Tao Awarded Nemmers Prize
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TWAS Fellowships Worldwide
CDC Round Table, ICTP April 2016 With science and engineering, countries can address challenges in agriculture, climate, health TWAS’s and energy. guiding principles 2 Food security Challenges Water quality for a Energy security new era Biodiversity loss Infectious diseases Climate change 3 A Globally, 81 nations fall troubling into the category of S&T- gap lagging countries. 48 are classified as Least Developed Countries. 4 The role of TWAS The day-to-day work of TWAS is focused in two critical areas: •Improving research infrastructure •Building a corps of PhD scholars 5 TWAS Research Grants 2,202 grants awarded to individuals and research groups (1986-2015) 6 TWAS’ AIM: to train 1000 PhD students by 2017 Training PhD-level scientists: •Researchers and university-level educators •Future leaders for science policy, business and international cooperation Rapidly growing opportunities P BRAZIL A K I N D I CA I RI A S AF TH T SOU A N M KENYA EX ICO C H I MALAYSIA N A IRAN THAILAND TWAS Fellowships Worldwide NRF, South Africa - newly on board 650+ fellowships per year PhD fellowships +460 Postdoctoral fellowships +150 Visiting researchers/professors + 45 17 Programme Partners BRAZIL: CNPq - National Council MALAYSIA: UPM – Universiti for Scientific and Technological Putra Malaysia WorldwideDevelopment CHINA: CAS - Chinese Academy of KENYA: icipe – International Sciences Centre for Insect Physiology and Ecology INDIA: CSIR - Council of Scientific MEXICO: CONACYT– National & Industrial Research Council on Science and Technology PAKISTAN: CEMB – National INDIA: DBT - Department of Centre of Excellence in Molecular Biotechnology Biology PAKISTAN: ICCBS – International Centre for Chemical and INDIA: IACS - Indian Association Biological Sciences for the Cultivation of Science PAKISTAN: CIIT – COMSATS Institute of Information INDIA: S.N. -
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
Millennium Prize for the Poincaré
FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T. -
What's Inside
Newsletter A publication of the Controlled Release Society Volume 32 • Number 1 • 2015 What’s Inside 42nd CRS Annual Meeting & Exposition pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device Interview with Paolo Colombo Patent Watch Robert Langer Awarded the Queen Elizabeth Prize for Engineering Newsletter Charles Frey Vol. 32 • No. 1 • 2015 Editor Table of Contents From the Editor .................................................................................................................. 2 From the President ............................................................................................................ 3 Interview Steven Giannos An Interview with Paolo Colombo from University of Parma .............................................. 4 Editor 42nd CRS Annual Meeting & Exposition .......................................................................... 6 What’s on Board Access the Future of Delivery Science and Technology with Key CRS Resources .............. 9 Scientifically Speaking pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting ............................. 10 Arlene McDowell Editor In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device ........................................................................................................ 12 Patent Watch ................................................................................................................... 14 Special -
4. a Close Call: How a Near Failure Propelled Me to Succeed By
Early Career When I entered graduate study at Princeton, I brought A Close Call: How a my study habits (or lack thereof) with me. At the time in Princeton, the graduate classes did not have any home- Near Failure Propelled work or tests; the only major examination one had to pass (apart from some fairly easy language requirements) were Me to Succeed the dreaded “generals’’—the oral qualifying exams, often lasting over two hours, that one would take in front of Terence Tao three faculty members, usually in one’s second year. The questions would be drawn from five topics: real analysis, For as long as I can remember, I was always fascinated by complex analysis, algebra, and two topics of the student’s numbers and the formal symbolic operations of mathe- choice. For most of the other graduate students in my year, matics, even before I knew the uses of mathematics in the preparing for the generals was a top priority; they would real world. One of my earliest childhood memories was read textbooks from cover to cover, organise study groups, demanding that my grandmother, who was washing the and give each other mock exams. It had become a tradition windows, put detergent on the windows in the shape of for every graduate student taking the generals to write up numbers. When I was particularly rowdy as a child, my the questions they received and the answers they gave for parents would sometimes give me a math workbook to future students to practice. There were even skits performed work on instead, which I was more than happy to do. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5]. -
The Work of Terence Tao
The work of Terence Tao Charles Fefferman Mathematics at the highest level has several flavors. On seeing it, one might say: (A) What amazing technical power! (B) What a grand synthesis! (C) How could anyone not have seen this before? (D) Where on earth did this come from? The work of Terence Tao encompasses all of the above. One cannot hope to capture its extraordinary range in a few pages. My goal here is simply to exhibit a few contributions by Tao and his collaborators, sufficient to produce all the reactions (A)...(D). I shall discuss the Kakeya problem, nonlinear Schrödinger equations and arithmetic progressions of primes. Let me start with a vignette from Tao’s work on the Kakeya problem, a beautiful and fundamental question at the intersection of geometry and combinatorics. I shall state the problem, comment briefly on its significance and history, and then single out my own personal favorite result, by Nets Katz and Tao. The original Kakeya problem was to determine the least possible area of a plane region inside which a needle of length 1 can be turned a full 360 degrees. Besicovitch and Pál showed that the area can be taken arbitrarily small. In its modern form, the Kakeya problem is to estimate the fractal dimension of a “Besicovitch set” E ⊂ Rn, i.e., a set containing line segments of length 1 in all directions. There are several relevant notions of “fractal dimension”. Here, let us use the Minkowski dimension, defined in terms of coverings of E by small balls of a fixed radius δ. -
A View from the Bridge Natalie Paquette
INFERENCE / Vol. 3, No. 4 A View from the Bridge Natalie Paquette tring theory is a quantum theory of gravity.1 Albert example, supersymmetric theories require particles to Einstein’s theory of general relativity emerges natu- come in pairs. For every bosonic particle there is a fermi- rally from its equations.2 The result is consistent in onic superpartner. Sthe sense that its calculations do not diverge to infinity. Supersymmetric field theory has a disheartening String theory may well be the only consistent quantum impediment. Suppose that a supersymmetric quantum theory of gravity. If true, this would be a considerable field theory is defined on a generic curved manifold. The virtue. Whether it is true or not, string theory is indis- Euclidean metric of Newtonian physics and the Lorentz putably the source of profound ideas in mathematics.3 metric of special relativity are replaced by the manifold’s This is distinctly odd. A line of influence has always run own metric. Supercharges correspond to conserved Killing from mathematics to physics. When Einstein struggled spinors. Solutions to the Killing spinor equations are plen- to express general relativity, he found the tools that he tiful in a flat space, but the equations become extremely needed had been created sixty years before by Bernhard restrictive on curved manifolds. They are so restrictive Riemann. The example is typical. Mathematicians discov- that they have, in general, no solutions. Promoting a flat ered group theory long before physicists began using it. In supersymmetric field theory to a generic curved mani- the case of string theory, it is often the other way around. -
Causal Aggregation: Estimation and Inference of Causal Effects by Constraint-Based Data Fusion
Causal aggregation: estimation and inference of causal effects by constraint-based data fusion Jaime Roquero Gimenez and Dominik Rothenhäusler Department of Statistics Stanford University Stanford, CA 94305, USA Abstract Randomized experiments are the gold standard for causal inference. In experiments, usually one variable is manipulated and its effect on an outcome is measured. However, practitioners may also be interested in the effect on a fixed target variable of simultaneous interventions on multiple covariates. We propose a novel method that allows to estimate the effect of joint interventions using data from different experiments in which only very few variables are manipulated. If the joint causal effect is linear, the proposed method can be used for estimation and inference of joint causal effects, and we characterize conditions for identifiability. The proposed method allows to combine data sets arising from randomized experiments as well as observational data sets for which IV assumptions or unconfoundedness hold: we indicate how to leverage all the available causal information to efficiently estimate the causal effects in the overidentified setting. If the dimension of the covariate vector is large, we may have data from experiments on every covariate, but only a few samples per randomized covariate. Under a sparsity assumption, we derive an estimator of the causal effects in this high-dimensional scenario. In addition, we show how to deal with the case where a lack of experimental constraints prevents direct estimation of the causal effects. When the joint causal effects are non-linear, we characterize conditions under which identifiability holds, and propose a non-linear causal aggregation methodology for experimental data sets similar to the gradient boosting algorithm where in each iteration we combine weak learners trained on different datasets using only unconfounded samples. -
Superstring Theory Volume 2: Loop Amplitudes, Anomalies and Phenomenology 25Th Anniversary Edition
Cambridge University Press 978-1-107-02913-2 - Superstring Theory: Volume 2: Loop Amplitudes, Anomalies and Phenomenology: 25th Anniversary Edition Michael B. Green, John H. Schwarz and Edward Witten Frontmatter More information Superstring Theory Volume 2: Loop Amplitudes, Anomalies and Phenomenology 25th Anniversary Edition Twenty-five years ago, Michel Green, John Schwarz, and Edward Witten wrote two volumes on string theory. Published during a period of rapid progress in this subject, these volumes were highly influential for a generation of students and researchers. Despite the immense progress that has been made in the field since then, the systematic exposition of the foundations of superstring theory presented in these volumes is just as relevant today as when first published. Volume 2 is concerned with the evaluation of one-loop amplitudes, the study of anomalies, and phenomenology. It examines the low energy effective field theory analysis of anomalies, the emergence of the gauge groups E8 × E8 and SO(32), and the four-dimensional physics that arises by compactification of six extra dimensions. Featuring a new Preface setting the work in context in light of recent advances, this book is invaluable for graduate students and researchers in high energy physics and astrophysics, as well as for mathematicians. MICHAEL B. GREEN is the Lucasian Professor of Mathematics at the University of Cambridge, JOHN H. SCHWARZ is the Harold Brown Professor of Theoretical Physics at the California Institute of Technology, and EDWARD WITTEN is the Charles Simonyi Professor of Mathematical Physics at the Institute for Advanced Study. Each of them has received numerous honors and awards.