The Construction of a High-Energy Collider: Interviews with Witten, Glashow and Weinberg by Hong-Jian He*

Total Page:16

File Type:pdf, Size:1020Kb

The Construction of a High-Energy Collider: Interviews with Witten, Glashow and Weinberg by Hong-Jian He* The Construction of a High-Energy Collider: Interviews with Witten, Glashow and Weinberg by Hong-Jian He* Interview: Edward Witten Discusses bert Einstein World Award of Science (2016), and Future High Energy Colliders APS Medal for Exceptional Achievement in Research (American Physics Society, 2016), to just name a few. Edward Witten is currently the Charles Simonyi The physics community has highly admired his ex- Professor at Institute for Advanced Study, Prince- ceptional creativities and contributions, just as the ton. He recently visited Beijing, where he attended citation of Isaac Newton Medal stated, “for his many the international conference of String-2016 hosted profound contributions that have transformed areas by Tsinghua University, and right before this meet- of particle theory, quantum field theory and general ing he and Professor David Gross (Laureate of No- relativity.” The news media often describes him as the bel Physics Prize 2004) received Honorary Doctorate successor of Einstein. Even though he is very modest, from the University of Chinese Academy of Sciences, many fellow physicists would argue that his style also as conferred by the president of Chinese Academy of shares deep similarity with Newton because Newton Sciences, Chunli Bai. Professor Witten visited China is a truly unique master of modern science who is many times before, and on February 23, 2014, he was known as both a great physicist and a great mathe- invited to join the Panel Discussion Meeting on “Af- matician. ter the Higgs Boson Discovery: Where is Fundamental Physics Going” together with Nobel laureates David Hong-Jian He: Professor Witten, we just met you in Gross and Gerard ’t Hooft et al., held at Tsinghua August at String-2016 held at Tsinghua University. It University, Beijing. For the public in China, most peo- is our great pleasure to have this chance for an in- ple only know Professor Witten as the Fields Medal- terview with you. Our first question is to ask you for ist in mathematics and a leading string theorist. But, your comment on the vital importance of the inter- for the physics community, he is a prominent the- face between physics and mathematics, which had oretical physicist who made wide range of impor- revolutionized the progress of physics many times in tant contributions to fundamental physics. In fact, be- the past, including Newtonian Mechanics, Special and sides the Fields Medal (1990), he has won numerous General Relativity, Quantum Mechanics, and Quan- prestigious prizes in physics, including Dirac Medal tum Field Theory and Gauge Theory. Since you won (1985), Einstein Medal (1985), National Medal of Sci- both the Newton Medal and the Poincaré Prize, it is ence (Physics, 2002), Henri Poincaré Prize (2006), interesting to note that in the past of modern sci- Lorentz Medal (2010), Isaac Newton Medal (2010) ence, Newton is best known for discovering Newton’s Fundamental Physics Breakthrough Prize (2012), Al- Laws in physics, but he invented Calculus for math- ematics with the motivation of solving physics prob- * Hong-Jian He is a Professor of Physics at Tsinghua Uni- lem. On the other hand, Poincaré was a mathemati- versity (Beijing) working in particle physics, cosmology, and quantum gravity, and the interface between them. cian by birth, but he made fundamental contributions E-mail: [email protected] to physics. (David Hilbert is probably another such 64 NOTICES OF THE ICCM VOLUME 4,NUMBER 2 great figure after Poincaré.) Would you like to also far, we hope you can share your views with Chinese comment on both of them from your own experience? community regarding the lessons of the SSC and LHC. Edward Witten: It took a long time for people to un- Witten: It is a real shame that we in the United States derstand that to understand the natural world, one did not complete building the SSC, and if this had should aim for a precise, mathematical description occurred, our understanding of fundamental physics of basic phenomena. The ancient Greeks, for exam- might have been quite advanced compared to where ple, were very interested in mathematics and also in we are now. The United States would certainly have the natural world. But in their study of the natural maintained its leadership position in high energy world, they mainly aimed for qualitative descriptions physics if we had built the SSC. of everything, rather than looking for precise mathe- I think that one of the lessons from the failure of matical descriptions of selected things. the SSC project and the success of the LHC is that for My colleague Steve Weinberg recently wrote an a successful project of this kind, it is very valuable to outstanding book on the history of science explain- have the capability to make long term plans. The Eu- ing the long process by which people learned to look ropean countries are able to make multi-year commit- for precise mathematical explanations of simple phe- ments to CERN, and on the basis of this, it was possi- nomena and not just qualitative descriptions of ev- ble for the LHC to go ahead. Unfortunately, in the U.S., erything. Newton’s laws of motion were one of the Congress reconsiders the budget for a project every big milestones here. year and even if a project is approved and funded one Still, it is a bit of a mystery why mathematics year, or multiple years in a row, it might still eventu- is quite so powerful in understanding the physical ally be canceled. world. The best I can say is that physical laws, when I can also see one advantage of the way we do things in the U.S. In this country, the budget for a big we understand them better, turn out to be subtle and project would always have some sort of contingency elegant. Mathematics is the study of things that are allowance for unexpected costs. In Europe, there was subtle and elegant and can be described and studied a multiyear plan to build the LHC, but with no contin- without reference to any particular cultural context. gency plan for even a minor cost overrun. Hence when We might think that this explains, in part, the util- the LHC did run into a cost overrun, quite small in the ity of mathematics. Alternatively, but with tongue in scheme of things (less than 10% of the cost of project cheek, we might remark that perhaps the Universe cost if one takes into account the CERN laboratory re- was created by a mathematician—or at least, by a sources that were directed to the project), it caused lover of mathematics. political difficulties and led to a delay in the project He: Regarding the lessons of Superconducting of a couple of years. Super Collider (SSC) in USA, perhaps, may you have Based on this, my advice for a country that wants seen an article “The Crisis of Big Science” [1] written to think big is that it is important to make a multiyear by Steven Weinberg in 2012 for the New York Review plan with a realistic allowance for reasonable contin- of Books? Lately we recommended the media in gencies. China to publish its Chinese translation. The can- He: You have known the current Chinese plan of cellation of SSC by US congress in 1993 was a great the “Great Collider” project, whose first phase is loss for the high energy physics (HEP) community called CEPC, an electron-positron collider of energy in USA and worldwide; it seems to have made vital 250 GeV, running in a circular tunnel of circumfer- negative impacts on American HEP in particular and ence about 100 km long. It has a potential second in its whole fundamental science in general. On the phase for a proton-proton collider with energy up one hand, SSC was designed to collide proton-proton to 100 TeV. We are glad to tell you that this pro- beams at a center of mass energy of 40 TeV, which posal has been officially ranked as the “First Prior- is nearly a factor 3 larger than the current Run-2 ity HEP Project” at the recent “Strategic Plan Meeting colliding energy (13 TeV) of Large Hadron Collider for Future High Energy Physics” of the Chinese Par- (LHC) at CERN, Geneva (the European particle physics ticle Physics Association, held last month on August laboratory. The energy of the LHC (13 TeV, possibly 20–21, in Hefei. In fact, CERN is also taking very ac- eventually reaching 14 TeV) is just one-third the tive studies on a similar proposal, called FCC (Future energy that the SSC would have had. In designing Circular Colliders), despite that CERN will be mainly the LHC, the Europeans tried to compensate for occupied by the LHC Run-2 and the subsequent LHC the lower energy by designing a machine with high Upgrade over the next 15–20 years. Many colleagues luminosity (very intense particle beams) but there is worldwide think that this is a truly promising direc- only so far that one can go that way. tion for the next step forward of the high energy Since you have witnessed the termination of the physics. We recall that you and Professor David Gross SSC and the subsequent developments of the LHC so (the laureate of Nobel Physics Prize 2004) wrote a DECEMBER 2016 NOTICES OF THE ICCM 65 joint article “China’s Great Scientific Leap Forward” Witten: Ultimately, China will have to decide what [2] to support this project in last September (pub- sort of position in the world and in the world of sci- lished by The Wall Street Journal). Would you like to ence you aspire to.
Recommended publications
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • What's Inside
    Newsletter A publication of the Controlled Release Society Volume 32 • Number 1 • 2015 What’s Inside 42nd CRS Annual Meeting & Exposition pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device Interview with Paolo Colombo Patent Watch Robert Langer Awarded the Queen Elizabeth Prize for Engineering Newsletter Charles Frey Vol. 32 • No. 1 • 2015 Editor Table of Contents From the Editor .................................................................................................................. 2 From the President ............................................................................................................ 3 Interview Steven Giannos An Interview with Paolo Colombo from University of Parma .............................................. 4 Editor 42nd CRS Annual Meeting & Exposition .......................................................................... 6 What’s on Board Access the Future of Delivery Science and Technology with Key CRS Resources .............. 9 Scientifically Speaking pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting ............................. 10 Arlene McDowell Editor In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device ........................................................................................................ 12 Patent Watch ................................................................................................................... 14 Special
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Supreme Theory of Everything Ulaanbaatar Tarzad *Corresponding author Ulaanbaatar Tarzad, Department of Physics, School of Applied Sciences, Department of Physics, School of Applied Sciences, Mongolian Mongolian University of Science and Technology, Ulaanbaatar, Mongolia, University of Science and Technology E-mail: [email protected] Submitted: 27 Mar 2019; Accepted: 24 Apr 2019; Published: 06 June 2019 Abstract Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown. Keywords: HRD, Trigonometry, Projection of Circle, Singularity, The reality of universe describes by geometry, because of that not Celestial Body, Black Hole and Parallel Universes. only gravity is geometrical, but everything is it and nothing is linear. One of the important branches of geometry is trigonometry dealing Introduction with circle and triangle. For this reason, it is easier to describe nature Today scientists describe the universe in terms of two basic partial of universe by mathematics circle.
    [Show full text]
  • Some Comments on Physical Mathematics
    Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century.
    [Show full text]
  • Nobel Pris Og NBI
    Hvilke forskere, både danske og udenlandske, med tilknytning til NBI har gennem tiden modtaget en nobelpris? M I Nobelpristagere med tilknytning til NBI Der er en lang række Nobelpristagere, som har været ansat i en eller anden form på NBI (Niels Bohr Institutet). Der er desuden en del, der har opholdt sig og arbejdet på institutet i en periode, men ikke har været ansat. De har så været lønnet af deres hjemmeuniversitet og brugt tiden til et samarbejde med en eller flere forskere på NBI, som oftest med en videnskabelig artikel som resultat. Endeligt har der i ”utallige” år været en skik, at fysik nobelpristagere blev inviteret til at komme til København, give en forelæsning, og efter eget ønske blive lidt tid umiddelbart efter modtagelsen af Nobelprisen (hvor de jo alligevel var i Stockholm). I den form har en meget stor del af nobelpristagerne efter institutets oprettelse, været på besøg.. Jeg husker selv fra et af mine første studieår en strålende forelæsning af: Donald Arthur Glaser f: 1926 i USA nobelpris i 1960, med en efterfølgende animeret fest med nobelpristageren i fysik- matematik- og kemi- studerendes forening (som hed parentesen). Der har især i Bohrs tid men været en lang række konferencer og møder, hvor stort set hele den videnskabelige verdens store, har været tilstede f.eks.: Max Karl Ernst Ludwig Planck f: D 1858 d: 1947 nobelpris 1916, Albert Einstein f: D 1879 d: 1955 nobelrpis 1921, Douglas D. Osheroff f: USA 1945 nobelpris 1996 og mange, mange andre. I den nedenstående liste er udvalgt de, der dokumenterbart har haft en eller anden form for regulær ansættelse på NBI.
    [Show full text]
  • Physics 1928 OWEN WILLANS RICHARDSON
    Physics 1928 OWEN WILLANS RICHARDSON <<for his work on the thermionic phenomenon and especially-for the discovery of the law named after him>> Physics 1928 Presentation Speech by Professor C. W. Oseen, Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences Your Majesty, Your Royal Highnesses, Ladies and Gentlemen. Among the great problems that scientists conducting research in electro- technique are today trying to solve, is that of enabling two men to converse in whatever part of the world each may be. In 1928 things had reached the stage when we could begin to establish telephonic communication between Sweden and North America. On that occasion there was a telephone line of more than 22,000 kilometres in length between Stockholm and New York. From Stockholm, speech was transmitted via Berlin to England by means of a cable and overhead lines; from England by means of wireless to New York; then, via a cable and lines by land, over to Los Angeles and back to New York, and from there by means of a new line to Chicago, returning finally to New York. In spite of the great distance, the words could be heard distinctly and this is explained by the fact that there were no fewer than 166 amplifiers along the line. The principle of construction of an amplifier is very simple. A glowing filament sends out a stream of electrons. When the speech waves reach the amplifier, they oscillate in tune with the sound waves but are weakened. The speech waves are now made to put the stream of electrons in the same state of oscillation as they have themselves.
    [Show full text]
  • Tao Awarded Nemmers Prize
    Tao Awarded Nemmers Prize Northwestern University has announced that numerous other awards, including the Terence Chi-Shen Tao has received the 2010 Salem Prize (2000), the Bôcher Prize Frederic Esser Nemmers Prize in Mathematics, be- (2002), the Clay Research Award of the lieved to be one of the largest monetary awards in Clay Mathematics Institute (2003), the mathematics in the United States, for outstanding SASTRA Ramanujan Prize (2006), the achievements in the discipline. Awarded to schol- Ostrowski Prize (2007), the Waterman ars who made major contributions to new knowl- Award (2008), and the King Faisal Prize edge or to the development of significant new (cowinner, 2010). He is a Fellow of the modes of analysis, the prize carries a US$175,000 Royal Society, the Australian Academy stipend. of Sciences (corresponding member), Tao, a professor of mathematics at University the U.S. National Academy of Sciences of California, Los Angeles, was honored “for math- (foreign member), and the American ematics of astonishing breadth, depth and original- Academy of Arts and Sciences. ity”. In connection with the award, Tao will deliver Tao’s research interests include Terence Tao public lectures and participate in other scholarly harmonic analysis, partial dif- activities at Northwestern during the 2010–2011 ferential equations, combinatorics, and num- and 2011–2012 academic years. ber theory. He is an associate editor of the Tao, who has been dubbed the “Mozart of American Journal of Mathematics (2002–) and Math”, was born in Adelaide, Australia, in 1975. of Dynamics of Partial Differential Equations He started to learn calculus when he was seven (2003–) and an editor of the Journal of the Ameri- years old.
    [Show full text]
  • Is String Theory Holographic? 1 Introduction
    Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5].
    [Show full text]
  • The Discovery of Asymptotic Freedom
    The Discovery of Asymptotic Freedom The 2004 Nobel Prize in Physics, awarded to David Gross, Frank Wilczek, and David Politzer, recognizes the key discovery that explained how quarks, the elementary constituents of the atomic nucleus, are bound together to form protons and neutrons. In 1973, Gross and Wilczek, working at Princeton, and Politzer, working independently at Harvard, showed that the attraction between quarks grows weaker as the quarks approach one another more closely, and correspondingly that the attraction grows stronger as the quarks are separated. This discovery, known as “asymptotic freedom,” established quantum chromodynamics (QCD) as the correct theory of the strong nuclear force, one of the four fundamental forces in Nature. At the time of the discovery, Wilczek was a 21-year-old graduate student working under Gross’s supervision at Princeton, while Politzer was a 23-year-old graduate student at Harvard. Currently Gross is the Director of the Kavli Institute for Theoretical Physics at the University of California at Santa Barbara, and Wilczek is the Herman Feshbach Professor of Physics at MIT. Politzer is Professor of Theoretical Physics at Caltech; he joined the Caltech faculty in 1976. Of the four fundamental forces --- the others besides the strong nuclear force are electromagnetism, the weak nuclear force (responsible for the decay of radioactive nuclei), and gravitation --- the strong force was by far the most poorly understood in the early 1970s. It had been suggested in 1964 by Caltech physicist Murray Gell-Mann that protons and neutrons contain more elementary objects, which he called quarks. Yet isolated quarks are never seen, indicating that the quarks are permanently bound together by powerful nuclear forces.
    [Show full text]
  • Inventory to the Herbert C. Brown Papers, 1928-2005
    INVENTORY TO THE HERBERT C. BROWN PAPERS, 1928-2005 Purdue University Libraries Karnes Archives and Special Collections 504 West State Street West Lafayette, Indiana 47907-2058 (765) 494-2839 http://www.lib.purdue.edu/spcol ©2008 Purdue University Libraries. All rights reserved. Compiled by: Margaret S. Morris, 2008 Revised by: Elizabeth M. Wilkinson, July 2008, May 2012, December 2012 Descriptive Summary Creator Information Brown, Herbert C., 1912 –2004 Title Herbert C. Brown papers Collection Identifier MSF 4 Date Span 1928-2005, predominant 1940s–1990s Abstract Business and personal papers of Herbert C. Brown, educator, chemist, and recipient of the 1979 Nobel Prize for Chemistry Extent 420 cubic feet (448 boxes) Finding Aid Author Margaret S. Morris, 2006 – 2008; Processing of additional materials and revisions made by Elizabeth Wilkinson, 2008, 2012 Languages English Repository Virginia Kelly Karnes Archives and Special Collections Research Center, Purdue University Libraries Administrative Information Location Information: ASCR Access Restrictions: Collection is open for research. The collection is stored offsite; 48 hours notice is required to access the collection. Some materials have been restricted due to privacy and legal issues Acquisition Donated by Herbert C. Brown and his son, Charles A. Information: Brown Custodial History: The Herbert C. Brown papers were donated to Purdue University by Herbert C. Brown when he was on the faculty at Purdue. Brown’s papers were originally housed in the small library room adjacent to his office that was provided to Brown when he became a Professor Emeritus in 1978. The papers remained as part of the Purdue Chemistry Department until Brown’s death in 2004, when they were transferred to the 12/21/2012 2 archives.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]