B Meson Physics with Jon

B Meson Physics with Jon

B Meson Physics with Jon Michael Gronau , Technion Jonathan Rosner Symposium Chicago, April 1, 2011 – p. 1 Jon’s Academic Ancestors Jon’s academic ancestors were excellent teachers combined theoretical and experimental work PhD with Sam Treiman, Princeton 1965 PhD with John Simpson &⇓ Enrico Fermi, Chicago 1952 – p. 2 A Brief History of Collaboration 1967 1969: PhD at Tel-Aviv Univ, JLR visiting lecturer − Duality diagrams ⇒ Veneziano formula ⇒ String theory 1984 : 2papersonheavyneutrinos 1988 2011: 4paperson D decays, D0-D¯ 0 mixing − (s) US-Israel BSF 60 papers on B physics 18 with Jon’s PhD students & postdoc Jon’s PhD students working on B physics: David London Isard Dunietz Alex Kagan James Amundson Aaron Grant Mihir Worah AmolDighe ZuminLuo DenisSuprun Jon’s Postdoc: Cheng-Wei Chiang – p. 3 History & Future of Exp. B Physics 1980’s & 1990’s: CLEO at CESR, ARGUS at DESY 1990’s & 2000’s: CDF and D0 at Tevatron 2000’s : BaBar at SLAC, Belle at KEK 1964-2000:small CPV in K, 2000-2011:largeCPVin B Theoretical progress in applying flavor symmetries & QCD to hadronic B decays, and lattice QCD to K & B parameters Culminating in Nobel prize for Kobayashi & Maskawa CPV in B & K decays is dominatedby onephase Future : LHCb, ATLAS, CMS at the LHC Super-KEKB 2014? SuperB-Frascati 2016? Will look for small (< 10%) deviations from CKM framework – p. 4 Unitarity Triangle Up & down quark couplings to W are given by d s b λ = sin θc = 0.225 λ2 3 u 1 2 λ Aλ (¯ρ iη¯) − λ2 −2 VCKM =c λ 1 Aλ − − 2 t Aλ3(1 ρ¯ iη¯) Aλ2 1 − − − Wolfenstein 1983 ∗ ∗ ∗ ∗ 3 VubVud + VcbVcd + VtbVtd = 0 normalize by VcbVcd = Aλ | | ∗ ∗ |VubVud| A=(ρ,η) |VtbVtd| V∗ V V∗ V | cb cd| α | cb cd| ρ+iη 1−ρ−iη γ β C=(0,0) B=(1,0) – p. 5 Present Status of CKM Fit A=0.81 0.02, λ=0.2254 0.0008, ρ¯=0.14 0.02, η¯=0.34 0.02 ± ± ± ± β = (21.8 0.9)◦, α = (91.0 3.9)◦,γ = (67.2 3.9)◦ ± ± ± Dir. meas: β = (21.1 0.9)◦, α = (89.0 4.3)◦,γ = (71 23)◦ ± ± ± 0.7 ∆ ∆ m & ms CKM γ ∆ d f i t t e r 0.6 md ICHEP 10 ε 0.5 sin 2β K sol. w/ cos 2β < 0 (excl. at CL > 0.95) 0.4 excluded area has CL > 0.95 η α 0.3 ε K V α ub τ ν 0.2 0.1 Vub γ SL β α 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 ρ – p. 6 CP Asymmetries in B Decays CP asymmetries in B(s) decays determine angles of unitarity triangles Γ(B¯ f¯) Γ(B f) A (B f) → − → CP → ≡ Γ(B¯ f¯)+Γ(B f) → → Some asymmetries are sensitive to physics beyond the Standard Model Next: Five examples – p. 7 B0-B¯0 oscillations and decay 0 Golden case B (t) J/ψKS (CP eigenstate) → Interference between B0-B¯0 mixing and decay B0 cos(∆mt/2) A(B0 ψK ) B0 | i × → S | i→ B¯0 > sin(∆mt/2)ie−2iβ A(B¯0 ψK ) ( | × → S Assume single dominant weak amplitude for b ccs¯ → A(B0 J/ψK ) = A(B¯0 J/ψK ) → S → S ¯ 0 0 Γ(B (t)→ψKS)−Γ(B (t)→ψKS) CP Asym(t) ¯ 0 0 ≡ Γ(B (t)→ψKS)+Γ(B (t)→ψKS) = sin(2β)sin(∆mt) (Bigi & Sanda 1981) – p. 8 0 0 1.Th. Precisionof β in B J/ψK MG & JLR 2009 → ∗ Dominant (“color-suppressed") tree T VcbVcs ¯ ∝ b c¯ J/ψ T includes P using unitarity c ct B0 ∗ ∗ ∗ VtbVts = VubVus VcbVcs s¯ − − K0 t quark integrated over d Small doubly CKM-suppressed (“penguin") P V ∗ V ∝ ub us d 3 suppressions: 0 0 B ¯ K ∗ ∗ 1 2 b s¯ V V /V V = 0.02 (∼ λ ) | ub us| cb cs| 2 Loop factor (absorptive part) u c J/ψ OZI c¯ – p. 9 Artist’s work for Penguin Diagram – p. 10 ξ P/T =? ≡ | | A (t) = C cos(∆mt) + S sin(∆mt) CP − C = 2ξ sin δ sin γ, S = sin 2β + 2ξ cos 2β cos δ sin γ − ξ & δ (strong phase) introduce uncertainty in sin 2β −2 Crude estimate ξ < 10 (MG 1989) Perturbative estimates of ξ (QCDF, 2004; PQCD, 2007) rely on crude estimates of J/ψK0 (¯cT ac) (¯bT as) B0 h | V V −A| i Absorptive part of u-quark loop (Bander, Silverman, Soni 1979) may be enhanced by long-distance rescattering Upper bound ξ < 10−3 from long-distance rescattering Next 3 slides (MG & JLR 2009) – p. 11 Bound on ξ from L-D Rescattering = + i : Strong interaction scattering S S0 T S0 = c ( V ∗ V ) + u ( V ∗ V ): Weak interaction T T ∝ cb cs T ∝ ub us † = 1 = S S T S0T S0 Rescattering formula: absorptive part of u-quark loop 0 u 0 0 u 0 J/ψK B = Σf J/ψK 0 f f B h |T | i h |S | ih |T | i f(J =0, P = 1) = K∗π, ρK, K∗η(‘), (K∗ρ) ... (f = Kπ) − P wave 6 conserves P,T : J/ψK0 f = f J/ψK0 S0 |h |S0| i| |h |S0| i| detailed balance Need upper bound on f J/ψK0 (OZI-suppressed) |h |S0| i| – p. 12 Upper Bound on ξ (cont.) Apply rescattering formula to f c B0 and saturate h |T | i ∗− + sum by a single D Ds (“charming penguin“) state: c 0 ∗− + ∗− + c 0 f B f D D D D B (next) |h |T | i| ≥ |h |S0| s i||h s |T | i| ∗− + 0 Replace D Ds by J/ψK and use strong inequality (OZI-forb) f J/ψK0 < f D∗−D+ (OZI-allow) |h |S0| i| |h |S0| s i| J/ψK c B0 / D∗−D+ c B0 = 1 from decay rates |h|h |T | i| | s |T | i| 3 0 u 0 u 0 0 2 |hJ/ψK |S0|fihf|T |B i| 1 |hf|T |B i| |hf|T |B i| ξf 0 0 < c 0 0 0 ≡ |hJ/ψK |T |B i| strong 3 |hf|T |B i| |hJ/ψK |T |B i| contribution of f to ξ flavor SU(3) fit, QCDF, PQCD ratio of exp. BR −4 Typically ξf < 10 – p. 13 "Charming Penguin" Example f = ρ−K+: B0 D∗−D+ ρ−K+ → s → d B0 D∗− ρ− ¯b u¯ c + Ds u K+ s¯ – p. 14 Flavor Symmetries (examples 2, 3, 4) Isospin symmetry m mu Corrections d− 0.02 ΛQCD ∼ Flavor SU(3) ms m Corrections − d 0.3 ΛQCD ∼ – p. 15 0 + + 2. Isospin for α in B π π−, ρ ρ− → ∗ 1 3 ∗ 3 Tree VubVud ∼ λ Penguin VcbVcd ∼ λ ¯ 2 d + ¯ ¯ π b d + - u ∧∧∧∧∧∧ - π c¯ u ¯ b u¯ B0 ¯ B0 π− u d - - d d - - d π− weak phase γ another weak phase ∆I = 1/2, 3/2 ∆I = 1/2 A(B0 π+π−)/√2 + A(B0 π0π0) = A(B+ π+π0) → → → ∆I = 3/2, weak phase γ I-triangle eliminates “penguin pollution" (MG & D. London 1990) Same B ρρ almost 100% long. polarized, f +−=0.98 0.02 → L ± α = 180◦ (β + γ) = (89.0 4.3)◦ smaller theor. uncertainty − ± – p. 16 3. Isospin for New Physics in B Kπ → 1. B Kπ from b sqq¯ (q = u, d): ∆I = 0, 1 (I = 1, 3) → → Kπ 2 2 Isospin reflection u d 3 isospin amplitudes ↔ A(B+ K0π+)=A +A A(B0 K+π−)=A A → 0 1 − → 0− 1 √2 A(B+ K+π0)=A +A′ √2 A(B0 K0π0)=A A′ → 0 1 → 0− 1 2. Isospin quadrangle relation for amplitudes (and c.c.) A(K0π+) A(K+π−) + √2A(K+π0) √2A(K0π0) = 0 − − ∆I = 0 and ∆I = 1 vanish separately also beyond SM nonP 3. Peng-dominance: P A , 0.1 [B → Kπ fit, QCDF, PQCD] ∈ 0 P ≤ 4. 2, 3 Relation for CP Rate difference ∆ Γ(K¯ π¯) Γ(Kπ) ⇒ ≡ − 2 ∆(K0π+)+∆(K+π−) 2∆(K+π0) 2∆(K0π0)= [ nonP ] − − O P – p. 17 Penguin and Tree in B Kπ → T s P W W u b s b u u, c, t d u g u u d d u d ∗ ∗ C V Vus V Vcs dominant ub u cb ∗ ∗ u s¯ V V / V V = 50 (∼ 2λ−2) | cb cs| | ub us| W u ¯b u¯ – p. 18 Asymmetry Sum Rule & B Kπ “Puzzle" → Γ(K+π−):Γ(K0π+):Γ(K+π0):Γ(K0π0) 2:2:1:1 ≈ A (K0π+) + A (K+π−) 1% A (K+π0) + A (K0π0) CP CP ≈ CP CP 0.009 0.025 0.098+0.012 0.050 0.025 0.01 0.10 ± − −0.011 ± − ± MG & JLR, 2005 predict 0.14 0.04 − ± Violation of sum rule requires new ∆I = 1 amplitude P + T P + T + C Simplifying A (K+π−) A (K+π0) doesnot work CP ≈ CP C T MG & JLR 1999 puzzle, Belle, Nature 03/2008 | | ≪ | | 2 different asymm. require C/T =O(1) & large arg(C/T ) | | Difficult to accommodate in QCD (QCDF, PQCD) large B(B → π0π0) Consistent with flavor SU(3) fits to B P P (Pi = π,K,η,η′) → 1 2 – p. 19 4. Flavor SU(3) Fits to B PP,VP → Best fits, applying flavor SU(3) symmetry (including SU(3) breaking) to (100) rates and asymmetries for charmless O B PP,VP , have reasonable qualities (χ2/d.o.f.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us