1 Celebrating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Online Version of Catalogue 32 Does Not Contain the Printed
Please note: The online version of Catalogue 32 does not contain the printed version’s 172 black and white illustrations—this is because the illustrations in the printed catalogue were submitted to the printer as hard copy, rather than electronic files. Future catalogues will have digitized illustrations, so that their online versions will be exact counterparts of the printed ones. Catalogue 32 CLASSICS OF SCIENCE & MEDICINE With 172 black & white and 6 color illustrations Table of Contents Science & Medicine Page 5 Recent Books, History & Reference 80 Norman Publishing 83 About Our Cover. The cover of Catalogue 32 features the following: (1) No. 198, a beautifully executed bronze bust of Ambroise Paré by the 19th century French sculptor Emile Picault (ca. 1893); (2) No. 109, Domenico Fontana’s Della transportatione dell’obelisco (1590), a classic of Renaissance engineering describing the removal of the Vatican obelisk to its present site in the Piazza of St. Peter; (3) No. 127, George Robert Gray’s Genera of Birds (1849), with magniWcent plates by David William Mitchell, Joseph Wolf, Edward Lear and others; (4) On the Fabric of the Human Body (1998), the English translation of the Wrst book of Andreas 1543 1 4 Vesalius’s De humani corporis fabrica ( ); 5 (5) No. 112, Narrative of a Journey to the Shores of the Polar Sea (1823), John Franklin’s clas- 23 sic account of his Wrst Arctic expedition of 1819–22; (6) No. 103, Oliver Byrne’s edition of The First Six Books of the Elements of Euclid 6 (1847), one of the most striking and attrac- tive examples of color printing issued by the noted Victorian publisher William Pickering; and (7) No. -
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Williams, Peter King. 2010. Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition. Master's thesis, Harvard University, Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367548 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition Peter Williams A Thesis in the Field of History for the Degree of Master of Liberal Arts in Extension Studies Harvard University May 2010 © 2010 Peter Williams Abstract This study examines the scientific advocacy that shaped President Carter’s April 1977 policy decision to block the domestic implementation of so-called “plutonium economy” technologies, and thereby mandate the use of an “open” or “once–through” fuel cycle for U.S. nuclear power reactors. This policy transition was controversial, causing friction with U.S. allies, with the nuclear power industry, and with Congress. Early in his presidential campaign, Carter criticized the excessive federal financial commitment to developing plutonium-based reactors and adopted the view that the weapons proliferation risks of plutonium economy technologies were serious and needed to be addressed. -
Physics 1928 OWEN WILLANS RICHARDSON
Physics 1928 OWEN WILLANS RICHARDSON <<for his work on the thermionic phenomenon and especially-for the discovery of the law named after him>> Physics 1928 Presentation Speech by Professor C. W. Oseen, Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences Your Majesty, Your Royal Highnesses, Ladies and Gentlemen. Among the great problems that scientists conducting research in electro- technique are today trying to solve, is that of enabling two men to converse in whatever part of the world each may be. In 1928 things had reached the stage when we could begin to establish telephonic communication between Sweden and North America. On that occasion there was a telephone line of more than 22,000 kilometres in length between Stockholm and New York. From Stockholm, speech was transmitted via Berlin to England by means of a cable and overhead lines; from England by means of wireless to New York; then, via a cable and lines by land, over to Los Angeles and back to New York, and from there by means of a new line to Chicago, returning finally to New York. In spite of the great distance, the words could be heard distinctly and this is explained by the fact that there were no fewer than 166 amplifiers along the line. The principle of construction of an amplifier is very simple. A glowing filament sends out a stream of electrons. When the speech waves reach the amplifier, they oscillate in tune with the sound waves but are weakened. The speech waves are now made to put the stream of electrons in the same state of oscillation as they have themselves. -
Recollections and Reconstructions
@ ? Editor's Note: The Society's Nuclear Pioneer Citationfor 1977 goes not to an individual but to a distinguished group of individuals: those who took part in the epochal “ChicagoPile―experiment of Dec. 2, 1942, which produced thefirst successful atomicpile chain reaction. The 42 members ofthe Chicago Pilegroup are listed on page 591. One ofthose named, Harold M. Agnew, now Directorofthe Los Alamos Scient@flc Laboratory, is the Nuclear Pioneer Lecturerfor the 24th Annual Meeting. The guidingforce behind the Chicago Pile experiment was Enrico Fermi, recipient of the Nuclear Pioneer Citation of 1963. In the artick which follows, Laura Fermi recreates the excitement and mystery that surrounded the work ofher husband's research team in the early 1940s in Chicago. @. The FirstAtomic Pile: Recollections and Reconstructions by Laura Fermi @ . @ / - .-i@ ‘@:@ Enrico FermIat work, ca. 1942. As far as I can remember at the distance ofalmost 35 Perhaps not all husbands adhered as strictly as years, the first guests to arrive at our party on that Enrico to the rules of secrecy when talking to their beastly cold December night were the Zinns. Wally wives. He couldn't have been more tight-lipped. Once! and Jean. As they shook the snow off their coats, related some gossip to him: “Peoplesay that you stamping their feet on the floor, Wally turned to scientists at the Met Lab are seeking a cure for Enrico and said: “Congratulations!― I was surprised; cancer. .““Arewe?―he asked with his usual for Enrico had given me no hint that anything unusual imperturbable expression. -
Inventory to the Herbert C. Brown Papers, 1928-2005
INVENTORY TO THE HERBERT C. BROWN PAPERS, 1928-2005 Purdue University Libraries Karnes Archives and Special Collections 504 West State Street West Lafayette, Indiana 47907-2058 (765) 494-2839 http://www.lib.purdue.edu/spcol ©2008 Purdue University Libraries. All rights reserved. Compiled by: Margaret S. Morris, 2008 Revised by: Elizabeth M. Wilkinson, July 2008, May 2012, December 2012 Descriptive Summary Creator Information Brown, Herbert C., 1912 –2004 Title Herbert C. Brown papers Collection Identifier MSF 4 Date Span 1928-2005, predominant 1940s–1990s Abstract Business and personal papers of Herbert C. Brown, educator, chemist, and recipient of the 1979 Nobel Prize for Chemistry Extent 420 cubic feet (448 boxes) Finding Aid Author Margaret S. Morris, 2006 – 2008; Processing of additional materials and revisions made by Elizabeth Wilkinson, 2008, 2012 Languages English Repository Virginia Kelly Karnes Archives and Special Collections Research Center, Purdue University Libraries Administrative Information Location Information: ASCR Access Restrictions: Collection is open for research. The collection is stored offsite; 48 hours notice is required to access the collection. Some materials have been restricted due to privacy and legal issues Acquisition Donated by Herbert C. Brown and his son, Charles A. Information: Brown Custodial History: The Herbert C. Brown papers were donated to Purdue University by Herbert C. Brown when he was on the faculty at Purdue. Brown’s papers were originally housed in the small library room adjacent to his office that was provided to Brown when he became a Professor Emeritus in 1978. The papers remained as part of the Purdue Chemistry Department until Brown’s death in 2004, when they were transferred to the 12/21/2012 2 archives. -
Appendices Due to Concerns Over the Quality of the Data Collected
APPENDIX A WSU 2014-19 STRATEGIC PLAN Appendix A: WSU Strategic Plan 2014-15 Strategic Plan 2014-2019 President Elson S. Floyd, Ph.D. Strategic Plan 2014-2019 Introduction The 2014-19 strategic plan builds on the previous five-year plan, recognizing the core values and broad mission of Washington State University. Goals and strategies were developed to achieve significant progress toward WSU’s aspiration of becoming one of the nation’s leading land-grant universities, preeminent in research and discovery, teaching, and engagement. The plan emphasizes the institution’s unique role as an accessible, approachable research institution that provides opportunities to an especially broad array of students while serving Washington state’s broad portfolio of social and economic needs. While providing exceptional leadership in traditional land-grant disciplines, Washington State University adds value as an integrative partner for problem solving due to its innovative focus on applications and its breadth of program excellence. The plan explicitly recognizes the dramatic changes in public funding that have occurred over the duration of the previous strategic plan, along with the need for greater institutional nimbleness, openness, and entrepreneurial activity that diversifies the University’s funding portfolio. In addition, the plan reaffirms WSU’s land-grant mission by focusing greater attention system-wide on increasing access to educational opportunity, responding to the needs of Washington state through research, instruction, and outreach, and contributing to economic development and public policy. While the new plan retains the four key themes of the previous plan, its two central foci include offering a truly transformative educational experience to undergraduate and graduate students and accelerating the development of a preeminent research portfolio. -
Orville Wright 1871-1948
NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXV ELEVENTH MEMOIR BIOGRAPHICAL MEMOIR OF ORVILLE WRIGHT 1871-1948 BY WILLIAM F. DURAND PRESENTED TO THE ACADEMY AT THE AUTUMN MEETING, 1948 ORVILLE WRIGHT 1871-1948 BY WILLIAM F. DURAND The boy is father to the man. Never, perhaps, has this old saying been better exemplified than in the life of Orville Wright. Born on August 19, 1871, in Dayton, Ohio, the son of Rev. Milton and Susan Catherine (Koerner) Wright, he began to show in early years the characteristics of mechanical genius and initiative which later, working with his brother, four years older, led to the successful demonstration of aerial flight in a man-made structure. Placed in kindergarten shortly after reaching five years of age, he began the systematic evasion of the school for associa- tion with another boy to play with an old sewing machine belonging to this boy's mother. Orville watched the clock and returned home at the hour he normally would from the school. This went on merrily until his mother, seeing his teacher one day, said that she hoped Orville was doing well. The teacher replied that she had not seen Orville since the first day when his mother brought him, and supposed that she had de- cided not to send him to the school. What transpired when the actual facts became known is not a matter of record. Orville was early inculcated with the lesson that if he de- sired spending money he must earn it and this he did in a great variety of ways. -
James S. Rogers, Report of the Committee on Science
ANNUAL REPORT OF BOARD OF MANAGERS. 18 5 January 17, 1912: Research Laboratory Notes. Dr. W. R. Whitney. February 21, 1912: Recent Advances in the Art of Battleship Design. Naval Constructor D. W. Taylor, U. S. N. March 2o, I912: How the Chemist Uses Electricity. Dr. Edgar F. Smith. April 17, I912: Recent Development of the Locomotive. Mr. George R. Henderson. May 15, I912: Fundamental Chemical Constants. Dr. E. W. Morley Recent Developments in the Electrical Art. Prof. Elihu Thomson. Metrology in Relation to Industrial Progress. Dr. S. W. Stratton. The May meeting was made the occasion of the presentation of Elliott Cresson Medals to Dr. Alexander Graham Bell, Dr. Edward Williams Morley, Prof. Elihu Thomson, and Dr. S. W. Stratton, the last three being the speakers of that evening. The presentations were made on behalf of the Institute by Vice-President James Mapes Dodge, in the absence of the President, Dr. Walton Clark. At this meeting, also, an amendment to the By-Laws, providing for the discontinuance of the June and September Stated Meetings, was considered and adopted in its final form. Throughout the year the meetings were exceedingly well attended. The papers presented have practically all appeared in the Institute's JOURNAL. Respectfully submitted, JAMES S. ROGERS, PHILADELPHIA, January 8, 1913. Chairman. REPORT OF THE COMMITTEE ON SCIENCE AND THE ARTS, To the President and Members o[ The Franklin Institute: The Committee on Science and the Arts has the honor to submit the following account of its operation for the year ending September 3o, I912: During the year there were held eleven Stated Meetings of the General Committee and twenty-three meetings of Sub-committees on Investigation. -
Atomic-Scientists.Pdf
Table of Contents Becquerel, Henri Blumgart, Herman Bohr, Niels Chadwick, James Compton, Arthur Coolidge, William Curie, Marie Curie, Pierre Dalton, John de Hevesy, George Einstein, Albert Evans, Robely Failla, Gioacchino Fermi, Enrico Frisch, Otto Geiger, Hans Goeppert-Mayer, Maria Hahn, Otto Heisenberg, Werner Hess, Victor Francis Joliet-Curie, Frederic Joliet-Curie, Irene Klaproth, Martin Langevin, Paul Lawrence, Ernest Meitner, Lise Millikan, Robert Moseley, Henry Muller, Hermann Noddack, Ida Parker, Herbert Peierls, Rudolf Quimby, Edith Ray, Dixie Lee Roentgen, Wilhelm Rutherford, Ernest Seaborg, Glenn Soddy, Frederick Strassman, Fritz Szilard, Leo Teller, Edward Thomson, Joseph Villard, Paul Yalow, Rosalyn Antoine Henri Becquerel 1852 - 1908 French physicist who was an expert on fluorescence. He discovered the rays emitted from the uranium salts in pitchblende, called Becquerel rays, which led to the isolation of radium and to the beginning of modern nuclear physics. He shared the 1903 Nobel Prize for Physics with Pierre and Marie Curie for the discovery of radioactivity.1 Early Life Antoine Henri Becquerel was born in Paris, France on December 15, 1852.3 He was born into a family of scientists and scholars. His grandfather, Antoine Cesar Bequerel, invented an electrolytic method for extracting metals from their ores. His father, Alexander Edmond Becquerel, a Professor of Applied Physics, was known for his research on solar radiation and on phosphorescence.2, 3 Becquerel not only inherited their interest in science, but he also inherited the minerals and compounds studied by his father, which gave him a ready source of fluorescent materials in which to pursue his own investigations into the mysterious ways of Wilhelm Roentgen’s newly discovered phenomenon, X-rays.2 Henri received his formal, scientific education at Ecole Polytechnique in 1872 and attended the Ecole des Ponts at Chaussees from 1874-77 for his engineering training. -
ON Monday, July 24, the Cables Apprised Us of the Death of Sir William Ramsay, the Most Distinguished Briti~Sh Chemist O.F Our Time
SIR WILLIAM RAMSAY. BIOGRAPHICAL NOTE. ON Monday, July 24, the cables apprised us of the death of Sir William Ramsay, the most distinguished Briti~sh chemist o.f our time. This sad news did not come as a surprise to his many friends in this country, for they knew that for several months past he had been bravely fighting against a serio.us malady. With the passing of Sir William science loses one of its most resourceful experimenters, as well as a most daring prognosticator: one of those investigators who, to use his own phrase, " angle for salmon, but do not fish for sprats." Rather than being satisfied with a sure catch of small fry, he always preferred to take his chances in fish- ing for a great prize. In some cases he may have mistaken the place where to fish, while in others, perhaps, he used the wrong fly; but, on the whole, the catches he made were of the kind that the most expert angler might well be proud of. His experimental researches in inorganic and physical chemistry extend over a wide range of subjects, although, for the most part, they proceeded from the train of reasoning that led him to the discovery of argon. He was born in Glasgow, October 2, 1852 , and received his early education in the GIasgow Academy. His training as a chemist he acquired in the Universities of Glasgow and Tfibingen, at the ,latter place under Lothar Meyer, who exerted a profound influence upon the young Scotsman's scientific reasoning and imagination. In 1872 he became assistant in technical chemistry in Anderson's College, and two years later tutorial assistant in the University of Glasgow. -
Chicago Pile-1 - Wikipedia, the Free Encyclopedia
Chicago Pile-1 - Wikipedia, the free encyclopedia https://en.m.wikipedia.org/wiki/Chicago_Pile-1#Later_operation Chicago Pile-1 (CP-1) was the Site of the First Self Sustaining Nuclear world's first nuclear reactor to Reaction achieve criticality. Its construction U.S. National Register of Historic Places was part of the Manhattan U.S. National Historic Landmark Project, the Allied effort to create Chicago Landmark atomic bombs during World War II. It was built by the Manhattan Project's Metallurgical Laboratory at the University of Chicago, under the west viewing stands of the original Stagg Field. The first man-made self-sustaining nuclear chain reaction was initiated in CP-1 on 2 December Drawing of the reactor 1942, under the supervision of Enrico Fermi, who described the apparatus as "a crude pile of black bricks and wooden timbers".[4] The reactor was assembled in November 1942, by a team that included Fermi, Leo Szilard, discoverer of the chain reaction, Location Chicago, Cook County, and Herbert L. Anderson, Walter Illinois, USA Zinn, Martin D. Whitaker, and Coordinates 41°47′32″N 87°36′3″W George Weil. It contained 45,000 Built 1942[2] graphite blocks weighing 400 NRHP Reference # 66000314 [1] short tons (360 t) used as a neutron moderator, and was Significant dates fueled by 6 short tons (5.4 t) of Added to NRHP 15 October 1966 [1] uranium metal and 50 short tons (66000314) (45 t) of uranium oxide. In the Designated NHL 18 February 1965[2] pile, some of the free neutrons Designated CL 27 October 1971[3] produced by the natural decay of uranium were absorbed by other uranium atoms, causing nuclear fission of those atoms, and the release of additional free neutrons. -
Maria Skłodowska-Curie W Wikipedii Maria Skłodowska-Curie
Maria Skłodowska-Curie w Wikipedii Maria Skłodowska-Curie w Wikipedii Maria Skłodowska-Curie w Wikipedii Stowarzyszenie Wikimedia Polska Łódź 2011 Autorzy Wikipedyści, zobacz strona 235 Redakcja Patryk Korzeniecki Christine Rageul Julia Maria Koszewska Małgorzata Wilk Anastasija Lwowa (Анастасия Львова) Andrij Makucha (Андрій Макуха) Jurij Perohanicz (Юрій Пероганич) Karol Dąbrowski Patryk Michalski SAC Projekt okładki Przemysław Rataj Projekt graficzny wnętrza Marek Kozakowski Skład i łamanie Hadrian Kamiński Niniejsza publikacja, z wyłączeniem okładki, jest udostępniona na wolnej licencji Creative Commons — Uznanie autorstwa — Na tych samych warunkach — 3.0 (CC-BY-SA 3.0 — pełny tekst licencji dostępny w Internecie na stronie http://creativecommons.org/licenses/by-sa/3.0/pl/legalcode) Wszystkie zdjęcia pochodzą z zasobów Wikimedia Commons http://commons.wikimedia.org Wikipedia oraz jej logo to zastrzeżone znaki handlowe należące do Wikimedia Foundation ISBN 978-83-931454-1-6 Nakład: 1000 egz. Publikacja bezpłatna Druk: Przedsiębiorstwo Poligraficzne „MODENA” Sp. z o.o., Cieszyn, ul. Mała Łąka 17 Stowarzyszenie Wikimedia Polska ul. Tuwima 95, pok. 15 90-031 Łódź, Polska http://pl.wikimedia.org KRS: 0000244732 SpiS treści 5 Spis treści �������������������������������������������������������������������������������������������������������������������������������� 5 Wstęp / Introduction / Avant-propos / die Einführung / Введиение / Вступ ��������������������������������������������������������������������������������������������������������������