NEUTRINO DETECTOR (Autumn 1955)

Total Page:16

File Type:pdf, Size:1020Kb

NEUTRINO DETECTOR (Autumn 1955) GLORIOUS EXPERIMENTS IN PHYSICS Luigi Di Lella Physics Department, University of Pisa, Italy WARNING The experiments discussed in these lectures represent only a small sample of “glorious experiments”. This is a personal choice based on the following criteria: . Impact on the understanding of Weak Interactions and Neutrinos . Clever experimental ideas and methods 24th Indian - Summer School of Physics, Prague, September 2012 Experiments discussed in these lectures: . First direct neutrino detection at a location far from production . Observation of parity violation in the π µ e decay chain . Precise measurements of the muon magnetic anomaly (g – 2) . Measurement of the neutrino helicity . Discovery of the second neutrino . Discovery of the violation of CP symmetry . First observation of neutrino Neutral-Current interactions . First observation of production and decay of the weak intermediate bosons W± and Z A short historical introduction to each experiment will be included. First neutrino detection Historical introduction A puzzle in β – decay: the continuous electron energy spectrum First measurement by Chadwick (1914) 210 Radium E: Bi83 (a radioactive isotope produced in the decay chain of 238U) [ If β − decay is (A, Z) → (A, Z+1) + e–, then the emitted electron is mono-energetic ] Several solutions to the puzzle proposed before the 1930’s (all wrong), including violation of energy conservation in β – decay December 1930: public letter sent by W. Pauli to a physics meeting in Tübingen Zürich, Dec. 4, 1930 Dear Radioactive Ladies and Gentlemen, ...because of the “wrong” statistics of the N and 6Li nuclei and the continuous β-spectrum, I have hit upon a desperate remedy to save the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin ½ and obey the exclusion principle ..... The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous β-spectrum would then become understandable by the assumption that in β-decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and electron is constant. ....... For the moment, however, I do not dare to publish anything on this idea ...... So, dear Radioactives, examine and judge it. Unfortunately I cannot appear in Tübingen personally, since I am indispensable here in Zürich because of a ball on the night of 6/7 December. .... W. Pauli 14 6 . “Wrong” statistics of the N7 and Li3 nuclei: in 1930 (before the neutron discovery by Chadwick in 1932) nuclei (A,Z) were believed to consist of A protons and A-Z electrons 14 6 N7 and Li3 nuclei were believed to consist of 21 and 9 fermions, respectively expect half – integer spin but measure integer value . Pauli’s “neutron” is a light particle . As everybody else at that time, Pauli believed that if radioactive nuclei emit particles, these particles must exist in the nuclei before emission Theory of β-decay (E. Fermi, 1932-33) β− decay: n → p + e− + ν + + 14 14 + β decay: p → n + e + ν (e.g., O8 → N7 + e + ν) ν: the particle proposed by Pauli (named “neutrino” by Fermi) ν: its antiparticle (antineutrino) Fermi’s theory: a point interaction among four spin ½ particles, using the mathematical formalism of creation and annihilation operators invented by Jordan ⇒ particles emitted in β – decay need not exist before emission – they are “created” at the instant of decay Prediction of β – decay rates and electron energy spectra as a function of only one parameter: Fermi coupling constant GF (determined from experiments) Energy spectrum dependence on neutrino mass µ (from Fermi’s original article, published in German in Zeitschrift für Physik, following rejection of the English version by Nature) Measurable distortions for µ > 0 near the end-point (E0 : max. allowed electron energy) 1934: Bethe and Peierls use Fermi’s theory to estimate the cross-section for processes in which “a neutrino hits a nucleus and a positive or negative electron is created while the neutrino disappears and the charge of the nucleus changes by 1” (Nature 133, 532) −44 2 σ ≈10 cm “corresponding to a penetrating power of 1016 km in solid matter. It is therefore absolutely impossible to observe processes of this kind with the neutrinos created in nuclear transformations. With increasing energy, σ increases (in Fermi’s model for large energies as E2) but even if one assumes a very steep increase, it seems highly improbable that, even for cosmic ray energies, σ becomes large enough to allow the process to be observed. ........................ One can conclude that there is no practically possible way of observing the neutrino.” H. BETHE, R. PEIERLS Physical Laboratory, University, Manchester February 20th, 1934 Late 1930s: discovery of Uranium fission 1940 - : applications (mostly military) 1952: Frederick Reines and Clyde Cowan (Los Alamos) begin thinking of methods of neutrino detection using large volumes of liquid scintillator First idea: install detector near a test atomic explosion. Expect detection of few events before detector destruction. Second idea: install detector near a nuclear reactor (a strong isotropic source of ν from β – decay of fission fragments) 1954: Install a 300 liter liquid scintillator detector near one of the Hanford reactors (a military reactor used for Plutonium production) Observe a reactor – independent background signal from cosmic rays DESIGN A NEW DETECTOR TO BE INSTALLED IN AN UNDERGROUND LOCATION 11 m FROM THE CENTER OF THE SAVANNAH RIVER 700 MW REACTOR THE ANTINEUTRINO DETECTOR AT THE SAVANNAH RIVER REACTOR (Autumn 1955) 200 liter tanks containing H2O - CdCl2 solution 2 meters 800 liter tanks containing liquid scintillator + photomultipliers ANTINEUTRINO DETECTION METHOD + ν + p → e + n on the free protons of H2O . Detect two simultaneous γ – rays from e+ annihilation at rest . Detect the late (~ 10 µs) γ – rays from neutron capture in Cadmium First results published in July 1956 (Science 124, 103) Final results: Reines, Cowan, Harrison, McGuire, Kruse, Phys. Rev. 117 (1960) 159 Reactor – associated event rate : 2.9 ± 0.2 events / hour Demonstration that signal is due to ν + p → e+ + n : . Insert Pb layers of variable thickness between H2O + CdCl2 target and scintillator tanks signal is reduced as expected for 0.5 MeV γ – rays produced inside target; . Remove CdCl2 from target signal from late neutron capture in Cd disappears; . Replace 47% of the target protons by deuterons using the appropriate mixture of heavy and ordinary water in the target: + 1 + [Expect σ(ν + d e + n + n) ≈ 15 σ(ν + p e + n) for reactor antineutrinos] measure reduction of reactor – associated signal as expected Violation of Parity (P) Invariance in the π µ e Decay Chain Historical introduction . In the early 1950s, two mesons with strangeness +1 were discovered: τ+ π+π+π- (final state P = -1) ; θ+ π+π0 (final state P = +1) with equal mass and mean lifetime values the τ – θ puzzle . Following a critical review of all experimental data then available, Lee and Yang proposed that the weak interactions may not be invariant under Parity (T.D. Lee and C.N. Yang, Phys. Rev. 104 (1956) 254) and suggested experiments to test this hypothesis . The first experiment to observe the violation of P symmetry in β – decay was a study of the decay 60Co 60Ni* + e− + ν using polarized 60Co nuclei (C.S. Wu et al., Phys. Rev. 105 (1957) 1413) p θ J (60Co spin) Measured electron angular distribution consistent with the form σ ⋅ p p I(θ ) ∝1+α =1+α cosθ with α = −1 E E σ : unit vector along J ; p , E : electron momentum, energy Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon R.L. Garwin, L.M. Lederman and. M. Weinrich, Phys. Rev. 105 (1957) 1415 176 MeV/c beam from the Nevis synchrocyclotron contains 10% muons from π µ decay in flight Pions stop in Carbon absorber Muons stop in the Carbon target; Magnetic field B perpendicular to figure induces muon spin precession with angular precession rate e ωs = g µ B 2mµ c gµ : gyromagnetic ratio mµ : (g = 2 to lowest order muon mass for a spin ½ fermion) If Parity is not conserved in the π µ e decay chain one may expect: . muon polarization (Pµ ) along momentum; . electron angular asymmetry with respect to the Pµ direction: I(θ) = 1 + α Pµ cosθ Muon spin precession B – dependent modulation of the electron time distribution : τ ≈ 2.2 µs : mean muon decay time t θ : angle between detected electron I(t)∝ exp− [1+αPµ cos(θ -ω t)] τ s and incident beam direction Results with π+ beam Rate of detected electrons Full curve is computed with 0.75 < t < 2.0 µs under the assumptions versus precession field gµ = 2 ; αPµ = − ⅓ . Clear evidence for parity violation in both π µ ν and µ e ν ν decay: αPµ = -1 / 3 (estimated error 10%) . First measurement of the muon magnetic moment : gµ = 2.00 ± 0.10 . Data with negatively charged beam show reduced asymmetry: (αP)µ− ≈ 0.15 (αP)µ+ Measurement of the muon anomalous magnetic moment e Muon magnetic moment gµ 2mc 2 For a spin ½ particle obeying the Dirac equation g = 2 Quantum fluctuations of the electromagnetic field around the muon modify this value: gµ − 2 gµ = 2(1+ aµ ) aµ = 2 Anomalous magnetic moment aµ ≈ 1 / 850 Inject longitudinally polarized muons with momentum p into a uniform magnetic field B e B ω = − muon angular velocity ( ωc / 2π “cyclotron
Recommended publications
  • Subnuclear Physics: Past, Present and Future
    Subnuclear Physics: Past, Present and Future International Symposium 30 October - 2 November 2011 – The purpose of the Symposium is to discuss the origin, the status and the future of the new frontier of Physics, the Subnuclear World, whose first two hints were discovered in the middle of the last century: the so-called “Strange Particles” and the “Resonance #++”. It took more than two decades to understand the real meaning of these two great discoveries: the existence of the Subnuclear World with regularities, spontaneously plus directly broken Symmetries, and totally unexpected phenomena including the existence of a new fundamental force of Nature, called Quantum ChromoDynamics. In order to reach this new frontier of our knowledge, new Laboratories were established all over the world, in Europe, in USA and in the former Soviet Union, with thousands of physicists, engineers and specialists in the most advanced technologies, engaged in the implementation of new experiments of ever increasing complexity. At present the most advanced Laboratory in the world is CERN where experiments are being performed with the Large Hadron Collider (LHC), the most powerful collider in the world, which is able to reach the highest energies possible in this satellite of the Sun, called Earth. Understanding the laws governing the Space-time intervals in the range of 10-17 cm and 10-23 sec will allow our form of living matter endowed with Reason to open new horizons in our knowledge. Antonino Zichichi Participants Prof. Werner Arber H.E. Msgr. Marcelo Sánchez Sorondo Prof. Guido Altarelli Prof. Ignatios Antoniadis Prof. Robert Aymar Prof. Rinaldo Baldini Ferroli Prof.
    [Show full text]
  • Cusp Effects in Meson Decays
    EPJ Web of Conferences 3, 01008 (2010) DOI:10.1051/epjconf/20100301008 © Owned by the authors, published by EDP Sciences, 2010 Cusp effects in meson decays Bastian Kubis,a Helmholtz-Institut f¨ur Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universit¨at Bonn, D-53115 Bonn, Germany Abstract. The pion mass difference generates a pronounced cusp in the π0π0 invariant mass distribution of K+ π0π0π+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin→ down the S-wave pion–pion scattering lengths to high precision. We present the non-relativistic effective field theory framework that permits to determine the structure of this cusp in a straightforward manner, including the effects of radiative corrections. Applications of the same formalism to other decay channels, in particular η and η′ decays, are also discussed. 1 The pion mass and pion–pion scattering alternative scenario of chiral symmetry breaking under the name of generalized chiral perturbation theory [4]. The approximate chiral symmetry of the strong interac- Fortunately, chiral low-energy constants tend to appear tions severely constrains the properties and interactions in more than one observable,and indeed, ℓ¯3 also features in of the lightest hadronic degrees of freedom, the would-be the next-to-leading-order corrections to the isospin I = 0 0 Goldstone bosons (in the chiral limit of vanishing quark S-wave pion–pion scattering length a0 [2], masses) of spontaneous chiral symmetry breaking that can be identified with the pions. The effective field theory that 7M2 0 = π + ǫ + 4 , a0 2 1 (Mπ) systematically exploits all the consequencesthat can be de- 32πFπ O rived from symmetries is chiral perturbation theory [1,2], 5M2 n 3 o 21 21 which provides an expansion of low-energy observables in = π ¯ + ¯ ¯ + ¯ + ǫ 2 2 ℓ1 2ℓ2 ℓ3 ℓ4 .
    [Show full text]
  • Finding the W and Z Products, Etc
    CERN Courier May 2013 CERN Courier May 2013 Reminiscence Anniversary on precisely the questions that the physicists at CERN would be interested in: the cross-sections for W and Z production; the expected event rates; the angular distribution of the W and Z decay Finding the W and Z products, etc. People would also want to know how uncertain the predictions for the W and Z masses were and why certain theorists (J J Sakurai and James Bjorken among them) were cautioning that the masses could turn out to be different. The writing of the trans- parencies turned out to be time consuming. I had to make frequent revisions, trying to anticipate what questions might be asked. To Thirty years ago, CERN made scientifi c make corrections on the fi lm transparencies, I was using my after- shave lotion, so that the whole room was reeking of perfume. I history with the discoveries of the W and was preparing the lectures on a day-by-day basis, not getting much sleep. To stay awake, I would go to the cafeteria for a coffee shortly Z bosons. Here, we reprint an extract from before it closed. Thereafter I would keep going to the vending the special issue of CERN Courier that machines in the basement for chocolate – until the machines ran out of chocolate or I ran out of coins. commemorated this breakthrough. After the fourth lecture, the room in the dormitory had become such a mess (papers everywhere and the strong smell of after- shave) that I decided to ask the secretariat for an offi ce where I Less than 11 months after Lalit Sehgal’s visit to CERN, Carlo could work.
    [Show full text]
  • High Mass Higgs Boson Particle Seraching
    UNIVERSITA’ di SIENA DIPARTIMENTO DI SCIENZE FISICHE, DELLA TERRA E DELL’ AMBIENTE SEZIONE DI FISICA DI Search for new resonances in p-p collisions using fully leptonic W+W− decays with the CMS detector Tesi di Dottorato di Ricerca in Fisica Sperimentale In partial fulfillment of the requirements fo the Ph.D. Thesis in Experimental Physics Candidato: Supervisor: Dr. Lorenzo Russo Prof. Vitaliano Ciulli Tutor: Prof.ssa Maria Agnese Ciocci Ciclo di dottorato XXXI Memento Avdere Semper -G. D’Annunzio v Abstract This thesis presents a search for a possible heavy Higgs boson, X, decaying into a pair of W bosons, in the mass range from 200 GeV to 3 TeV. The analysis is based on proton-proton collisions recorded by the CMS experiment√ at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb−1 at s =13 TeV. The W boson pair decays are reconstructed in the 2`2ν and `νqq¯ final states. Both gluon-gluon fusion and electroweak production of the scalar resonance are considered. Dedicated event categorizations, based on the kinematic properties of the final states, are employed for an optimal signal-to-background separation. Combined upper limits at the 95% confidence level on the product of the cross section and branching fraction excludes a heavy Higgs boson with Standard Model-like couplings and decays in the range of mass investigated. vii Contents Introduction ix 1 The Standard Model, the Higgs Boson and New Scalar Particles 1 1.1 Phenomenology of the Standard Model . .1 1.2 The Higgs Boson . .5 1.3 New Scalar Particles .
    [Show full text]
  • Fifty Years of the CERN Proton Synchrotron Volume II
    CERN–2013–005 12 August 2013 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Fifty years of the CERN Proton Synchrotron Volume II Editors: S. Gilardoni D. Manglunki GENEVA 2013 ISBN 978–92–9083–391–8 ISSN 0007–8328 DOI 10.5170/CERN–2013–005 Copyright c CERN, 2013 Creative Commons Attribution 3.0 Knowledge transfer is an integral part of CERN’s mission. CERN publishes this report Open Access under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/) in order to permit its wide dissemination and use. This monograph should be cited as: Fifty years of the CERN Proton Synchrotron, volume II edited by S. Gilardoni and D. Manglunki, CERN-2013-005 (CERN, Geneva, 2013), DOI: 10.5170/CERN–2013–005 Dedication The editors would like to express their gratitude to Dieter Möhl, who passed away during the preparatory phase of this volume. This report is dedicated to him and to all the colleagues who, like him, contributed in the past with their cleverness, ingenuity, dedication and passion to the design and development of the CERN accelerators. iii Abstract This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners.
    [Show full text]
  • The CAST Experiment at CERN
    Search for Solar Axions: the CAST experiment at CERN http://www.cern.ch/cast The XXXIXth Rencontres de Moriond Thomas Papaevangelou CERN for the CAST Collaboration March 2004, La Thuile Outline: -Axions -Principles & Fulfillment -CAST : Description -Magnet,platform,cryogenics,tracking -X-Ray Telescope & X-Ray Detectors -Preliminary Results Thomas Papaevangelou Search for Solar Axions: The CAST experiment at CERN La Thuile, March 2004 Axions α The STRONG CP PROBLEM CP-violating term in QCD lagrangian: ( ) Experimental consecuence: prediction of electric dipole moment for the neutron: (A = 0.04 – 2.0) BUT experiment says... So, Why so small? Peccei-Quinn (1977) propose an elegant solution to this problem. θ not anymore a constant, but a field Æ the axion a(x). Thomas Papaevangelou Search for Solar Axions: The CAST experiment at CERN La Thuile, March 2004 Axions α The STRONG CP PROBLEM: Peccei-Quinn solution •New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale fa •The AXION appears as the Nambu-Goldstone boson of the spontaneous breaking of the PQ symmetry θ absorbed in the definition of a •a Æ qq transitions axion – gluon •a – π0 mixing vertex •axion mass > 0 PQ Symmetry: Peccei & Quinn: CP invariance of the strong interactions expected in QCD, for a non vanishing scalar field that gives mass to a fermion through a Yukawa coupling. Thomas Papaevangelou Search for Solar Axions: The CAST experiment at CERN La Thuile, March 2004 Axions α pseudoscalar neutral practically stable phenomenology driven by the breaking scale fa
    [Show full text]
  • CERN More Protons for Antiprotons
    The new DESY-II synchrotron for electrons and positrons, inside the old DESY-l, which will be later rebuilt as DESY-l 11 for a new lease of life injecting protons into the new HERA ring via PETRA. capture more antiprotons for subse­ quent stacking in the Antiproton Ac­ cumulator (AA), where the precious particles are stored before being sent into the SPS ring. As well as the ACOL ring (which will surround the AA ring in the exist­ ing AA hall), improvements are being implemented and other ideas studied all the way down the line. The antiprotons are formed when proton beams strike a target, and one way to get more antiprotons is simply to have more protons hitting the target. However the AA (and lat­ er ACOL) can only accept single turn injection. As the AA's circumference is only a quarter that of the PS, the proton beam in the PS can only fill a fraction of the machine's circumfer­ ence before being ejected towards the antiproton production target. The PS is fed in turn by the four ring Booster, and experts have been looking at various schemes to con­ centrate the PS beam (which normal­ be used in place of the ceramic one 'new' machine will use the DESY-l ly consists of 20 bunches) by playing needed for the old synchrotron. bending magnets which are of the tricks with the ejection and recombi­ The installation of components combined function type and, with the nation of the beams from the four will take place in a four-month shut­ addition of new quadrupoles and Booster rings.
    [Show full text]
  • Around the Laboratories
    Around the Laboratories such studies will help our under­ BROOKHAVEN standing of subnuclear particles. CERN Said Lee, "The progress of physics New US - Japanese depends on young physicists Antiproton encore opening up new frontiers. The Physics Centre RIKEN - Brookhaven Research Center will be dedicated to the t the end of 1996, the beam nurturing of a new generation of Acirculating in CERN's LEAR low recent decision by the Japanese scientists who can meet the chal­ energy antiproton ring was A Parliament paves the way for the lenge that will be created by RHIC." ceremonially dumped, marking the Japanese Institute of Physical and RIKEN, a multidisciplinary lab like end of an era which began in 1980 Chemical Research (RIKEN) to found Brookhaven, is located north of when the first antiprotons circulated the RIKEN Research Center at Tokyo and is supported by the in CERN's specially-built Antiproton Brookhaven with $2 million in funding Japanese Science & Technology Accumulator. in 1997, an amount that is expected Agency. With the accomplishments of these to grow in future years. The new Center's research will years now part of 20th-century T.D. Lee, who won the 1957 Nobel relate entirely to RHIC, and does not science history, for the future CERN Physics Prize for work done while involve other Brookhaven facilities. is building a new antiproton source - visiting Brookhaven in 1956 and is the antiproton decelerator, AD - to now a professor of physics at cater for a new range of physics Columbia, has been named the experiments. Center's first director. The invention of stochastic cooling The Center will host close to 30 by Simon van der Meer at CERN scientists each year, including made it possible to mass-produce postdoctoral and five-year fellows antiprotons.
    [Show full text]
  • Symposium Celebrating CERN's Discoveries and Looking Into the Future
    CERN–EP–2003–073 CERN–TH–2003–281 December 1st, 2003 Proceedings Symposium celebrating the Anniversary of CERN’s Discoveries and a Look into the Future 111999777333::: NNNeeeuuutttrrraaalll CCCuuurrrrrreeennntttsss 111999888333::: WWW±±± &&& ZZZ000 BBBooosssooonnnsss Tuesday 16 September 2003 CERN, Geneva, Switzerland Editors: Roger Cashmore, Luciano Maiani & Jean-Pierre Revol Table of contents Table of contents 2 Programme of the Symposium 4 Foreword (L. Maiani) 7 Acknowledgements 8 Selected Photographs of the Event 9 Contributions: Welcome (L. Maiani) 13 The Making of the Standard Model (S. Weinberg) 16 CERN’s Contribution to Accelerators and Beams (G. Brianti) 30 The Discovery of Neutral Currents (D. Haidt) 44 The Discovery of the W & Z, a personal recollection (P. Darriulat) 57 W & Z Physics at LEP (P. Zerwas) 70 Physics at the LHC (J. Ellis) 85 Challenges of the LHC: – the accelerator challenge (L. Evans) 96 – the detector challenge (J. Engelen) 103 – the computing challenge (P. Messina) 110 Particle Detectors and Society (G. Charpak) 126 The future for CERN (L. Maiani) 136 – 2 – Table of contents (cont.) Panel discussion on the Future of Particle Physics (chaired by Carlo Rubbia) 145 Participants: Robert Aymar, Georges Charpak, Pierre Darriulat, Luciano Maiani, Simon van der Meer, Lev Okun, Donald Perkins, Carlo Rubbia, Martinus Veltman, and Steven Weinberg. Statements from the floor by: Fabiola Gianotti, Ignatios Antoniadis, S. Glashow, H. Schopper, C. Llewellyn Smith, V. Telegdi, G. Bellettini, and V. Soergel. Additional contributions: Comment on the occasion (S. L. Glashow) 174 Comment on Perturbative QCD in early CERN experiments (D. H. Perkins) 175 Personal remarks on the discovery of Neutral Currents (A.
    [Show full text]
  • The Discovery of the W and Z Particles
    June 16, 2015 15:44 60 Years of CERN Experiments and Discoveries – 9.75in x 6.5in b2114-ch06 page 137 The Discovery of the W and Z Particles Luigi Di Lella1 and Carlo Rubbia2 1Physics Department, University of Pisa, 56127 Pisa, Italy [email protected] 2GSSI (Gran Sasso Science Institute), 67100 L’Aquila, Italy [email protected] This article describes the scientific achievements that led to the discovery of the weak intermediate vector bosons, W± and Z, from the original proposal to modify an existing high-energy proton accelerator into a proton–antiproton collider and its implementation at CERN, to the design, construction and operation of the detectors which provided the first evidence for the production and decay of these two fundamental particles. 1. Introduction The first experimental evidence in favour of a unified description of the weak and electromagnetic interactions was obtained in 1973, with the observation of neutrino interactions resulting in final states which could only be explained by assuming that the interaction was mediated by the exchange of a massive, electrically neutral virtual particle.1 Within the framework of the Standard Model, these observations provided a determination of the weak mixing angle, θw, which, despite its large experimental uncertainty, allowed the first quantitative prediction for the mass values of the weak bosons, W± and Z. The numerical values so obtained ranged from 60 to 80 GeV for the W mass, and from 75 to 92 GeV for the Z mass, too large to be accessible by any accelerator in operation at that time.
    [Show full text]
  • WORKING with ITALO Luigi Di Lella CERN and Physics Department, University of Pisa
    WORKING WITH ITALO Luigi Di Lella CERN and Physics Department, University of Pisa ▪ Some old memories ▪ Studying K± → p ± p° p° decays in the NA48/2 experiment + + + + ▪ Measuring the ratio of the K → e ne to the K → m nm decay rate ▪ The fast muon veto in the NA62 experiment Italo’s Fest S.N.S. , Pisa, September 5th, 2018 1953 - 54: first-year physics student at Scuola Normale Superiore (ranked first at the entrance examinations) Italo with fellow students Giorgio Bellettini and Vittorio Silvestrini (physics) and Mario Dall’Aglio (chemistry) while violating Italian traffic rules (1957?) All S.N.S. students (Spring 1957) Both Humanities and Sciences, 1st to 4th year 1957: the year when parity violation was first observed (in b – decay of polarized Co60 nuclei and in the p+ → m+ → e+ decay chain) There were suggestions that parity violation would be observed only in final states containing neutrinos (the V – A theory had not been formulated yet) For his physics degree in 1957, Italo worked on a search for parity violation in L → p p─ decay (a weak decay with no neutrinos in the final state) Phys. Rev. 108 (1957) 1353 A bubble chamber exposure to ~1 GeV beams from the 3 GeV proton synchrotron (‘’Cosmotron’’) at the Brookhaven National Laboratory. Event analysis performed in various laboratories including Bologna and Pisa. p─ + p → L + K° produces L – hyperons with polarization normal to the L production plane. Result: < 푷횲 > 휶 = ퟎ. ퟒퟎ ± ퟎ. ퟏퟏ 1958: Italo receives a S.I.F. prize for his thesis (S.I.F.: Italian Physical Society) Prof.
    [Show full text]
  • THE PROTON-ANTIPROTON COLLIDER Lecture Delivered at CERN on 25 November 1987 Lyndon Evans
    CERN 88-01 11 March 1988 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATOR SCHOOL Third John Adams Memorial Lecture THE PROTON-ANTIPROTON COLLIDER Lecture delivered at CERN on 25 November 1987 Lyndon Evans GENEVA 1988 ABSTRACT The subject of this lecture is the CERN Proton-Antiproton (pp) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first pp collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. RN —Service d'Information Scientifique-RD/757-3000-Mars 1988 iii CONTENTS Page 1. INTRODUCTION 1 2. BEAM COOLING l 3. HISTORICAL DEVELOPMENT OF THE pp COLLIDER CONCEPT 2 4. THE SPS AS A COLLIDER 4 4.1 Operation 4 4.2 Performance 5 5. IMPACT OF EARLIER CERN DEVELOPMENTS 5 6. PROPHETS OF DOOM 7 7. IMPACT ON THE WORLD SCENE 9 8. CONCLUDING REMARKS: THE FUTURE OF THE pp COLLIDER 9 REFERENCES 10 Plates 11 v 1. INTRODUCTION The subject of this lecture is the CERN Proton-Antiproton (pp) Collider and let me say straightaway that some of you might find that this talk is rather polarized towards the Super Proton Synchrotron (SPS). In fact, the pp project was a CERN-wide collaboration 'par excellence'. However, in addition to John Adams' close involvement with the SPS there is a natural tendency for me to remain within my own domain of competence.
    [Show full text]