Symposium Celebrating CERN's Discoveries and Looking Into the Future

Total Page:16

File Type:pdf, Size:1020Kb

Symposium Celebrating CERN's Discoveries and Looking Into the Future CERN–EP–2003–073 CERN–TH–2003–281 December 1st, 2003 Proceedings Symposium celebrating the Anniversary of CERN’s Discoveries and a Look into the Future 111999777333::: NNNeeeuuutttrrraaalll CCCuuurrrrrreeennntttsss 111999888333::: WWW±±± &&& ZZZ000 BBBooosssooonnnsss Tuesday 16 September 2003 CERN, Geneva, Switzerland Editors: Roger Cashmore, Luciano Maiani & Jean-Pierre Revol Table of contents Table of contents 2 Programme of the Symposium 4 Foreword (L. Maiani) 7 Acknowledgements 8 Selected Photographs of the Event 9 Contributions: Welcome (L. Maiani) 13 The Making of the Standard Model (S. Weinberg) 16 CERN’s Contribution to Accelerators and Beams (G. Brianti) 30 The Discovery of Neutral Currents (D. Haidt) 44 The Discovery of the W & Z, a personal recollection (P. Darriulat) 57 W & Z Physics at LEP (P. Zerwas) 70 Physics at the LHC (J. Ellis) 85 Challenges of the LHC: – the accelerator challenge (L. Evans) 96 – the detector challenge (J. Engelen) 103 – the computing challenge (P. Messina) 110 Particle Detectors and Society (G. Charpak) 126 The future for CERN (L. Maiani) 136 – 2 – Table of contents (cont.) Panel discussion on the Future of Particle Physics (chaired by Carlo Rubbia) 145 Participants: Robert Aymar, Georges Charpak, Pierre Darriulat, Luciano Maiani, Simon van der Meer, Lev Okun, Donald Perkins, Carlo Rubbia, Martinus Veltman, and Steven Weinberg. Statements from the floor by: Fabiola Gianotti, Ignatios Antoniadis, S. Glashow, H. Schopper, C. Llewellyn Smith, V. Telegdi, G. Bellettini, and V. Soergel. Additional contributions: Comment on the occasion (S. L. Glashow) 174 Comment on Perturbative QCD in early CERN experiments (D. H. Perkins) 175 Personal remarks on the discovery of Neutral Currents (A. Pullia) 177 Appendix Symposium poster 180 List of participants 181 Press Release (English and French versions) 183 – 3 – – 4 – – 5 – – 6 – Foreword The discoveries of neutral currents and of the W and Z bosons marked a watershed in the fortunes of CERN. Over the 20 years that CERN had existed before the neutral current discovery in 1973, the experimental groups here had carried out some remarkable and beautiful experiments – for example, the precision measurements of the (g-2) value of the muon. The stage was set for the great discoveries to come from 1973 onwards, that would transform our views of the fundamental particles and their interactions, and establish CERN as a leading high-energy laboratory. The significance of these discoveries is hard to overestimate. Not only did they put CERN truly "on the map" and establish the validity of the electroweak theory, but for the first time convinced everyone of the importance of renormalisable non-Abelian gauge theories of the fundamental interactions. This in turn paved the way for the precision experiments to be carried out at the LEP collider, which would establish the Standard Model and test its predictions in exhaustive detail. After this interval of time, it is important not only to celebrate these discoveries, but also to view them from today's perspective. Indeed, as we see them now, the implications of these discoveries are even more profound than we thought at the time they were made. We are fortunate that some of the main contributors to the making of the Standard Model are with us today, so that we can hear from them directly how such achievements were made possible, and perhaps extract some wisdom relevant to the future of our field. The discoveries in particle physics which we are recalling today were testimony not only to the greatly increasing experience and know-how of the experimental groups using CERN, but also to the long-established technical excellence of the CERN laboratory. The neutral current discovery depended not only on the existence of the large heavy liquid bubble chamber Gargamelle, developed and built at Saclay, but also on the greatly improved neutrino beam intensity, provided by the fast-cycling PS booster and the new two-component magnetic horn. And the discovery of the W and Z bosons was only possible as a result of the technical tour de force of the proton-antiproton collider staff, based on an idea of Simon van der Meer and the experience gained in the previous programme of beam cooling at the ISR, combined with the determination and enthusiasm of Carlo Rubbia who made the proposal. The idea of the hermetic detector pioneered by UA1 at the Spp S collider was taken up in the LEP detectors and became a driving concept in the design of the LHC detectors, while the UA1 collaboration was the “prototype” of the now well accepted very large international scientific collaborations. Towards the end of this meeting, we shall look forward to the future programme of CERN. We are able to do so with the confidence engendered by our discoveries of long ago. Luciano Maiani (CERN Director General) – 7 – Acknowledgements The organizers would like to thank Carnita Hervet, Valeria Pietropaolo, Susan Maio, Wendy Korda, Stephanie Molinari, Isabelle Billod, David Dallman, Robert Cailliau, Renilde Vanden Broeck, Christine Sutton, Susan Leech O’Neale, Christine Vanoli, Jeannine Muffat Joly, Chantal Brodier, Catherine Cart, Dominique Sanchez, Vittorio Frigo, Catherine Decosse, Ulla Genoud Prachex, Michelle Connor, Karel Safarik, Maximilien Brice and several others, for their precious help in the organization of this symposium. They all contributed to the success of this important event, which recalled significant scientific landmarks in the history of CERN. We would also like to thanks Carnita Hervet and Michelle Connor who helped with the preparation of these proceedings and in particular Jose Galvez who devoted much of his time to preparing the Latex files. – 8 – Selected photographs of the event Photograph taken in the CERN main auditorium. Front row, from left to right: D. H. Perkins, S. Weinberg, L. Maiani, M. Veltman, D. Haidt; second row, from left to right: R. Aymar, P. Messina, G. Brianti, L. Evans, J. Engelen; Third row, from left to right: I. Antoniadis, J. Ellis, F. Gianotti, P. Zerwas, P. Darriulat; fourth row: A. Pullia. Photograph taken in the CERN main auditorium. From left to right: C. Rubbia, G. Charpak, S.C.C. Ting. – 9 – Photograph taken at CERN, in the Salle des Pas Perdus. From left to right: R. Cashmore, P. Messina, C. Rubbia, G. Brianti, L. Evans, L. B. Okun, F. Gianotti, J. Ellis, S. Weinberg, S. Glashow, L. Maiani, S. van der Meer, M. Veltman, P. Zerwas, P. Darriulat, A. Pullia, J. Engelen, R. Aymar, D. Haidt. Photograph taken during lunch at the CERN Glass Box. From left to right: P. Zerwas (partially hidden), G. Bellettini, S. Glashow, S. Weinberg, V. Telegdi. – 10 – Photograph taken in the CERN main auditorium: S. Weinberg and L. Maiani in conversation during a break. Some of the participants in the panel discussion on the Future of Particle Physics, from left to right: R. Aymar, L. B. Okun, L. Maiani, C. Rubbia (Chair), S. Weinberg. – 11 – From left to right: Pierre Darriulat, Roger Cashmore and John Ellis enjoying the lunch break. Jean-Pierre Revol and Georges Charpak during the lunch break. – 12 – Welcome Luciano Maiani (CERN) Welcome everybody. We are very glad to have so many people here today and see so much interest in this Symposium which intends to recall two important discoveries of the past: neutral currents in 1973 and intermediate vector bosons in 1983. There is of course regret for the people who are no longer with us. Above all, I want to mention André Lagarrigue who was really the driving force behind Gargamelle and Paul Musset, one of the main protagonists in the neutral current discovery. Coming back to memories, I want to just recall the wonderful workshop in Rome, back in January 1983 (see Fig. 1), when UA1 first announced that, well, perhaps… they were seeing W bosons. I have a very good memory of this workshop because, in fact, I wasn’t there: I was supposed to give a talk but I was confined to my bed with a bad backache and I was furiously listening to the telephone about the news. UA1 were very cautious in the Workshop, but more – 13 – explicit in the proceedings. In any case, that was really the time when everybody understood that they had made it. Figure 1: Front page of the proceedings of the 3rd Topical Workshop on Proton-Antiproton Collider Physics; Rome, Italy, 12-14 Jan. 1983; CERN Report 83-04. The success of particle physics is built on future challenges more than on past glories: that’s why we decided to dedicate the afternoon of the Symposium to the LHC. As you have seen in the programme, there will be a discussion of various aspects of this very exciting project which will keep us occupied for the next 20 years, I guess. Also, we wanted to take advantage of the presence of so many distinguished colleagues, many former members of the Scientific Policy Committee which met yesterday, and we have organized a panel on the future of CERN and of Particle Physics. I hope this will be a good occasion to discuss what can be done at CERN and in Europe beyond the Large Hadron Collider. – 14 – We have made a special effort to find all the authors of the neutral current discovery with Gargamelle, and of the W & Z discoveries with UA1 and UA2, and many of them are here. It’s a very nice occasion to see so many of our friends at the same time. If any of you desire, you can see some elements of Gargamelle, UA1 and UA2 in the Microcosm exhibit. We have received many nice messages, in particular from Fred Bullock, Peter Kalmus, Peter Jenni and many others, who could not be with us today for various reasons, and we would like to thank them for their interest in this event.
Recommended publications
  • Subnuclear Physics: Past, Present and Future
    Subnuclear Physics: Past, Present and Future International Symposium 30 October - 2 November 2011 – The purpose of the Symposium is to discuss the origin, the status and the future of the new frontier of Physics, the Subnuclear World, whose first two hints were discovered in the middle of the last century: the so-called “Strange Particles” and the “Resonance #++”. It took more than two decades to understand the real meaning of these two great discoveries: the existence of the Subnuclear World with regularities, spontaneously plus directly broken Symmetries, and totally unexpected phenomena including the existence of a new fundamental force of Nature, called Quantum ChromoDynamics. In order to reach this new frontier of our knowledge, new Laboratories were established all over the world, in Europe, in USA and in the former Soviet Union, with thousands of physicists, engineers and specialists in the most advanced technologies, engaged in the implementation of new experiments of ever increasing complexity. At present the most advanced Laboratory in the world is CERN where experiments are being performed with the Large Hadron Collider (LHC), the most powerful collider in the world, which is able to reach the highest energies possible in this satellite of the Sun, called Earth. Understanding the laws governing the Space-time intervals in the range of 10-17 cm and 10-23 sec will allow our form of living matter endowed with Reason to open new horizons in our knowledge. Antonino Zichichi Participants Prof. Werner Arber H.E. Msgr. Marcelo Sánchez Sorondo Prof. Guido Altarelli Prof. Ignatios Antoniadis Prof. Robert Aymar Prof. Rinaldo Baldini Ferroli Prof.
    [Show full text]
  • The Institute of Physics
    REGIONAL NEWS 21 The Institute of Physics The forerunner of the Institute of do involves physics - switching on a light, physicists in commerce and industry. The Physics, the Physical Society of London, making a phone call or even baking a Council has established several Profession­ was created in 1874 at a time when the potato in a microwave oven. In industry, al Groups in areas such as consultancy, understanding of the physical world had physicists are helping companies to devel­ engineering physics and advanced been given an enormous impetus with the op novel materials that have physical prop­ systems. publication by James Clerk Maxwell of his erties more versatile that those previously In these days of shrinking science theory of electromagnetism. The creation developed, and they are designing new budgets, the academic physics community of the Physical Society was the response of generations of microchips which are has turned increasingly to its professional the embryonic society of professional and smaller and hence faster. The information representative, the Institute of Physics, to amateur physicists in Britain to what they revolution within which we are currently lobby Government about the importance believed was a major progression of their being buffeted would have been impos­ and relevance of physics. In common with ideas. Indeed, one could say that it was at sible without physicists and their research other science subjects, calls to justify Gov­ this time that much of physics began to - transistors, liquid crystal displays, mag­ ernment expenditure have increased in take on the appearance we recognize netic discs, optical fibres, semiconductor recent years.
    [Show full text]
  • People and Things
    Physics monitor People and things Books received CERN Council Bookshelf At the meeting of CERN's governing Future High Energy Colliders, Editor body, Council, in December, Luciano Weak Neutral Currents - The Zohreh Parsa, AIP Conference Maiani was elected the next Director Discovery of the Electro-Weak Force, Proceedings 397, ISBN 1-56396- General of the Organization, to take edited by David B. Cline, Addison 729-4 office on 1 January 1999, when the Wesley (Frontiers of Physics Series), current Director General, Chris ISBN 0-201-93347-0 Llewellyn Smith, will have completed Proceedings of a meeting held in his five year mandate. A Addison Wesley's Frontiers of Santa Barbara in October 1996 (see distinguished theorist, Luciano Physics Series began in 1961, and March 1997 issue of the CERN Maiani is currently President of the David Cline's anthology on weak Courier, page 16). Italian INFN and has been President neutral currents is the 97th volume in of CERN Council since January the series. 'Frontiers' books usually 1997. make extensive use of lecture notes The Interpretation of Quantum At the same meeting, leading or reprints, and Cline's volume takes Mechanics and the Measurement German science administrator and the latter route. It is divided into 9 Process, by Peter Mittelstaedt, head of Germany's CERN delegation chapters: The Weak Interaction Cambridge University Press 0 521 Hans C. Eschelbacher was elected Uncovered; Forty Years of Weak 55445 4 £30/$44.95 President of CERN Council for an Interactions; The Search for Other initial period of one year from 1 Forms of Weak Interaction; The January 1998, replacing Luciano Electroweak Interaction Picture A volume of interest to the more Maiani.
    [Show full text]
  • 2016 VISPA Newsletter
    Physics and Astronomy VISPA 2016 NEWSLETTER VICTORIA SUBATOMIC PHYSICS AND ACCELERATOR RESEARCH CENTRE Photo credit: CERN ATLAS candidate event for the production of a Higgs boson decaying into two Z bosons that each decay into a muon-antimuon pair. In this issue: ATLAS and the Higgs Discovery ......2 ARIEL and the Accelerator Physics The Future is Here: Research Graduate Program at VISPA ..........8 Training in VISPA. .10 VISPA members of T2K awarded 2016 Breakthrough Prize in Dark Energy and ALTAIR: Experimental Remembering Alan Astbury and Fundamental Physics ................4 Particle Astrophysics in VISPA ........9 the Inaugural Astbury Lecture ......11 Flavour Physics in VISPA ..............6 Research Computing in High Perspectives on New Physics Energy Physics. .10 at the Intensity Frontier .............12 MEMBER LIST FACULTY Name Research Area Justin Albert Experimental particle and astroparticle physics Dean Karlen Experimental particle physics ATLAS and the Higgs Discovery Richard Keeler Experimental particle physics Pavel Kovtun Theoretical physics Robert Kowalewski Experimental particle physics The Large Hadron Collider (LHC) at the CERN laboratory is the highest energy particle Michel Lefebvre Experimental particle physics collider in operation. The ATLAS detector is one of two multipurpose detectors Robert McPherson Experimental particle physics designed to record high energy collisions at the LHC. The UVic ATLAS group has been Maxim Pospelov Theoretical physics Adam Ritz Theoretical physics a member of the ATLAS Collaboration since its foundation in 1992, and contributed J. Michael Roney Experimental particle physics to the design and construction of the ATLAS detector. The LHC started operation in Randy Sobie Experimental particle physics 2010 with proton-proton collisions at 7 TeV centre of mass energy; the energy was EMERITUS FACULTY increased to 8 TeV in 2012.
    [Show full text]
  • Fabiola Gianotti
    Fabiola Gianotti Date of Birth 29 October 1960 Place Rome, Italy Nomination 18 August 2020 Field Physics Title Director-General of the European Laboratory for Particle Physics, CERN, Geneva Most important awards, prizes and academies Honorary Professor, University of Edinburgh; Corresponding or foreign associate member of the Italian Academy of Sciences (Lincei), the National Academy of Sciences of the United States, the French Academy of Sciences, the Royal Society London, the Royal Academy of Sciences and Arts of Barcelona, the Royal Irish Academy and the Russian Academy of Sciences. Honorary doctoral degrees from: University of Uppsala (2012); Ecole Polytechnique Federale de Lausanne (2013); McGill University, Montreal (2014); University of Oslo (2014); University of Edinburgh (2015); University of Roma Tor Vergata (2017); University of Chicago (2018); University Federico II, Naples (2018); Université de Paris Sud, Orsay (2018); Université Savoie Mont Blanc, Annecy (2018); Weizmann Institute, Israel (2018); Imperial College, London (2019). National honours: Cavaliere di Gran Croce dell'Ordine al Merito della Repubblica, awarded by the Italian President Giorgio Napolitano (2014). Special Breakthrough Prize in Fundamental Physics (shared, 2013); Enrico Fermi Prize of the Italian Physical Society (shared, 2013); Medal of Honour of the Niels Bohr Institute, Copenhagen (2013); Wilhelm Exner Medal, Vienna (2017); Tate Medal of the American Institute of Physics for International Leadership (2019). Summary of scientific research Fabiola Gianotti is a particle physicist working at high-energy accelerators. In her scientific career, she has made significant contributions to several experiments at CERN, including UA2 at the proton-antiproton collider (SpbarpS), ALEPH at the Large Electron-Positron collider (LEP) and ATLAS at the Large Hadron Collider (LHC).
    [Show full text]
  • Cusp Effects in Meson Decays
    EPJ Web of Conferences 3, 01008 (2010) DOI:10.1051/epjconf/20100301008 © Owned by the authors, published by EDP Sciences, 2010 Cusp effects in meson decays Bastian Kubis,a Helmholtz-Institut f¨ur Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universit¨at Bonn, D-53115 Bonn, Germany Abstract. The pion mass difference generates a pronounced cusp in the π0π0 invariant mass distribution of K+ π0π0π+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin→ down the S-wave pion–pion scattering lengths to high precision. We present the non-relativistic effective field theory framework that permits to determine the structure of this cusp in a straightforward manner, including the effects of radiative corrections. Applications of the same formalism to other decay channels, in particular η and η′ decays, are also discussed. 1 The pion mass and pion–pion scattering alternative scenario of chiral symmetry breaking under the name of generalized chiral perturbation theory [4]. The approximate chiral symmetry of the strong interac- Fortunately, chiral low-energy constants tend to appear tions severely constrains the properties and interactions in more than one observable,and indeed, ℓ¯3 also features in of the lightest hadronic degrees of freedom, the would-be the next-to-leading-order corrections to the isospin I = 0 0 Goldstone bosons (in the chiral limit of vanishing quark S-wave pion–pion scattering length a0 [2], masses) of spontaneous chiral symmetry breaking that can be identified with the pions. The effective field theory that 7M2 0 = π + ǫ + 4 , a0 2 1 (Mπ) systematically exploits all the consequencesthat can be de- 32πFπ O rived from symmetries is chiral perturbation theory [1,2], 5M2 n 3 o 21 21 which provides an expansion of low-energy observables in = π ¯ + ¯ ¯ + ¯ + ǫ 2 2 ℓ1 2ℓ2 ℓ3 ℓ4 .
    [Show full text]
  • A Tribute to Bj0rn Wiik General Distribution: Jacques Dallemagne, CERN, 1211 Geneva 23, Switzerland
    W M£W HSmzS OF THS p\J\Q fAMM WQ 722S: w PCI mmm FOR w - FOR. SUN, HP, b£C, MMs, Direct single shot and DMA transfers On-board PCI MMU On-board PCI chained DMA controller Generic C library and drivers for Windows NT, MacOS, SOLARIS, Digital UNIX, HPUX, LINUX PWC ?02S: Tf/e FUNCTION COMMWE zeptAcenem FOR W VIC ?2S0 / 22S7 VME transparent mapping in the PCI memory space VME transparent slot 1 and arbiter Full VME master / slave Support D&, D16, D32, D64, direct transfers On-board VME linked list DMA controller The CES-f3Pnet (CES backplane Driver Network) offers an efficient interprocessor communication and synchronization mechanism, combining microsecond-level resolution and network-oriented services over the PVIC. The CES-l3Pnet offers three types of services to ensure efficient communications between CES processors: • An extension of the POSIX inter processes communication (shared memory semaphores - message queues) • An efficient and straightforward message passing system • A full TCF/IF stack using the PVIC as a network device W CjPtO: fi USeZ-PZOQMMMm Q6N6RAL PUZPK6 f/WT / OlUM PHC Stepper motor Controller Timer and counter 32-bit Input / Outputs (TTL or DIFF) Multiple lines PS 455 / PS 232 / PS 422 . Up to 6 GPIOs connected on a single PI02 with PMC carrier boards extension SOFTWARE C\6F Programming Kit for FPGA equations LynxOS and VxWorks drivers for PI02 family CES Geneva, Switzerland Tel: +41-22 792 57 45 Fax: +41-22 792 57 4d EMail: ces^ces.ch CES.D Germany Tel: +49-60 51 96 97 4 ' Fax: +49-60 51 96 97 35 CE6 Creative Electronic Systems 5A, 70 Route du Pont-3utin, CH-1213 Petit-Lancy 1, Switzerland Internet: http://www.ces.ch CREATIVE ELECTRONIC SYSTEMS CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel.
    [Show full text]
  • Calorimetry for Particle Physics
    REVIEWS OF MODERN PHYSICS, VOLUME 75, OCTOBER 2003 Calorimetry for particle physics Christian W. Fabjan and Fabiola Gianotti CERN, 1211 Geneva 23, Switzerland (Published 15 October 2003) Calorimetry has become a well-understood, powerful, and versatile measurement method. Besides perfecting this technique to match increasingly demanding operation at high-energy particle accelerators, physicists are developing low-temperature calorimeters to extend detection down to ever lower energies, and atmospheric and deep-sea calorimeters to scrutinize the universe up to the highest energies. The authors summarize the state of the art, with emphasis on the physics of the detectors and innovative technologies. CONTENTS VI. Citius, Altius, Fortius 1280 A. Introduction 1280 B. Atmospheric calorimeters 1280 I. Introduction 1243 1. Setting the energy scale 1283 II. Electromagnetic Calorimetry 1244 2. Energy resolution 1283 A. Physics of the electromagnetic cascade 1244 C. Deep-water calorimeters 1283 B. Energy resolution of electromagnetic VII. Conclusions 1284 calorimeters 1246 Acknowledgments 1284 1. Stochastic term 1247 References 1284 2. Noise term 1247 3. Constant term 1247 4. Additional contributions 1248 C. Main techniques and examples of facilities 1249 I. INTRODUCTION 1. Homogeneous calorimeters 1249 a. Semiconductor calorimeters 1249 Calorimetry is an ubiquitous detection principle in b. Cherenkov calorimeters 1250 particle physics. Originally invented for the study of c. Scintillation calorimeters 1251 cosmic-ray phenomena, this method was developed and d. Noble-liquid calorimeters 1254 perfected for accelerator-based particle physics experi- 2. Sampling calorimeters 1256 mentation primarily in order to measure the energy of a. Scintillation sampling calorimeters 1257 electrons, photons, and hadrons. Calorimeters are b. Gas sampling calorimeters 1257 blocks of instrumented material in which particles to be c.
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Nobel Pris Og NBI
    Hvilke forskere, både danske og udenlandske, med tilknytning til NBI har gennem tiden modtaget en nobelpris? M I Nobelpristagere med tilknytning til NBI Der er en lang række Nobelpristagere, som har været ansat i en eller anden form på NBI (Niels Bohr Institutet). Der er desuden en del, der har opholdt sig og arbejdet på institutet i en periode, men ikke har været ansat. De har så været lønnet af deres hjemmeuniversitet og brugt tiden til et samarbejde med en eller flere forskere på NBI, som oftest med en videnskabelig artikel som resultat. Endeligt har der i ”utallige” år været en skik, at fysik nobelpristagere blev inviteret til at komme til København, give en forelæsning, og efter eget ønske blive lidt tid umiddelbart efter modtagelsen af Nobelprisen (hvor de jo alligevel var i Stockholm). I den form har en meget stor del af nobelpristagerne efter institutets oprettelse, været på besøg.. Jeg husker selv fra et af mine første studieår en strålende forelæsning af: Donald Arthur Glaser f: 1926 i USA nobelpris i 1960, med en efterfølgende animeret fest med nobelpristageren i fysik- matematik- og kemi- studerendes forening (som hed parentesen). Der har især i Bohrs tid men været en lang række konferencer og møder, hvor stort set hele den videnskabelige verdens store, har været tilstede f.eks.: Max Karl Ernst Ludwig Planck f: D 1858 d: 1947 nobelpris 1916, Albert Einstein f: D 1879 d: 1955 nobelrpis 1921, Douglas D. Osheroff f: USA 1945 nobelpris 1996 og mange, mange andre. I den nedenstående liste er udvalgt de, der dokumenterbart har haft en eller anden form for regulær ansættelse på NBI.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]