Steven Weinberg

Total Page:16

File Type:pdf, Size:1020Kb

Steven Weinberg Obituary Steven Weinberg (1933–2021) Theoretical physicist whose electroweak theory won the Nobel prize. teven Weinberg brought the funda- on to positions at Columbia University, New mental understanding of nature to York; the University of Berkeley, California; new levels of power and completeness. the Massachusetts Institute of Technology in He played a central part in formulating Cambridge; and, in 1973, to Harvard University and establishing theoretical physics’ in Cambridge, where he was Higgins Professor Stwo standard models — the standard model of Physics. In 1982, he moved to the University of fundamental interactions and the standard of Texas at Austin, where he remained, teach- model of cosmology. His greatest achievement ing until earlier this year. was to propose the unified theory of electro- Scientists, no less than composers, have magnetism and weak interactions, which is still styles. Einstein and Richard Feynman were in use. This won him the Nobel Prize in Phys- rebellious, most comfortable when they were ics in 1979, shared with his school classmate ‘thinking different’. Weinberg was not like that. Sheldon Lee Glashow, and with Abdus Salam. His approach was scholarly. Most obviously, he His 1967 Physical Review Letters paper, ‘A was keenly interested in the history of physics in Model of Leptons’, combined disparate ideas the West, about which he wrote several deeply about gauge symmetry, symmetry breaking researched and unashamedly ‘Whiggish’ books, and the classification of particles into an ele- most recently To Explain the World (2015). gant whole. Given the state of knowledge at He paid close attention to other people’s CERN/SPL the time, the breakthrough still calls to mind work. I remember several rather terrifying Einstein’s description of Niels Bohr’s atomic appeared in 1972, high-energy particle physics phone calls during which he quizzed me about model: “the highest form of musicality in the and cosmology were regarded as distinct sub- details of mathematical derivations in my or sphere of thought”. jects, with different cultures and communities. others’ papers. Amazingly, given its scope and ambition, After Weinberg knocked down the barriers, He would not let go of obscurities that nothing in the paper needs essential revision a new generation prospered in the border caught his attention. Several of his most today. But it was incomplete in two important zone. A central message of the book was that important investigations were sparked when ways. First, Weinberg conjectured, but could the Big Bang should be considered as a unique, he perceived gaps or unexplored conse- not prove, that his theory was ‘renormalizable’, gigantic experiment in high-energy physics. quences. His work on electroweak interactions in that incorporating quantum fluctuations He made his case by showing how hypothe- grew out of wrestling with the confused liter- would not lead to ill-defined mathematical ses about neutrino properties could be tested ature of its component ideas. If Einstein and expressions. That problem was solved for through cosmological observations. His pop- Feynman call to mind Beethoven, Weinberg quantum electrodynamics — the theory of ular book on the topic, The First Three Minutes calls to mind Bach. photons and their interactions — in the 1950s. It (1977), found a large audience. Later in his career, Weinberg extended the was even harder to crack in Weinberg’s unified Weinberg was born in New York City to ideas he had pioneered in new directions. He theory, and its solution brought in new ideas. Jewish immigrant parents. He credited his made suggestions about unified field theory, Second, it really was just a theory of lep- father with encouraging his interest in science. the nature of dark matter and the possibility tons — electrons, muons and their neutrinos. He graduated in 1950 from the Bronx High of a multiverse. These ideas, attractive but as It left out the world of strongly interacting School of Science, the city’s flagship for edu- yet unproven, continue to inspire research. hadrons, including protons, neutrons and cating young scientists. Leon Cooper and Weinberg sometimes expressed strong most of the vast zoo of particles observed in Melvin Schwartz were near-contemporaries, views against religion, such as this: “Anything high-energy accelerators. Remarkably, how- as well as Glashow, to name just those who that we scientists can do to weaken the hold of ever, quantum chromodynamics — the mod- went on to get Nobel prizes in physics. It is religion should be done and may in the end be ern theory of strong interactions, based on hard to resist the implication that it is probably our greatest contribution to civilization.” His, quarks and gluons — combines harmoniously good science policy to welcome immigrants more usual, jovial appreciation of the human with Weinberg’s model. The same is true for and bring bright children together. comedy was exemplified by the way that, given general relativity, Einstein’s theory of gravity. After undergraduate studies at Cornell the chance, he would sneak off from stiff par- Weinberg had a leading role in orchestrating University in Ithaca, New York, Weinberg ties to play games with the children. this powerful consolidation of fundamental spent a year at Nordita (the Nordic Institute physics, in particular by calculating its exper- for Theoretical Physics) in Copenhagen, Frank Wilczek is Herman Feshbach Professor imental consequences. The discovery, in the working on quantum field theory with Gunnar of Physics at the Massachusetts Institute of 1980s, of the W and Z bosons, which had pre- Källén, whom he often mentioned as a strong Technology and founding director of the cisely the masses and other properties pre- influence. He completed his PhD at Prince- Tsung-Dao Lee Institute in Shanghai, China. dicted by his model, was its crowning success. ton University, New Jersey, with Sam Treiman He has been an admiring friend of, and an The other major strand in Weinberg’s work advising on his thesis about how the strong occasional competitor with, Steven Weinberg was physical cosmology. When his land- interaction complicates the interpretation throughout his adult life. mark book Gravitation and Cosmology first of weak-interaction observations. He went e-mail: [email protected] Nature | Vol 596 | 12 August 2021 | 183 ©2021 Spri nger Nature Li mited. All rights reserved. .
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Steven Weinberg Cv Born
    STEVEN WEINBERG CV BORN: May 3, 1933, in New York, N.Y. EDUCATION: Cornell University, 1950–1954 (A.B., 1954) Copenhagen Institute for Theoretical Physics, 1954–1955 Princeton University, 1955–1957 (Ph.D.,1957). HONORARY DEGREES: Harvard University, A.M., 1973 Knox College, D.Sc., 1978 University of Chicago, Sc.D., 1978 University of Rochester, Sc.D., l979 Yale University, Sc.D., 1979 City University of New York,Sc.D., 1980 Clark University, Sc.D., 1982 Dartmouth College, Sc.D., 1984 Weizmann Institute, Ph.D. Hon.Caus., 1985 Washington College, D.Litt., 1985 Columbia University, Sc.D., 1990 University of Salamanca, Sc.D., 1992 University of Padua, Ph.D. Hon.Caus., 1992 University of Barcelona, Sc.D., 1996 Bates College, Sc. D., 2002 McGill University, Sc. D., 2003 University of Waterloo, Sc. D., 2004 Renssalear Polytechnic Institue, Sc. D., 2016 Rockefeller University, Sc. D., 2017 PRESENT POSITION: Josey Regental Professor of Science, University of Texas, 1982– PAST POSITIONS: Columbia University, 1957–1959 Lawrence Radiation Laboratory, 1959–1960 University of California, Berkeley, 1960–1969 On leave, Imperial College, London, 1961–1962 Steven Weinberg 2 Became full professor, 1964 On leave, Harvard University, 1966–1967 On leave, Massachusetts Institute of Technology, 1967–1969 Massachusetts Institute of Technology, 1969–1973, Professor of Physics Harvard University, 1973–1983, Higgins Professor of Physics On leave 1976–1977, as Visiting Professor of Physics, Stanford University Smithsonian Astrophysical Observatory, 1973-1983, Senior
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Download This Article in PDF Format
    The Second Lepton Family Klaus Winter, CERN The Nobel Prize for Physics for 1988 was awarded to L. Lederman, M. Schwartz and J. Steinberger for work on neutrinos in the early 1960s. In a letter [1] addressed to the "dear radioactive ladies and gentlemen", writ­ ten in December 1930, Wolfgang Pauli proposed, as a "desperate remedy" to save the principle of conservation of energy in beta-decay, the idea of the neutrino, a neutral particle of spin 1/2 and with a mass not larger than 0.01 proton mass. "The continuous beta-spectrum [2] would then become understandable by the assumption that in beta-decay a neutrino is emitted together with the electron, in such a way that the sum of the energies of the neutrino and electron is constant." Pauli did not specify at that time Fig. 1 — A recent photograph taken at CERN of Leon Lederman (left), whether the neutrino was to be ejected Jack Steinberger (centre) and Melvin Schwartz. or created. In his famous paper "An attempt of a theory of beta-decay" [3] the muon not decay into e + at the rate ween 1 and 2 GeV should be achievable. E. Fermi used the neutrino concept of predicted if such a non-locality exis­ Would these synchrotrons though, deli­ Pauli together with the concept of the ted ? ". On this view the muon would vir­ ver enough neutrinos? According to nucleon of Heisenberg. He assumed tually dissociate into W + v, the charged their specifications they should accele­ that in beta-decay a pair comprising an W would radiate a and W + v would rate 1011 protons per second, an unpre­ electron and a neutrino is created, analo­ recombine to an electron.
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Nobel Pris Og NBI
    Hvilke forskere, både danske og udenlandske, med tilknytning til NBI har gennem tiden modtaget en nobelpris? M I Nobelpristagere med tilknytning til NBI Der er en lang række Nobelpristagere, som har været ansat i en eller anden form på NBI (Niels Bohr Institutet). Der er desuden en del, der har opholdt sig og arbejdet på institutet i en periode, men ikke har været ansat. De har så været lønnet af deres hjemmeuniversitet og brugt tiden til et samarbejde med en eller flere forskere på NBI, som oftest med en videnskabelig artikel som resultat. Endeligt har der i ”utallige” år været en skik, at fysik nobelpristagere blev inviteret til at komme til København, give en forelæsning, og efter eget ønske blive lidt tid umiddelbart efter modtagelsen af Nobelprisen (hvor de jo alligevel var i Stockholm). I den form har en meget stor del af nobelpristagerne efter institutets oprettelse, været på besøg.. Jeg husker selv fra et af mine første studieår en strålende forelæsning af: Donald Arthur Glaser f: 1926 i USA nobelpris i 1960, med en efterfølgende animeret fest med nobelpristageren i fysik- matematik- og kemi- studerendes forening (som hed parentesen). Der har især i Bohrs tid men været en lang række konferencer og møder, hvor stort set hele den videnskabelige verdens store, har været tilstede f.eks.: Max Karl Ernst Ludwig Planck f: D 1858 d: 1947 nobelpris 1916, Albert Einstein f: D 1879 d: 1955 nobelrpis 1921, Douglas D. Osheroff f: USA 1945 nobelpris 1996 og mange, mange andre. I den nedenstående liste er udvalgt de, der dokumenterbart har haft en eller anden form for regulær ansættelse på NBI.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Melvin Schwartz 1932-2006
    MELVIN SCHWARTZ 1932-2006 A Biographical Memoir by N. P. SAMIOS AND P. YAMIN © 2012 The National Academy of Sciences Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MELVIN SCHWARTZ Courtesy of Brookhaven National Laboratories. November 2, 1932–August 28, 2006 BY N. P. SAMIOS AND P. YAMIN MEL SCHWARTZ DIED ON August 28, 2006, in Twin Falls, Idaho. He was born on 1 November 2, 1932, in New York City. He grew up in the Great Depression, but with a sense of optimism and desire to use his mind for the betterment of human- kind. He entered the Bronx High School of Science in the fall of 1945. It was there that his interest in physics began and that he recognized the importance of interactions with peers in determining his sense of direction in life. One of his classmates and future colleagues recalled that “even then” he wanted a Nobel Prize. Mel noted: My interest in physics began at the age of 12 when I entered the Bronx High School of Science. The four years I spent there were certainly among the most exciting and stimulating in my life, mostly because of the interaction with the other students of similar background, interest, and ability. MELVIN SCHWARTZ MELVIN On Sunday afternoons he attended a school run by the secular and Zionist Yiddish and many others. As Mel commented, “This faculty [was] at this time unmatched by any in the world, largely Nationaler Arbeter Farband (Jewish National Workers Alliance).
    [Show full text]
  • Nobel Prize for Physics, 1979
    Nobel Prize for Physics, 1979 Abdus Sal am Physics' most prestigious accolade forces is a significant milestone in goes this year to Sheldon Glashow, the constant quest to describe as Abdus Salam and Steven Weinberg much as possible of the world for their work in elucidating the inter­ around us from a minimal set of actions of elementary particles, and initial ideas. in particular for the development of 'At first sight there may be little or the theory which unifies the electro­ no similarity between electromag­ magnetic and weak forces. netic effects and the phenomena This synthesis of two of the basic associated with weak interactions', forces of nature must be reckoned as wrote Sheldon Glashow in 1960. one of the crowning achievements 'Yet remarkable parallels emerge...' of a century which has already seen Both kinds of interactions affect the birth of both quantum mechanics leptons and hadrons; both appear to and relativity. be 'vector' interactions brought Electromagnetism and the weak about by the exchange of particles force might appear to have little to carrying unit spin and negative pari­ do with each other. Electromagne­ ty; both have their own universal tism is our everyday world — it holds coupling constant which governs the atoms together and produces light, strength of the interactions. while the weak force was for a long These vital clues led Glashow to time known only for the relatively propose an ambitious theory which obscure phenomenon of beta-decay attempted to unify the two forces. radioactivity. However there was one big difficul­ The successful unification of these ty, which Glashow admitted had to two apparently highly dissimilar be put to one side.
    [Show full text]
  • Dzhelepov Laboratory of Nuclear Problems
    Dzhelepov Laboratory of Nuclear Problems Dmitry V.Naumov Presented by O.Smirnov Dubna JINR New elements 102, {103, 104, 105(Db), 107}, 114, 115, 116, 117, 118 are synthesized Hypothesis of neutrino oscillations (1957г.) New particles: anti-sigma- minus hyperon And many other discoveries JINR Employed ~ 5000: 1200 - scientists, 2000 - engineers 7 labs. Each lab is as a big research institute 18 member-states and 6 associated members 1500 scientific publications Collaboration with 700 scientific centers and universities in 64 countries Expected budget in 2017-2023 1, 472 billion USD History ● May, 7 1946. First discussion of «construction of a power cyclotron» at special committee of the government ● 18 August 1946. Soviet government approved the proposal of Academician Igor Kurchatov to construct in USSR „the installation M” for fundamental studies in nuclear physics. ● 14 December 1949. The 480 MeV proton synchrocyclotron started operation at the Hydrotechnical Laboratory in Dubna, the most powerful accelerator in the world at that time. ● 26 March 1956. Laboratory of Nuclear Problems of JINR has been founded. M.G.Meshcheryakov Synchrocyclotron 680 MeV (1953) Discoveries Half of discoveries (37) in physics recorded in Soviet Union belongs to JINR 15 of these belongs to LNP Nowadays DLNP researchers are also awarded for important discoveries. Discoveries → New Technologies→ Discoveries LNP a laboratory with largest diversity → origin of most of laboratories in JINR Institute of Nuclear Problems (now DLNP) + Electrophysical laboratory (now
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]