<<

616 Ζ. Kristallogr. NCS 224 (2009) 616-618 / DOI 10.1524/ncrs.2009.0271 © by Oldenbourg Wissenschaftsverlag, München

Crystal structure of bis[diaquaisomcotinatosamarium(III)]-/¿- isomcotinato-[düsomcotinatocopper(II)], CuSiihCCelLiNChMHiO^

Yi- Deng, Nie, Chun-Hua and -Zhi Kuang*

Key Laboratory of Functional Organometallic Materials, Hengyang Normal University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, P. R. China

Received August 19,2009, accepted and available on-line September 18,2009; CCDC no. 1267/2742

Abstract Discussion C4gH4oCuNg02oSm2, monoclinic, P2\/n (no. 14), In the past few years, more extensive attention had been paid to a = 9.5218(9) Â, b = 15.037(1) Â, c = 18.285(2) Â, the research on the chemistry of the heterometallic lanthanide- 3 β = 93.822(1)°, V = 2612.2 Â , Ζ = 2, Rgl(F) = 0.021, transition metal complexes [1-3]. Isonicotinic acid is a good - wRk^F2) = 0.049, T= 293 K. ear bridging ligand with oxygen and nitrogen donors on opposite sides. Source of material In the crystal of the title compound, the Cu11 center is four- A mixture of CuO (1.0 mmol, 0.082 g), SŒL2O3 (0.5 mmol, coordinated by two O atoms from two different isonicotinate an- 0.180 g), isonicotinic acid (2.0 mmol, 0.248 g), H20 (10 mL, ions, two Ν atoms from the other two isonicotinate molecules. 0.55 mmol) and two drops of acetic acid, with the pH value of Thus the Cu11 ion has a distorted square coordination. The Smm about 2.0, was sealed in a 25 ml capacity Teflon-lined reaction center is eight-coordinated by six O atoms from five different vessel at 160 °C for 5 days, the reaction mixture was cooled to isonicotinate anion and two O atoms from two water molecules. room temperature over a period of 48 h. The product was col- So the Sm111 ion has a square antiprismatic environment. The ad- lected by filtration, washed with H2O and air-dried. Blue block- jacent Cu-Sm centers are bridged by the tridentate isonicotinate shaped crystals suitable for X-ray analysis were obtained. ligands, forming a one-dimensional chain structure. The water molecules are hydrogen bonded to the Ν atoms of the pyridyl Experimental details groups of the ligands, which link the complex into a three- H atoms bonded to C atoms were placed geometrically and dimensional framework. treated as riding, with d(C—H) = 0.93 Â and IWH) = 1.2 Ueq(C). The water H atoms found from difference Fourier maps were included in the refinements with restraints for d(0—H) = 0.829 - 0.833 À and i/iso(H) = 1.5 Ueq(0).

* Correspondence author (e-mail: yifang7124@ 163.com) CuSm2(C6H4N02)8(H20)4 617

Table 1. Data collection and handling. Table 2. Continued.

Crystal: blue block, size 0.27 χ 0.30 χ 0.40 mm Atom Site χ ν ; (Λ» Wavelength: Ka radiation (0.71073 Â) 1 μ· 27.08 cm" H(4) Ae 0.2050 1.2589 0.2189 0.050 Diffractometer, scan mode: Broker SMART CCD, φ/ω H(5) Ae 0.0914 1.3015 0.3201 0.061 20ma*: 51° H(7) Ae 0.4656 1.1504 0.3518 0.055 M/lfc/Veasured, N(hkl)unique: 18387,4853 H(8) Ae 0.4216 1.1283 0.2282 0.038 Criterion for lobs, N(hkl)ρ: /obs > 2 allobsl, 4222 H(10) Ae 0.6913 0.9242 0.2439 0.049 N(param)^r¡nv¡: 359 H(ll) Ae 0.7197 0.9507 0.3669 0.069 Programs: SHELXS-97 [4], SHELXL-97 [5], H(13) Ae -0.0508 0.6921 0.0004 0.028 SHELXTL [6] H(14) Ae 0.0676 0.8252 0.0027 0.028 H(16) Ae 0.4305 0.6889 0.0072 0.029 H(17) Ae 0.3018 0.5594 0.0074 0.027 H(19) Ae -0.5995 0.7038 -0.2288 0.049 H(20) Ae -0.4856 0.6926 -0.1148 0.038 Table 2. Atomic coordinates and displacement parameters (in Â2). H(22) Ae -0.2191 0.5207 -0.1994 0.050 H(23) Ae -0.3379 0.5410 -0.3118 0.064 Atom Site χ y ζ i/i» H(1W) Ae 0.0757 1.0919 -0.1202 0.043 H(2W) Ae 0.0301 1.0314 -0.0715 0.043 H(l) Ae -0.2213 1.1456 0.2656 0.069 H(3W) Ae 0.3208 1.2307 -0.1068 0.045 H(2) Ae -0.1151 1.0949 0.1648 0.056 H(4W) Ae 0.2738 1.2729 -0.0473 0.045

Table 3. Atomic coordinates and displacement parameters (in Â2).

Atom Site X y ζ Vu Un t/33 Un Í/13 Un

Sm(l) Ae 0.30355(1) 1.084800(9) -0.000640(7) 0.01495(9) 0.01529(9) 0.01549(8) -0.00210(6) 0.00169(5) -0.00087(5) Cu(l) 2b 0 Vi 0 0.0205(3) 0.0153(3) 0.0264(3) -0.0064(2) -0.0071(2) 0.0056(2) O(l) Ae 0.1022(2) 1.0699(1) 0.0832(1) 0.025(1) 0.027(1) 0.025(1) -0.0042(9) 0.0061(9) -0.0054(9) 0(2) Ae 0.2241(2) 1.1940(1) 0.0893(1) 0.039(1) 0.023(1) 0.035(1) -0.007(1) 0.019(1) -0.0044(9) 0(3) Ae 0.4104(2) 1.0342(2) 0.1113(1) 0.039(2) 0.066(2) 0.026(1) 0.009(1) -0.008(1) 0.004(1) 0(4) Ae 0.6048(3) 0.9525(2) 0.1123(1) 0.055(2) 0.051(2) 0.027(1) 0.013(1) 0.016(1) -0.007(1) 0(5) Ae 0.2714(2) 0.9288(1) -0.0040(1) 0.037(1) 0.018(1) 0.058(2) -0.006(1) -0.002(1) 0.001(1) 0(6) Ae 0.4704(2) 0.8532(2) -0.0098(1) 0.021(1) 0.035(1) 0.080(2) -0.013(1) 0.004(1) 0.002(1) 0(7) Ae -0.1420(2) 0.5537(1) -0.0714(1) 0.027(1) 0.027(1) 0.028(1) -0.002(1) -0.0083(9) 0.0054(9) 0(8) Ae -0.3139(2) 0.6213(2) -0.0144(1) 0.048(2) 0.036(1) 0.027(1) 0.001(1) -0.002(1) -0.002(1) N(l) Ae -0.0769(4) 1.2279(2) 0.3032(2) 0.064(2) 0.044(2) 0.044(2) -0.006(2) 0.031(2) -0.011(2) N(2) Ae 0.5926(3) 1.0505(3) 0.3727(2) 0.046(2) 0.088(3) 0.022(2) -0.010(2) -0.003(1) -0.009(2) N(3) Ae 0.1135(2) 0.6129(2) 0.0024(1) 0.021(1) 0.016(1) 0.021(1) -0.004(1) -0.001(1) 0.0023(9) N(4) Ae -0.4825(3) 0.6230(2) -0.2816(2) 0.049(2) 0.046(2) 0.037(2) 0.009(2) -0.020(1) -0.007(1) C(l) Ae -0.1334(4) 1.1683(3) 0.2564(2) 0.049(2) 0.062(3) 0.067(3) -0.017(2) 0.040(2) -0.023(2) C(2) Ae -0.0711(4) 1.1377(3) 0.1950(2) 0.037(2) 0.050(2) 0.054(2) -0.014(2) 0.021(2) -0.023(2) C(3) Ae 0.0576(3) 1.1721(2) 0.1798(2) 0.028(2) 0.026(2) 0.025(2) 0.003(1) 0.008(1) -0.002(1) C(4) Ae 0.1180(4) 1.2343(2) 0.2275(2) 0.045(2) 0.043(2) 0.041(2) -0.013(2) 0.019(2) -0.011(2) C(5) Ae 0.0485(4) 1.2599(3) 0.2882(2) 0.065(3) 0.045(2) 0.044(2) -0.013(2) 0.020(2) -0.018(2) C(6) Ae 0.1329(3) 1.1432(2) 0.1133(2) 0.020(2) 0.026(2) 0.022(2) 0.004(1) 0.002(1) 0.003(1) C(7) Ae 0.5089(4) 1.1027(3) 0.3300(2) 0.057(3) 0.050(2) 0.034(2) -0.007(2) 0.014(2) -0.016(2) C(8) Ae 0.4824(4) 1.0906(2) 0.2553(2) 0.034(2) 0.034(2) 0.027(2) 0.005(2) 0.007(1) -0.001(1) C(9) Ae 0.5483(3) 1.0211(2) 0.2221(2) 0.021(2) 0.029(2) 0.018(1) -0.003(1) 0.002(1) 0.001(1) C(10) Ae 0.6410(4) 0.9697(3) 0.2647(2) 0.040(2) 0.054(2) 0.028(2) 0.015(2) 0.003(2) 0.005(2) C(ll) Ae 0.6578(4) 0.9867(3) 0.3388(2) 0.046(2) 0.100(4) 0.025(2) 0.018(2) -0.004(2) 0.011(2) C(12) Ae 0.5193(3) 1.0016(2) 0.1418(2) 0.028(2) 0.028(2) 0.020(2) -0.007(1) 0.003(1) 0.003(1) C(13) Ae 0.0470(3) 0.6917(2) 0.0015(2) 0.018(2) 0.023(2) 0.029(2) -0.002(1) -0.001(1) 0.001(1) C(14) Ae 0.1172(3) 0.7720(2) 0.0021(2) 0.021(2) 0.017(2) 0.031(2) 0.001(1) 0.000(1) 0.000(1) C(15) Ae 0.2621(3) 0.7722(2) 0.0017(1) 0.022(2) 0.021(2) 0.019(1) -0.008(1) -0.001(1) -0.001(1) C(16) Ae 0.3327(3) 0.6910(2) 0.0051(2) 0.017(2) 0.024(2) 0.032(2) -0.004(1) 0.002(1) 0.001(1) C(17) Ae 0.2545(3) 0.6135(2) 0.0052(2) 0.022(2) 0.018(2) 0.028(2) 0.000(1) -0.001(1) 0.002(1) C(18) Ae 0.3420(3) 0.8586(2) -0.0039(2) 0.027(2) 0.022(2) 0.027(2) -0.009(1) -0.002(1) 0.000(1) C(19) Ae -0.5216(3) 0.6665(2) -0.2229(2) 0.028(2) 0.045(2) 0.047(2) 0.010(2) -0.010(2) 0.002(2) C(20) Ae -0.4541(3) 0.6600(2) -0.1538(2) 0.027(2) 0.037(2) 0.032(2) 0.004(2) -0.001(1) -0.000(1) C(21) Ae -0.3387(3) 0.6041(2) -0.1436(2) 0.025(2) 0.023(2) 0.029(2) -0.003(1) -0.006(1) 0.002(1) C(22) Ae -0.2961(4) 0.5588(2) -0.2040(2) 0.046(2) 0.042(2) 0.036(2) 0.018(2) -0.012(2) -0.012(2) C(23) Ae -0.3693(4) 0.5708(3) -0.2715(2) 0.062(3) 0.057(3) 0.038(2) 0.022(2) -0.020(2) -0.023(2) C(24) Ae -0.2594(3) 0.5932(2) -0.0693(2) 0.026(2) 0.016(2) 0.029(2) -0.006(1) -0.006(1) 0.004(1) 0(9) Ae 0.0897(2) 1.0706(1) -0.0783(1) 0.025(1) 0.034(1) 0.025(1) -0.010(1) -0.0081(9) 0.0053(9) O(10) Ae 0.2777(2) 1.2248(1) -0.0692(1) 0.041(1) 0.022(1) 0.028(1) 0.002(1) 0.013(1) 0.0045(9) 618 CuSltl2(C6H4N02)8(H20)4

Acknowledgment. This work was supported by the Construct Program of the Key Discipline in Hunan Province and Hengyang Bureau of Science and Technology (grant no. 2009KJ29). References

1. Costs, J. P., Dahn, F., Dupuis, Α., Laurent, J. P.: Nature of the Magnetic In- 3. , B.-Q., , S., , G.; , G.-X.: Cyano-bridged 4f-3d coordination teraction in the (Cu2+, Ln3+) Pairs: An Empirical Approach Based on the polymers with a unique two-dimensional topological architecture and un- Comparison Between Homologous (Cu2+, Ln3+) and (NÌLS2+, Ln3+) Com- usual magnetic behavior. Angew. Chem., Int. Ed. 40 (2001) 434-437. plexes. Chem. Eur. J. (1998) 1616-1620. 4. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Struc- 2. Kahn, M. L.; Mathoniere, C.; Kahn, O.: Nature of the Interaction between tures. University of Göttingen, Germany 1997. Lnm and CuD Ions in the Ladder-Type Compounds {Ln2[Cu(opba)]})-S 5. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal (Ln = Lanthanide Element; opba = orrAo-Phenylenebis(oxamato), S = Structures. University of Göttingen, Germany 1997. Solvent Molecules). Inorg. Chem. 38 (1999) 3692-3697. 6. Sheldrick, G. M.: SHELXTL. Structure Determination Software Suite. Version 6.14. Bruker AXS, Madison, Wisconsin, USA 2000.