus propulsion systems e-Bus Variations: Serial Diesel Electric Hybrid

4

3 2

5 1

7 Electrical traction for 7  powering two axles  zero emission mode

1 Energy Management Controlling Units, Diagnostics

2 Energy 3 Power 4 Brake 5 Main Power 6 Pantograph 7 Traction Storage Electronics Resistor Unit (MPU) Motor

29 Modern e-bus propulsion systems Advantages for two driven axles

Applicable for articulated or double articulated buses  Four wheels drive for better adhesive grip for: slippery conditions – e.g. for ice & snow streets with gradients strong accelerations (anti slip / ESP) strong deceleration / breaking  more recuperation  Back up in the unlikely event of a failure of one motor  Weight of motor(s) is more even distributed in the vehicle  (Higher load allowed on driven axle compared with non-driven axle) Return on investments due to cost savings  Less wear of rubber tires  No gear box needed (less costs, less maintenance, less noise, less vibrations)  Less wear of axles & cardan shaft (avoiding maintenance costs of ca 10.000€ / axles) Customers who ordered once double traction (e.g. Geneva, Lausanne, Lucerne, Zurich)  re-ordered double traction since then Rheinbahn Düsseldorf Modern e-bus propulsion systems Battery bus with overnight charging Braunschweig Modern e-bus propulsion systems Battery bus with inductive opportunity charging Project SEB Dresden Modern e-bus propulsion systems Battery bus with conductive opportunity charging Esslingen Modern e-bus propulsion systems Battery bus with In-Motion-Charging (IMC)

IMC is also suitable for articulated and double articulated buses Project Rheinbahn Concepts Overnight charging Battery Bus

Max. charging power: 90 kW Installed energy: 200 kWh Range: app. 110km Charging time per day: 2,5h night + 0,5 h during breaks

37 Fits in existing time schedule (Rheinbahn), charging during scheduled brakes Project Braunschweig Concepts Battery Bus inductive charging

Max. charging power: 200 kW Installed energy: 60 kWh Average charging time per hour: 8min + coupling

38 Project SEB Dresden Concepts Battery Bus fast charging via pantograph

www.edda-bus.de

Max. charging power: 500 kW Installed energy: 86 kWh Average charging time per hour: 3min (+ coupling < 1sec)

39 3 min  Usable in normal line operation !? Project Hamburg Concepts Battery Bus with Fuel Cell as Range Extender

Max. charging power: 90 kW Installed energy: 120 kWh Power Fuel Cell: 100 kW Hydrogen tank: 45 kg (ca. 875kWh) Total Range: 250 km 40 Big range of zero emission operation Luxemburg Concepts Plug-In Hybrid-Bus with connector charging

Max. charging power: 200 kW Battery capacity: 15 kWh Range in Battery mode: > 3 km Diesel generator: 220 kW (Euro 6) Overnight charging in depot: 20 kW (400 VAC connector)

42 Luxemburg Concepts Plug-In Hybrid-Bus with connector charging

Zero emission

43 Electro mobility with Vossloh Kiepe One System – plenty possibilities

EnergyEnergy Supply Module Power Management SUPPLYEnergy Fuel CellSUPPLYModule Module GeneratorEnergy DC SUPPLY DC Traction Module ModuleGrid Connection: DC TRACTIONTraction Current Collector AC Motor Pantograph DC ModuleBreak Plug-in Connector DC Resistor Inductive Coil Auxiliary Power Energy Storage Module AUXILIARYDC 3AC 400V POWER 50Hz Energy DC AC Battery DC Module STORAGE DC DC 24V DC Supercap DC Module DC Facts and Figure - Infrastructure Cost for charging station Needed Charging power for 90 Buses (12m)

P (MW) Energy to recharge 8 10 Buses 6 3h 9h 18h 18h 4 2 3h Overnight* Opportunity Trolley IMC

The shorter the charging time Example: 90 overnight battery buses The higher the power  90 x 100 kW = 9 MW  The higher the costs (gas power?)

* 300 kWh / 3h = 100 kW 48 Facts and Figures - Bus Driver Cost Extra costs for charging an opportunity charging battery bus

Velocity of Bus Charging time Cost of unproductive per hour bus driver 15 km/h 5 min/h 8% 20 km/h 7 min/h 12% 30 km/h 11 min/h 18% Charging time per hour = xxkm/h * 1,5kWh/km/250kW * 60min (with charging power 250kW)

Higher velocity  more energy consumption per hour Longer vehicle  longer charging time  higher costs due to unproductive bus driver Therefore opportunity battery bus mainly suitable for:  Low average velocity tracks 49  Short vehicles Which e-bus concept? Selection of the suitable concept of a new fleet of electric buses

 Step 1: Which vehicles size do you need? Recommendation:

Solo  Battery bus * or IMC Bus

Articulated  Battery bus with Range Extender or IMC bus

Double articulated  Diesel-electrical Hybrid, Trolleybus or IMC bus

* For lines with suitable requirements like range, available charging time and space for charging station Concepts Battery Bus with In-Motion-Charging (IMC)

Advantages: 50% wireless sections Lower infrastructure costs Reliable e-bus operation

Proven Technology in combination with high-tech batteries

53 Future Meets Experience Facts and Figures - Infrastructure Infra structure cost reduction due to partly wireless operation

€ / m Total cost 10km line: Standard: 10 M€ 50% wireless: 3.5 M€ Advanced equip.: switches, curves, crossings

No switches No crossings Basic equipment: Just few curves Wires, poles - 50%

substations Reduced peak power demand

54 Modern e-bus propulsion systems Battery charging “stations”

Foto: Marcus Fey (Obus Museum ) In Motion Charging How to plan an IMC overhead wire system

Take care about time

Wireless Section(s) • Up to 50% of line • Up to 50% of time • ca 4km per section (max 15km)

Charging Sections Charging time  Slow roads  End stations Energy consumption  Steep roads Inexpensive installation  Straight roads

56 The future of Electro-Mobility with Vossloh Kiepe Transforming Diesel bus lines into partly wireless Trolley bus lines

Diesel bus Diesel bus line 1

Today Trolleybus Line with overhead wires

Diesel bus Parallel lines: Take benefit of existing overhead wires

Diesel bus line 1 Partly Wireless Trolleybus line

Trolleybus Line with overhead wires Future

Partly Wireless Trolleybus line The future of Electro-Mobility with Vossloh Kiepe New electric (e-BRT) system with IMC bus feeders

Feeder lines with diesel bus e-BRT Line with overhead wires

Passengers change bus from feeder bus to e-BRT bus

IMC feeder buses arrive at e-BRT destinations  less bus exchanges needed

Wireless feeder lines could merge with e-BRT e-BRT Line by IMC e-bus with overhead wires Modern e-bus propulsion systems Time for new branding name

Once upon a time….(1882) a trolley (wagon) on the over head wire collected the current for powering a the “trolley bus”

Time for a new name:  Electrical bus IMC (in Motion Charging)  E-bus (with dynamic Range Extender)  Tram bus (combining the advantages from tram and bus)  Twin-EV  New Generation (NG)….

1881 first tram Modern e-bus propulsion systems New systems since 2000 - (a selection)

 Landskrona 1st Sweden 09.2003  Roma 13th Italy 03.2005  Castellón 1st Spain 06.2008  Chieti 14th Italy (re-activated) 09.2009  Lecce 15th Italy 01.2012  Riad/Riyadh 1st Saudi Arabia 10.2012 Modern e-bus propulsion systems New Campus transportation service

http://www.ksaucampus.org/2013/EN/Riyadh-Transportation-System.html http://www.youtube.com/watch?v=EpiOlPw0onw (tram bus after 4 min 52 sec) Modern e-bus propulsion systems System of overhead wires – Düsseldorf/Germany Modern e-bus propulsion systems System of overhead wires – Düsseldorf/Germany Modern e-bus propulsion systems System of overhead wires – Düsseldorf/Germany Modern e-bus propulsion systems System of overhead wires – Düsseldorf/Germany Modern e-bus propulsion systems System of overhead wires – Düsseldorf/Germany Field of Vision Perception of ceiling

Where is that? Field of Vision Perception of ceiling in shopping centers Field of Vision Perception of ceiling in shopping centers

Customers just don’t perceive the ceiling / the “sky” Field of Vision Perception of ceiling

Where is that? Modern e-bus propulsion systems Different visual impact of overhead wire system?

Tram / Light rail vehicle Trolley bus

 The visual impact is the same In Germany exist already 68 overhead wire systems (65+3)  Over head wire systems are already known and accepted Modern e-bus propulsion systems System of overhead wires – Arnheim / Netherlands

Straight overhead wire lines are almost not perceived Especially with backgrounds: here trees Modern e-bus propulsion systems System of overhead wires – Montreux / Switzerland

Straight overhead wire lines are almost not perceived Without background: free sky Modern e-bus propulsion systems System of overhead wires – Norway / Bergen

Straight overhead wire lines are almost not perceived Especially with backgrounds: here buildings Modern e-bus propulsion systems System of overhead wires – Fribourg / Switzerland Modern e-bus propulsion systems System of overhead wires – Fribourg / Switzerland Modern e-bus propulsion systems System of overhead wires – Lausanne / Switzerland

Street café at the water front (Lac Leman) „Café Zero Emission“ instead of „Café noxious fumes“ Modern e-bus propulsion systems System of overhead wire – Pescara / Italy OBERLEITUNG IN PESCARA Trolley bus compared with a tram Advantages

 No installation of rails needed (thus not years of traffic disturbance)  Significant less infrastructure investments (factor 10)  More silent (in and outside the vehicle)  Less vibrations (especially important on bridges and near historical sites)  Much faster to build up a new system  Flexible as a conventional bus (with Battery or Diesel back-up unit)  50 % less expensive vehicle (but also 50 % less life time)  Not rail bound  flexible  reliable operation With same visual impact of catenary vs over head wire Modern e-bus propulsion systems Street vehicles: Rail bound vs current collector poles Modern e-bus propulsion systems Street vehicles: Rail bound vs current collector poles Modern e-bus propulsion systems Street vehicles: Rail bound vs current collector poles Modern e-bus propulsion systems Street vehicles: Rail bound vs current collector poles

Vienna: Disturbances due to wrong parked cars: 4000 times/a Modern e-bus propulsion systems Street vehicles: Rail bound vs current collector poles

Rail bound can hinder traffic  Rail vehicle might block the street when failures of vehicle, signal or rail  The following vehicles can not pass an out-of-service vehicle

Rail bound can get hindered by traffic Vienna: Disturbances due to  Wrong parked cars wrong parked cars:  Accidents 4000 times/a  Constructions works Modern e-bus propulsion systems Why the wires?

 Reliable e-bus concept with very high availability  Low vehicle reserve needed  Highest energy efficiency  “Unlimited” energy available “just in time”  convenient for heating & air conditioning, infotainment  High passenger capacity possible up to 220 pers/bus (with few personnel)  Fast with powerful climbing characteristics  Range of Zero Emission operation is “unlimited”  IMC battery charging is easy on battery and therefore on battery live time  Universal interface for battery charging (not tying up to an unique provider with monopole)  Bus driver doesn’t have to wait for battery recharging (TCO)  Low peak power requirement for substations (= battery charging)  Most economical zero emission bus operation for medium to high transportation capacity Vossloh Kiepe – One Source for Your eBus System Trolley IMC: The Future is Present

2015 Esslingen (4)

2015 Cagliari (4)

2014/2015 Seattle (141)  2016 (24+9) 2014/2015 San Francisco (60)

2014 Lucerne (9)  2016 (4+17) 2015 Dayton (2) 2013/2014 Geneva (33)

2005 Vancouver (262)

2012 Zürich (35) Modern e-bus propulsion systems Trolleybus References (a selection)

 Austria: Linz, Salzburg  Canada: Vancouver  Ecuador: Quito  France: Limoges, Lyon  Greece: Athens  Germany: Esslingen, Eberswalde, Solingen  Italy: Avellino, Bari, Bologna, Genua, La Spezia, Lecce, Milan, Modena, , Rimini, Pescara  Latvia: Riga  Norway: Bergen  Saudi Arabia: Riyadh  Switzerland: Bern, Biel, Fribourg, Geneva, Lausanne, Lucerne, Montreux, Neuchâtel, Schaffhausen, St. Gallen, Winterthur, Zurich  Turkey: Malatya  USA: Dayton, Philadelphia, San Francisco, Seattle  Venezuela: Mérida 110 Modern e-bus propulsion systems Diesel-Hybrid bus References

 Netherlands: Enschede, Groningen  Luxembourg: Luxembourg  Switzerland: Basel  Germany: Dortmund, Dresden, Düsseldorf, Ennepetal, Hagen, Leipzig, Hagen, Leipzig, Lübeck, Luxembourg, Wuppertal, Hamburg  Poland: Co. Solaris Modern e-bus propulsion systems Fuel-Cell & Battery Bus References

 Netherlands: Amsterdam (Fuel Cell)  Austria: Klagenfurt (connector)  Poland: Krakow, Co. Solaris (connector)  Germany: Berlin, Braunschweig (inductive) Hamburg, Hürth/Cologne (Fuel Cell) Düsseldorf (connector) Frauenhofer IVI (pantograph) Modern e-bus propulsion systems Cooperation with plenty bus partners

Electrical Systems for Buses– Existing Bus Platforms

 HESS AG Switzerland  Van Hool Belgium  Solaris Poland  New Flyer Canada Hess  Gillig USA Van Hool  Bozankaya Turkey

…. and constantly expanding …. Existing and approved conceptions: 12m/18m/25m Modern e-bus propulsion systems Long life time

 Mexico City: MASA Delivered 1990 & still running for 25 years

 Budapest: Ikarus Delivered 1994 & still running for 21 years

 Eberswalde Germany: MAN / Gräf&Stift Delivered 1993 & still running (since 2012 in Budapest) for 22 years

 Salzburg Austria: Gräf&Stift Delivered 1990 & still running for 25 years (over 1,2 Mio driven km) Modern e-bus propulsion systems One platform – plenty solutions Vossloh Kiepe How can we help you?

EMISSION Tell us your needs … ZERO

… and we can advice you the right e-bus concept

Erik Lenz Vossloh Kiepe GmbH Kiepe-Platz 1 D - 40599 Düsseldorf

Tel: + 49 211 7497 473 Fax: + 49 211 7497 1473 Mob: + 49 172 8563 411

E-Mail: [email protected] Disclaimer

The presentation contains forward-looking statements that are based on current estimates and assumptions made by the management of VOSSLOH to the best of its knowledge. Such forward- looking statements are subject to risks and uncertainties, the non-occurrence or occurrence of which could cause a material difference in future results including changes in political, business, economic and competitive conditions, regulatory reforms, effects of future judicial decisions, foreign exchange rate fluctuations and the availability of financing. Neither VOSSLOH nor any of its affiliates, advisors or representatives shall have any liability whatsoever (in negligence or otherwise) for any loss arising from any use of this presentation or its content or otherwise arising in connection with this document. VOSSLOH does not undertake any responsibility to update the forward-looking statements contained in this presentation. The information provided in this presentation does not represent an offer or invitation for the purchase of the stock of VOSSLOH AG or other companies, nor should it be considered as a call to purchase or otherwise trade stocks directly or indirectly. Proven Technology –Future meets Experience Trolley-specific Experience

Trolley buses since 1950 uninterrupted successful in Past / Future 6 ½ Decades of experience Probation at Kiepe: 10 Years

Passing insulation sections Vehicle control unit, Overhead wire infrastructure, Current collectors, Detection of dewireing, Insulation monitoring, Trolley(battery) homologation etc. Erprobte Technik – Erfahrung trifft auf Zukunft Referenzen / Erprobte Technik

 Trolleybue seit 1980: 1909 Busse

 Kurz oder lang (9,7m Midi-Lyon bis 24m Doppelgelenk)  Hoch oder tief (Quitos Hochplateau auf 2850 m.ü.M. oder auf Küstenstraßen)  Salzig oder sandig (am Meer oder in der Wüste in Riad)  Heiß oder kalt (Saudi Arabien bis Weißrussland Minsk / Lettland Riga / …)  Steil oder flach (San Francisco > 20% Steigung)  Leistungsstark (2 x 160 kW  320 kW für 18m Bus)  Backup bis Duo (Diesel-Generator-Set von 50k bis 175kW Genua, Rimini, Fribourg)  Energiespeicher Batterie oder Supercap

Testmöglichkeit im Trolleybusnetz vor der Haustür (Solingen) Erprobte Technik – Erfahrung trifft auf Zukunft Referenzen / Erprobte Technik

 Trolleybusse seit 1980: 1909 Busse  Trolleybusse mit Van Hool: 207 (14 Projekte) in D-A-CH-I-NL seit 1993  Zweiachsantrieb: 39 Hybrid (11 Projekte) + 341 Trolley (20 Projekte)  davon als Doppelgelenkbus: 9 Hybrid (3 Projekte) + 49 Trolley (5 Projekte)  Batterietrolleybusse: 75 Busse mit LFP Batterien (4 Projekte in CH) + 262 Busse mit NiCa Batterien (Vancouver)

Bestellung und in Auslieferung  3 weitere Doppelgelenkhybridbusse mit Batterie für Luxembourg  Batterie-Trolleybusse: 141 Seattle & 60 San Francisco & 4 Esslingen Modern e-bus propulsion systems Proven DC / DC converter

 DC/DC converter 750VDC/600VDC for Trolleybuses  2011 Prototype – since 3 years in Bologna Italy in Operation  20 DC/DC converter in Operation (Delivery 2011-2012)  Start up problems resolved: Letzte Nachbesserung im Oktober 2014 in 10 Fahrzeuge Resultat der Nachbesserung erwartet bis April 2015 Braunschweig 60 ft (18m) battery bus (Solaris) Traction equipment (Kiepe) / Inductive charging (Primove)

Traction inverter; 400V inverter for e.g. additional heating and air compressor; Primove inverter with cooler charger for 24V- and traction battery Breaking resistor 400V inverter for Battery cooler heating pumps

3 x 30 kWh batteries Heat pumps Choke for the charger of the traction battery

Foto: Verkehrs-GmbH Modern e-bus propulsion systems Battery Trolley in-Motion-Charging

Advantages: - partial wireless sequences - reduced investment for infrastructure - wires, curves, crossings, switches - substations - reduced peak-power

Best proven technology combined with high-tech battery solution

Future meets experience Modern e-bus propulsion systems Example for a Battery Trolleybus

 12 double articulated and 21 articulated trolleybuses for VBZ (Zurich, Switzerland)  First vehicle in passenger operation since Sept. 2012

 Scheduled use of battery system: up to 1,5 km  Operating range: > 10 km  Gradeability: > 12% at 38,1 t gross vehicle weight Modern e-bus propulsion systems Battery: Technical Data

 Variants articulated / double-articulated bus  Discharge power: 80 kW / 100 kW  Charging power from OHL: 25 / 30 kW  Usable energy: max. 30 / 38 kWh  Number of cycles: > 3000 full charge/discharge cycles  Charge time: typ. 5-8 minutes per driven km

 Battery type: LiFePO4  Mass: approx. 740 kg / 800 kg Modern e-bus propulsion systems Auxiliary battery systems in operation – Geneva

 33 articulated trolleybuses for tpg (Geneva, Switzerland)  First vehicle in passenger operation since 12/2013

 Scheduled use of battery system: up to 1,5 km  Operating range: > 7 km  Gradeability: > 12% at 30 t gross vehicle weight Modern e-bus propulsion systems Dayton USA

 Length Vehicle: 12 m  Quantity 2 + 2 option 75  Traction System: 160 kW  Supplied Power: 250 kW (Overhead Wire)

160 kWpeak (Battery)  Battery: 48 kWh  Heating: 32 kW Electric  Air Conditioning: 24 kW  Charging: Current Collector (During Passenger Service)  Max. Speed: 70 km/h (Overhead Wire Mode) 72 km/h (Battery Mode)  Range Zero Emission: ∞ (Unlimited)  Range Battery Mode: 22 km (2 x 7,5 Miles) How long we have to wait for better technologies

 Energy density of batteries will improve ca 10% - 15%  No big steps  Future batteries (e.g. Li Air) might not achieve needed nr of cycles  Battery price will fall  TCO will improve slightly  The challange to charge battery remains

 Don‘t wait for something which will not come

 Go now for a new IMC electric bus system New definition: Energy Yield Density (EYD)

= Energy Density [kW/kg] x Ratio (usable Energy/installed Energy) [%] x Number of Cycles Modern e-bus propulsion systems Our recommendation: Tram bus !

Overhead wire advantages:  „Rails in the sky“ gives constant visual presence in public areas  Accessibility by systems more obvious and noticeable  Fewer accidents  Universal interface for battery charging (not tying up to an unique provider with monopole)  Charging systems with unique / sole supplier solution: Modern e-bus propulsion systems TCO: cost-driver (example from Netherlands)

1000 pphpd Modern e-bus propulsion systems TCO: cost-driver (example from Netherlands)

1000 pphpd Modern e-bus propulsion systems Battery-Bus Conductive fast charging via pantograph

Maximal charging power: 500 kW Velocity: 15 km/h Required energy per hour : <25 kWh Mean charging time per hour : 3min + coupling Modern e-bus propulsion systems Battery-Bus Inductive charging

Maximal charging power: 200 kW Velocity: 15 km/h Required energy per hour : <25 kWh Mean charging time per hour : 8min + coupling Modern e-bus propulsion systems Battery-Bus over night charging

Maximal charging power: kW Velocity: km/h Required energy per hour : kWh Mean charging time per hour : h + coupling Modern e-bus propulsion systems Plug-In Hybrid-Bus conductive charging

Plug-In Hybrid charging via pantograph

maximal charging power: 250kW km per hour: 15 km (7km with Zero-Emission) required energy per hour: <21 kWh Diesel Generator: 200 kW (Euro 6) mean charging time per hour: 5min + time for coupling Modern e-bus propulsion systems FC-Bus charging over night

charging power: 30 kW Velocity: 15 km/h Required energy per hour : <45 kWh Fuel-Cell power: 100 kW H2-Storage: 45 kg (ca. 700kWh) The future of Electro-Mobility with Vossloh Kiepe Time to Charge a 12m Battery Bus (Opportunity Charging)

Charging time depends on Time is Money velocity Cost Time to load = =120 buses x 2 bus drivers/bus x (30.000€ salary + 20.000€ over head) 15km/h * 1,5kWh/km /250kW x (charging time/60min) 15km/h ⟺ 5min 5min/h ⟺ 1,0M€/a 20km/h ⟺ 7min 7min/h ⟺ 1,4M€/a ⟺ 2,2M€/a 30km/h ⟺ 11min 11min/h ⟺ 2,2M€/a Charging Power (250kW) Modern e-bus propulsion systems Key References - Trolleybus

References – a selection

 Germany: Esslingen, Solingen, Eberswalde  Ecuador: Quito  Greece: Athens  Italy: Bologna, Avelino, Bari, Modena, Parma, Genua, Lecce, Milan, Rimini, La Spezia  Canada: Vancouver  Latvia: Riga  Austria: Linz, Salzburg, Innsbruck  Switzerland: Fribourg, Geneva, Biel, Lucerne, Zurich, Bern, St. Gallen, Montreux, Winterthur  Venezuela: Mérida  Belarus: Minsk  Norway: Bergen  USA: Philadelphia  Hungary: Budapest  Saudi Arabia: Riyadh Vibrations & noise

Rubber tires vs steel wheels  Absorb shock and vibrations  Run silent wheels on rails noise  Adhesive grip give better braking and hill-climbing capability Vossloh Kiepe Hybrid System Operation Cycle

Acceleration Cruising Braking

65

in km/h in speed

10 20 30 40 50 Time in s

Total Energy

in in kW 280 Stored Energy Discharge

power Diesel Energy

10 20 30 40 50 Time in s Charge

147 Vossloh Kiepe Key References – Hybrid Bus / EXTRA SLIDE FÜR BATTERYBUS MACHEN

Luxembourg: 2 Double Articulated Hybrid Buses Hamburg: 2 Double Articulated Hybrid Buses Düsseldorf: 3 Articulated Hybrid Buses Dresden: 6 Articulated Hybrid Buses Leipzig: 10 Articulated Hybrid Buses Wuppertal: 1 Articulated Hybrid Bus Hagen: 2 Articulated Hybrid Buses Dortmund: 2 Articulated Hybrid Buses Lübeck: 5 Articulated Hybrid Buses Ennepetal: 1 Articulated Hybrid Bus Basel: 1 Articulated Hybrid Bus Darmstadt: 3 Hybrid Buses Enschede: 1 Hybrid Bus Poland: 1 Hybrid Bus Poland: 2 Battery Buses Fahrzeuge mit Li-Ion-Batterien

Fahrzeugtyp: Hybrid-Bus; 18 m Stückzahl: 1 Baujahr: 2010

Batterietyp: LiFePO4 Spannung: 390 V Energieinhalt: 27 kWh Reichweite: ca. 5 km emissionsfrei Besonderheiten: zusätzliche Supercaps für Energiespitzen Fahrzeugpartner: Solaris Bus & Coach

Quelle: LINZ AG Fahrzeuge mit Li-Ion-Batterien

Fahrzeugtyp: Batterie-Bus; 8,9 m Stückzahl: 1 Baujahr: 2011 Batterietyp: Li-Po Spannung: 605 V Energieinhalt: 120 kWh Reichweite: ca. 100 km Fahrzeugpartner: Solaris Bus & Coach Fahrzeuge mit Li-Ion-Batterien

Fahrzeugtyp: Batterie-Bus; 8,9 m Stückzahl: 1 Baujahr: 2012 Batterietyp: Li-Po Spannung: 605 V Energieinhalt: 155 kWh Reichweite: ca. 100 km inkl. Klimatisierung Fahrzeugpartner: Solaris Bus & Coach Fahrzeuge mit Li-Ion-Batterien

Fahrzeugtyp: Batterie-Bus; 12 m Stückzahl: 1 Baujahr: 2011?/2014 Batterietyp: Li-Po Spannung: V Energieinhalt: kWh Reichweite: ca. km inkl. Klimatisierung Fahrzeugpartner: Göppel (IVI) Battery bus Reference list

 8,9 m 2011 without air-condition  8,9 m 2012 with air-condition  Klagenfurt in operation since fall 2013  12m 2012 ZF Electro Axis AVE 130  Krakau Start line operation April 2014  2x12m 2014 Düsseldorf Rheinbahn 210kWh Bat Lines 778 & 779 since Sept 2014  12m 2014 Braunschweig Inductive Charging Primove  4 x 18 m 2014 Braunschweig Inductive Charging Primove  12m 2014 IVI (Göppel) Pantograph Charging  4 x 12m 2015 Berlin BVG Inductive Charging Serieller Hybridantrieb – Umsetzung und Varianten Fahrzeugdaten H2 Bus

 Antriebsleistung: 240 kW  Brennstoffzellen: 150kW  Ultra Cap: 120kW (6x 63F@125V)  Batterie: 90kW NiMH (ca. 26kWh)  Gastank: 35-40 kg (Betankung in ca. 15 min)  Reichweite ca. 300 km mit max Geschwindigkeit 80 km/h für 100 Personen Innovative Fuel Cell Buses – fueled by by-product hydrogen Hybrid fuel cell electric drive technology

Battery Inductors, Inverters Brake Resistor

Fuel Cell Super Cap

Traction Motor HVAC

 Ballard HD6 fuel cell module  35-40 kg gaseous fuel storage system (carbon wrapped tanks)  Vossloh Kiepe electric drive NEUES DIAGRAMM MIT KONSTANTEN Vossloh Kiepe CATENATY POWER GRÜN PARMA? Hybrid-Trolley bus (Super Capacitors)

Traction power : „=“ Super Caps Catenary power: „ ↓↓ “

Energy storage deactivated Energy storage activated

300 300

200 200

100 100

/ (km/h)

/ (km/h)

v 0 v 0

/ kW,

/ kW,

P -100 P -100

-200 -200

-300 P P P P -300 P P P P TRAK HTS OL BS v TRAK HTS OL BS v

0 5 10 15 20 25 30 0 35 5 10 15 20 25 30 35 t / s t / s Vossloh Kiepe Hybrid System Event Management

Location Based Power- And Energy Management

EV8 Downhill

bus stop bus stop EV3 energy gain EV6 z-e ride

bus bus bus EV3 mountain range stop stop stop Vossloh Kiepe Hybrid System Diagnostic

Diagnostic Aid Modern e-bus propulsion systems Vossloh Kiepe: Products & Core Competences

 Software Tram Train  Components  Systemintegration

Tram Bus Tram (LRV) Modern e-bus propulsion systems Customer expectations

 Fast arrival  good acceleration keeping the time schedule  Reliable & save operation  Attractive design (out side & inside)  rail vehicle style  Easy to find next station on the street  overhead wires shows the way  Convenient space available  long enough vehicle  ev. double traction  Clear conscience (environmentally friendly / green electricity)  Convenient temperature  full air-conditioning / heating  higher energy consumption  Charging facility of mobile phone / table computer (USB / 240 AC outlet)  Infotainment displays (transportation connections, time to next station)  Traveling time is fun  free WiFi (for skype, facebook, email, sms, etc)  Usable traveling time  Silence in the bus (reading, learning, talking) Sweden’s target of „X 2“ = Double the number of passengers by 2020

The technical “HOW” is irrelevant (fast charging / inductive / in wheel motor / …. Gadgets) Konzepte Pro‘s und Kontra‘s verschiedener Nachladekonzepte (1 von 2)

Overnight / Über Nacht Opportunity / Endhaltestelle

Pro Pro + Betrieb wie Dieselbus + Unbegrenzte Reichweite + Langlebigkeit Batterie + Mehr Fahrgäste (kleinere Batterie) + Lokal emissionsfrei + Geringere Investition Ladeinfrastruktur + Lokal emissionsfrei Kontra - Wenige Fahrgäste = mehr Fahrzeuge - Geringe Reichweite <250km Kontra - Ladeinfrastruktur Kosten /geringe Auslastung - Busfahrer und Bus bei Ladung gebunden - Nur 12m Busse sinnvoll - Nur 12m Busse sinnvoll - Keine Steigungen / hohe Geschwindigkeiten - Kurzlebige Batterien - Keine Steigungen / hohe Geschwindigkeiten

161 Konzepte Pro‘s und Kontra‘s verschiedener Nachladekonzepte (2 von 2)

Range Extender (Diesel or Hydrogen) Dynamischer Range Externder

Pro Pro + 12m – 24m Busse (mehr Fahrgäste) + 12m – 24m Busse (mehr Fahrgäste) + Unbegrenzte Reichweite + Unbegrenzte Reichweite + Höhere Durchschnittsgeschwindigkeit + Höhere Durchschnittsgeschwindigkeit + Fahrt ohne Nachladung jederzeit möglich + Für Steigungen geeignet + Geringere Investition Ladeinfrastruktur + Schonende Batterieladung + Lokal emissionsfrei Kontra - Entweder nicht Zero-Emission oder FC Kontra - Kurzlebige Batterien - Höhere Infrastrukturkosten

162 Modern e-bus propulsion systems Ultra Cap Tram bus Advantages Wire less operation Reusing energy from braking Reduces catenary investments  Saving energy (25%) No “visual pollution” in special areas Reducing peak power Less substations needed (new network) Boosting acceleration (weak network) More vehicles in existing network Recharging storage while driving  Wire less operation

Combining proven technology with new technology Modern e-bus propulsion systems Reduction of investment

SC Trolley Battery Trolley

30% 22% Konzepte Planung eines IMC-Netzes

Höchst effiziente Nachladezeit zu geringen Kosten

Wieviel? /Wie lang? Wo Oberleitung? • Strecke der Oberleitung: ca 50% • Endstationen • Zeit unter der Oberleitung: ca 50% • Gerade Strecken • Länge ohne OL:<4km (max 15km) • Langsame und steile Abschnitte 165 Modern e-bus propulsion systems Tram Bus propulsion System Integrator make it work reliable optimize homologation long term availability

1 2 3

6 4

5

1 Current 2 Motor control 3 Brake resistor 4 Diesel Gene- 5 Traction motor 6 Controlling Unit Collector and on-board rator Set or Diagnostics power system Battery System Integration Modern e-bus propulsion systems Hybrid Bus propulsion

3 2 1

4 6

5

5 Electrical traction for powering two axles

1 Super Caps 2 Motor control 3 Brake resistor 4 Generator 5 Traction motor 6 Controlling Unit and/or Battery and on-board Diagnostics power system System Integration Vossloh Kiepe Mission and Vision

We are working for an

ENVIRONMENTALLY FRIENDLY PUBLIC TRANSIT SYSTEM

 Development of electric drives with zero emission

 Usage of the most modern technology for energy efficiency

 Solutions to keep the urban public transporation efficient – the venes of city  Active membership in UITP-Charta for environmentally friendly development in the public transit

 Incorporation of aspects of environmental protection in our terms of sales Modern e-bus propulsion systems Auxiliary battery systems in operation – 320 V

 Zurich 24m and 18m buses - 38 kWh / 30 kWh usable energy - 100 kW / 80 kW discharge power - 30 kW / 25 kW charge power  33 vehicles in revenue service  Geneva 18m bus - 26 kWh usable energy - 90 kW discharge power - 30 kW charge power  2 prototypes running in Belgium, 33 vehicles in contract  Luzern 24m bus - see Geneva  9 vehicles to be delivered in 2014 Modern e-bus propulsion systems Key References - Trolleybus

References – a selection

 Germany: Esslingen, Solingen, Eberswalde  Ecuador: Quito  Greece: Athens  Italy: Bologna, Avelino, Bari, Modena, Parma, Genua, Lecce, Milan, Rimini, La Spezia  Canada: Vancouver  Latvia: Riga  Austria: Linz, Salzburg, Innsbruck  Switzerland: Fribourg, Geneva, Biel, Lucerne, Zurich, Bern, St. Gallen, Montreux, Winterthur  Venezuela: Mérida  Belarus: Minsk  Norway: Bergen  USA: Philadelphia  Hungary: Budapest  Saudi Arabia: Riyadh Vossloh Kiepe

Fakten und Graphen Fakten und Graphen TCO: Kosten Faktoren Bsp. Diesel Bus

Busfahrer: >40%

Energie: >20%

Erstellt aus Informationen von Mc Kinsey und Hr. Pandion, 172 Fakten und Graphen Ladung 12m Batteriebus (Opportunity Charging)

Ladezeit ↔ Geschwindigkeit Zeit ↔ Geld 15km/h ⟺ 5min/h 5min/h ⟺ 1,0M€/a 20km/h ⟺ 7min/h 7min/h ⟺ 1,4M€/a 30km/h ⟺ 11min/h 11min/h ⟺ 2,2M€/a

Ladezeit pro Stunde = Kosten der Nachladung xxkm/h * 1,5kWh/km /250kW * 60min = 100 Busse x 2,5 Busfahrer pro Bus x(30.000€ Gehalt + 20.000€ Deckungsbeitrag) Ladeleistung (250kW) x (Ladezeit/60min)

173 Fakten und Graphen Preisentwicklung Energiekosten

Kosteneinsparung Strom zu Diesel:

Preisentwicklung Diesel / Strom aus einer Studie von Mc Kinsey 2015: 35% (D = 0,28€/km) Preis Annahmen: Diesel 1,15 €/l Strom 0,15 €/kWh EEG-Umlage 0,05 €/kWh 2030: 53% (D = 0,69€/km) Verbrauch 18m Bus: Diesel/km: 0,70 l/km (ca. 7kWh/km) Strom/km: 3,50 kWh/km

174 Fakten und Graphen Kostenvergleich Infrastruktur pro Linien km

Gesamtkosten10km Linie: Standard: 10 M€ 50% drahtlos: 3.5 M€

Abschreibung pro Jahr: 70T€ (50Jahre)

Kosten pro gefahrenen km: 0,10 €/km*

(*Fahrplan-km 700 Tkm/anno)

175 Fakten und Graphen Investitionskosten Ladeinfrastruktur pro Linie

Ladeleistung ist abhängig von der Auslastung

P (kW) Investitionskosten abhängig von 3000 mittlerer Auslastung

Mittlere Auslastung Ladeinfrastruktur 2000 Annahmen: 11% 42% 67% 58% Einsatzstunden pro Tag 20Std Länge der Linie: 10km 1000 Energie/km (12m):1,50 kWh/km

Auslastung im Betrieb: 10h 20h 20h 3h Overnight 90% Opportunity 50% IMC 80% O-Bus 70%

176 Fakten und Graphen Break-Even verschiedene Linienkonzepte

Break Even 18m Diesel ↔ IMC

Nach 12 Jahren

Annahmen: Länge Linie: 10km Anteil OL: 50% Anzahl Busse: 10

177 Pneumatic Retriever Seattle Modern e-bus propulsion systems Battery bus concepts

 Battery and/or SuperCaps  Recharging system: Battery exchange Recharge - inductive or conductive - in motion (during passenger transportation) or - at bus stops or - final bus stops Amsterdam: We are a transport company, not a parking club. Modern e-bus propulsion systems Our recommendation: Trolley bus !

 High passenger capacity (with few personnel)  Excellent climbing characteristics  Little vibration  Clean, safe, reliable and popular  Makes cities more livable  quality of life  Higher ridership  increased income  Boosting real estate prices along the line  “unlimited” energy available “just in time”  The recovery of braking energy  savings of up to 25%  Most economical e-bus solution for intensive use Overhead wire advantages:  „Rails in the sky“ gives constant visual presence in public areas  Accessibility by public transport systems more obvious and noticeable  Fewer accidents More information about trolley bus systems on www.trolleymotion.com Modern e-bus propulsion systems e-Bus Variations: 100 % Battery Bus

MAKE OVER BATTERY BUS WITH 6 DIFFERENT CHARGING CONCEPTS 4 2

3 2

1

7 One Platform Many Variations 7 • Vossloh Kiepe Modular Concept • System Variation by Component Variation Energy Storage, MPU & Pantograph

1 Energy Management Controlling Units, Diagnostics, System Integration

2 Energy 3 Power 4 Brake 5 Main Power 6 Pantograph 7 Traction Storage Electronics Resistor Unit (MPU) Motor

181

In-Motion-Charging IMC An example for New York City

Yellow line = overhead wires Green line = wireless sections

Wireless e.g. Broadway, battery park, central park, bridges, finance district 1909 Delivery year Country City Authority Number Bus type

2014 D Braunschweiger Verkehrs-AG 4 battery LF artic

2013 D Braunschweiger Verkehrs-AG 1 battery LF solo

2014 D Düsseldorf Rheinbahn 2 battery LF solo

2013 I La Spezia ATC 8 trolley LF solo

10.000th Solaris bus was a battery bus with Vossloh Kiepe traction Solaris Milestones powered by Vossloh Kiepe

Tramino Jena (# 5)  First GTx  First foreign tram contract (June 2011)  Frist polish tram in Germany

Tramino Braunschweig (# 18)  Longest Tramino so far (35,7m)  with supercapacitors Battery specification

 Distance: e.g. 5 km  Energy consumption of 24m bus without aircon: 4 kWh/km  Energy demand: 5 km x 4 kWh/km