B Meson Physics with Jon
Total Page:16
File Type:pdf, Size:1020Kb
B Meson Physics with Jon Michael Gronau , Technion Jonathan Rosner Symposium Chicago, April 1, 2011 – p. 1 Jon’s Academic Ancestors Jon’s academic ancestors were excellent teachers combined theoretical and experimental work PhD with Sam Treiman, Princeton 1965 PhD with John Simpson &⇓ Enrico Fermi, Chicago 1952 – p. 2 A Brief History of Collaboration 1967 1969: PhD at Tel-Aviv Univ, JLR visiting lecturer − Duality diagrams ⇒ Veneziano formula ⇒ String theory 1984 : 2papersonheavyneutrinos 1988 2011: 4paperson D decays, D0-D¯ 0 mixing − (s) US-Israel BSF 60 papers on B physics 18 with Jon’s PhD students & postdoc Jon’s PhD students working on B physics: David London Isard Dunietz Alex Kagan James Amundson Aaron Grant Mihir Worah AmolDighe ZuminLuo DenisSuprun Jon’s Postdoc: Cheng-Wei Chiang – p. 3 History & Future of Exp. B Physics 1980’s & 1990’s: CLEO at CESR, ARGUS at DESY 1990’s & 2000’s: CDF and D0 at Tevatron 2000’s : BaBar at SLAC, Belle at KEK 1964-2000:small CPV in K, 2000-2011:largeCPVin B Theoretical progress in applying flavor symmetries & QCD to hadronic B decays, and lattice QCD to K & B parameters Culminating in Nobel prize for Kobayashi & Maskawa CPV in B & K decays is dominatedby onephase Future : LHCb, ATLAS, CMS at the LHC Super-KEKB 2014? SuperB-Frascati 2016? Will look for small (< 10%) deviations from CKM framework – p. 4 Unitarity Triangle Up & down quark couplings to W are given by d s b λ = sin θc = 0.225 λ2 3 u 1 2 λ Aλ (¯ρ iη¯) − λ2 −2 VCKM =c λ 1 Aλ − − 2 t Aλ3(1 ρ¯ iη¯) Aλ2 1 − − − Wolfenstein 1983 ∗ ∗ ∗ ∗ 3 VubVud + VcbVcd + VtbVtd = 0 normalize by VcbVcd = Aλ | | ∗ ∗ |VubVud| A=(ρ,η) |VtbVtd| V∗ V V∗ V | cb cd| α | cb cd| ρ+iη 1−ρ−iη γ β C=(0,0) B=(1,0) – p. 5 Present Status of CKM Fit A=0.81 0.02, λ=0.2254 0.0008, ρ¯=0.14 0.02, η¯=0.34 0.02 ± ± ± ± β = (21.8 0.9)◦, α = (91.0 3.9)◦,γ = (67.2 3.9)◦ ± ± ± Dir. meas: β = (21.1 0.9)◦, α = (89.0 4.3)◦,γ = (71 23)◦ ± ± ± 0.7 ∆ ∆ m & ms CKM γ ∆ d f i t t e r 0.6 md ICHEP 10 ε 0.5 sin 2β K sol. w/ cos 2β < 0 (excl. at CL > 0.95) 0.4 excluded area has CL > 0.95 η α 0.3 ε K V α ub τ ν 0.2 0.1 Vub γ SL β α 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 ρ – p. 6 CP Asymmetries in B Decays CP asymmetries in B(s) decays determine angles of unitarity triangles Γ(B¯ f¯) Γ(B f) A (B f) → − → CP → ≡ Γ(B¯ f¯)+Γ(B f) → → Some asymmetries are sensitive to physics beyond the Standard Model Next: Five examples – p. 7 B0-B¯0 oscillations and decay 0 Golden case B (t) J/ψKS (CP eigenstate) → Interference between B0-B¯0 mixing and decay B0 cos(∆mt/2) A(B0 ψK ) B0 | i × → S | i→ B¯0 > sin(∆mt/2)ie−2iβ A(B¯0 ψK ) ( | × → S Assume single dominant weak amplitude for b ccs¯ → A(B0 J/ψK ) = A(B¯0 J/ψK ) → S → S ¯ 0 0 Γ(B (t)→ψKS)−Γ(B (t)→ψKS) CP Asym(t) ¯ 0 0 ≡ Γ(B (t)→ψKS)+Γ(B (t)→ψKS) = sin(2β)sin(∆mt) (Bigi & Sanda 1981) – p. 8 0 0 1.Th. Precisionof β in B J/ψK MG & JLR 2009 → ∗ Dominant (“color-suppressed") tree T VcbVcs ¯ ∝ b c¯ J/ψ T includes P using unitarity c ct B0 ∗ ∗ ∗ VtbVts = VubVus VcbVcs s¯ − − K0 t quark integrated over d Small doubly CKM-suppressed (“penguin") P V ∗ V ∝ ub us d 3 suppressions: 0 0 B ¯ K ∗ ∗ 1 2 b s¯ V V /V V = 0.02 (∼ λ ) | ub us| cb cs| 2 Loop factor (absorptive part) u c J/ψ OZI c¯ – p. 9 Artist’s work for Penguin Diagram – p. 10 ξ P/T =? ≡ | | A (t) = C cos(∆mt) + S sin(∆mt) CP − C = 2ξ sin δ sin γ, S = sin 2β + 2ξ cos 2β cos δ sin γ − ξ & δ (strong phase) introduce uncertainty in sin 2β −2 Crude estimate ξ < 10 (MG 1989) Perturbative estimates of ξ (QCDF, 2004; PQCD, 2007) rely on crude estimates of J/ψK0 (¯cT ac) (¯bT as) B0 h | V V −A| i Absorptive part of u-quark loop (Bander, Silverman, Soni 1979) may be enhanced by long-distance rescattering Upper bound ξ < 10−3 from long-distance rescattering Next 3 slides (MG & JLR 2009) – p. 11 Bound on ξ from L-D Rescattering = + i : Strong interaction scattering S S0 T S0 = c ( V ∗ V ) + u ( V ∗ V ): Weak interaction T T ∝ cb cs T ∝ ub us † = 1 = S S T S0T S0 Rescattering formula: absorptive part of u-quark loop 0 u 0 0 u 0 J/ψK B = Σf J/ψK 0 f f B h |T | i h |S | ih |T | i f(J =0, P = 1) = K∗π, ρK, K∗η(‘), (K∗ρ) ... (f = Kπ) − P wave 6 conserves P,T : J/ψK0 f = f J/ψK0 S0 |h |S0| i| |h |S0| i| detailed balance Need upper bound on f J/ψK0 (OZI-suppressed) |h |S0| i| – p. 12 Upper Bound on ξ (cont.) Apply rescattering formula to f c B0 and saturate h |T | i ∗− + sum by a single D Ds (“charming penguin“) state: c 0 ∗− + ∗− + c 0 f B f D D D D B (next) |h |T | i| ≥ |h |S0| s i||h s |T | i| ∗− + 0 Replace D Ds by J/ψK and use strong inequality (OZI-forb) f J/ψK0 < f D∗−D+ (OZI-allow) |h |S0| i| |h |S0| s i| J/ψK c B0 / D∗−D+ c B0 = 1 from decay rates |h|h |T | i| | s |T | i| 3 0 u 0 u 0 0 2 |hJ/ψK |S0|fihf|T |B i| 1 |hf|T |B i| |hf|T |B i| ξf 0 0 < c 0 0 0 ≡ |hJ/ψK |T |B i| strong 3 |hf|T |B i| |hJ/ψK |T |B i| contribution of f to ξ flavor SU(3) fit, QCDF, PQCD ratio of exp. BR −4 Typically ξf < 10 – p. 13 "Charming Penguin" Example f = ρ−K+: B0 D∗−D+ ρ−K+ → s → d B0 D∗− ρ− ¯b u¯ c + Ds u K+ s¯ – p. 14 Flavor Symmetries (examples 2, 3, 4) Isospin symmetry m mu Corrections d− 0.02 ΛQCD ∼ Flavor SU(3) ms m Corrections − d 0.3 ΛQCD ∼ – p. 15 0 + + 2. Isospin for α in B π π−, ρ ρ− → ∗ 1 3 ∗ 3 Tree VubVud ∼ λ Penguin VcbVcd ∼ λ ¯ 2 d + ¯ ¯ π b d + - u ∧∧∧∧∧∧ - π c¯ u ¯ b u¯ B0 ¯ B0 π− u d - - d d - - d π− weak phase γ another weak phase ∆I = 1/2, 3/2 ∆I = 1/2 A(B0 π+π−)/√2 + A(B0 π0π0) = A(B+ π+π0) → → → ∆I = 3/2, weak phase γ I-triangle eliminates “penguin pollution" (MG & D. London 1990) Same B ρρ almost 100% long. polarized, f +−=0.98 0.02 → L ± α = 180◦ (β + γ) = (89.0 4.3)◦ smaller theor. uncertainty − ± – p. 16 3. Isospin for New Physics in B Kπ → 1. B Kπ from b sqq¯ (q = u, d): ∆I = 0, 1 (I = 1, 3) → → Kπ 2 2 Isospin reflection u d 3 isospin amplitudes ↔ A(B+ K0π+)=A +A A(B0 K+π−)=A A → 0 1 − → 0− 1 √2 A(B+ K+π0)=A +A′ √2 A(B0 K0π0)=A A′ → 0 1 → 0− 1 2. Isospin quadrangle relation for amplitudes (and c.c.) A(K0π+) A(K+π−) + √2A(K+π0) √2A(K0π0) = 0 − − ∆I = 0 and ∆I = 1 vanish separately also beyond SM nonP 3. Peng-dominance: P A , 0.1 [B → Kπ fit, QCDF, PQCD] ∈ 0 P ≤ 4. 2, 3 Relation for CP Rate difference ∆ Γ(K¯ π¯) Γ(Kπ) ⇒ ≡ − 2 ∆(K0π+)+∆(K+π−) 2∆(K+π0) 2∆(K0π0)= [ nonP ] − − O P – p. 17 Penguin and Tree in B Kπ → T s P W W u b s b u u, c, t d u g u u d d u d ∗ ∗ C V Vus V Vcs dominant ub u cb ∗ ∗ u s¯ V V / V V = 50 (∼ 2λ−2) | cb cs| | ub us| W u ¯b u¯ – p. 18 Asymmetry Sum Rule & B Kπ “Puzzle" → Γ(K+π−):Γ(K0π+):Γ(K+π0):Γ(K0π0) 2:2:1:1 ≈ A (K0π+) + A (K+π−) 1% A (K+π0) + A (K0π0) CP CP ≈ CP CP 0.009 0.025 0.098+0.012 0.050 0.025 0.01 0.10 ± − −0.011 ± − ± MG & JLR, 2005 predict 0.14 0.04 − ± Violation of sum rule requires new ∆I = 1 amplitude P + T P + T + C Simplifying A (K+π−) A (K+π0) doesnot work CP ≈ CP C T MG & JLR 1999 puzzle, Belle, Nature 03/2008 | | ≪ | | 2 different asymm. require C/T =O(1) & large arg(C/T ) | | Difficult to accommodate in QCD (QCDF, PQCD) large B(B → π0π0) Consistent with flavor SU(3) fits to B P P (Pi = π,K,η,η′) → 1 2 – p. 19 4. Flavor SU(3) Fits to B PP,VP → Best fits, applying flavor SU(3) symmetry (including SU(3) breaking) to (100) rates and asymmetries for charmless O B PP,VP , have reasonable qualities (χ2/d.o.f.