Carboxylic Acids and Their Derivatives
8 CARBOXY A lmost all of the basic types of reactions now have been covered: addition, elimination, substitution, and rearrangement by polar, radical, and concerted mechanisms. Indeed, if you have been looking for similarities, you will have seen that most of the reactions discussed in the preceding three chapters are variations on basic types we have discussed earlier. Furthermore, most of the basic structural effects that determine chemical reactivity also have been covered in previous chapters: bond energies, steric hindrance, electronega- tivity, electron delocalization, hydrogen bonding, solvation, and conforma- tional influences. You might well ask what is left. The answer is, a great deal- but now we will be concerned mostly with putting concepts together, moving from the simple to the complex. For example, in this chapter we will be trying to under- stand the ways that carboxylic acids, which possess the -c' functional \ group, are similar to and different from alcohols, which have the OH group, and aldehydes and ketones, which have C=O bonds. Subsequently we will look at acids that also possess OH or NH, sub- stituent groups (or both) and develop a rationale for the behavior of these combinations in terms of effects we already have discussed. Insofar as pos- sible, you should try to do this yourself whenever you encounter a substance with a new set of combinations of functional groups on its molecules. You often will be in error (as many experts will be), because even if you take Carboxylic Acids and Their Derivatives 789 account of all of the structural effects, as well as the possible reactions or inter- actions, the overall result of these frequently is very difficult to judge in advance.
[Show full text]