June 16, 2015 15:44 60 Years of CERN Experiments and Discoveries – 9.75in x 6.5in b2114-ch06 page 137 The Discovery of the W and Z Particles Luigi Di Lella1 and Carlo Rubbia2 1Physics Department, University of Pisa, 56127 Pisa, Italy
[email protected] 2GSSI (Gran Sasso Science Institute), 67100 L’Aquila, Italy
[email protected] This article describes the scientific achievements that led to the discovery of the weak intermediate vector bosons, W± and Z, from the original proposal to modify an existing high-energy proton accelerator into a proton–antiproton collider and its implementation at CERN, to the design, construction and operation of the detectors which provided the first evidence for the production and decay of these two fundamental particles. 1. Introduction The first experimental evidence in favour of a unified description of the weak and electromagnetic interactions was obtained in 1973, with the observation of neutrino interactions resulting in final states which could only be explained by assuming that the interaction was mediated by the exchange of a massive, electrically neutral virtual particle.1 Within the framework of the Standard Model, these observations provided a determination of the weak mixing angle, θw, which, despite its large experimental uncertainty, allowed the first quantitative prediction for the mass values of the weak bosons, W± and Z. The numerical values so obtained ranged from 60 to 80 GeV for the W mass, and from 75 to 92 GeV for the Z mass, too large to be accessible by any accelerator in operation at that time.