CERN Courier – Digital Edition Welcome to the Digital Edition of the December 2013 Issue of CERN Courier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Secrets Jeremy Bernstein
INFERENCE / Vol. 6, No. 1 Secrets Jeremy Bernstein Restricted Data: The History of Nuclear Secrecy in the decided to found a rival weapons laboratory. Even if Teller United States had offered me a job, I doubt that I would have accepted.3 by Alex Wellerstein After obtaining my degree, I was offered a job that University of Chicago Press, 528 pp., $35.00. would keep me in Cambridge for at least another year. One year became two and at the end of my second year I was uclear weapons have been shrouded in secrecy accepted at the Institute for Advanced Study in Princeton. from the very beginning. After plutonium was It was around this time that the chairman of the physics discovered at the University of California in department at Harvard, Kenneth Bainbridge, came to me NDecember 1940, researchers led by Glenn Seaborg submit- with an offer. Bainbridge had been an important figure at ted a pair of letters to the Physical Review. The details of Los Alamos during the war. Robert Oppenheimer had put their discovery were withheld from publication until after him in charge of the site in New Mexico where the Trinity the war.1 Once the project to make a nuclear weapon got test had taken place.4 Bainbridge told me that the labora- underway, secrecy became a very serious matter indeed. tory was offering summer jobs to young PhDs and asked The story of these efforts and how they evolved after the if I was interested. I was very interested. Los Alamos had war is the subject of Alex Wellerstein’s Restricted Data: an almost mystical significance for me due to its history The History of Nuclear Secrecy in the United States. -
Subnuclear Physics: Past, Present and Future
Subnuclear Physics: Past, Present and Future International Symposium 30 October - 2 November 2011 – The purpose of the Symposium is to discuss the origin, the status and the future of the new frontier of Physics, the Subnuclear World, whose first two hints were discovered in the middle of the last century: the so-called “Strange Particles” and the “Resonance #++”. It took more than two decades to understand the real meaning of these two great discoveries: the existence of the Subnuclear World with regularities, spontaneously plus directly broken Symmetries, and totally unexpected phenomena including the existence of a new fundamental force of Nature, called Quantum ChromoDynamics. In order to reach this new frontier of our knowledge, new Laboratories were established all over the world, in Europe, in USA and in the former Soviet Union, with thousands of physicists, engineers and specialists in the most advanced technologies, engaged in the implementation of new experiments of ever increasing complexity. At present the most advanced Laboratory in the world is CERN where experiments are being performed with the Large Hadron Collider (LHC), the most powerful collider in the world, which is able to reach the highest energies possible in this satellite of the Sun, called Earth. Understanding the laws governing the Space-time intervals in the range of 10-17 cm and 10-23 sec will allow our form of living matter endowed with Reason to open new horizons in our knowledge. Antonino Zichichi Participants Prof. Werner Arber H.E. Msgr. Marcelo Sánchez Sorondo Prof. Guido Altarelli Prof. Ignatios Antoniadis Prof. Robert Aymar Prof. Rinaldo Baldini Ferroli Prof. -
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
The Standard Model
The Standard Model by Christine Sutton In May 1983, the central detector of the UA1 experiment at CERN's proton-antiproton collider showed the tell-tale signature of the long-awaited Z particle as it decays into an electron-positron pair (arrowed). As the electrically neutral carrier of the weak force, the Z° plays a vital role in the Standard Model. The initial evidence from Fermilab (see previous article) for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. Model encompasses all the elemen their interactions emerge. Instead it is In this specially commissioned tary particles we now know and three an amalgam of the best theories we overview, physics writer Christine of the fundamental forces. The basic have, which we can bolt together Sutton explains the Standard building blocks are two sets or because they have enough in com Model. "families" or "matter particles" - the mon to suggest an underlying unity, quarks and the leptons (see page 5). although due to our ignorance the These particles interact with each joins still clearly show. t is nearly 100 years since the other through the exchange of force The structure as a whole rests on a I discovery of the first subatomic carriers or "messengers". -
CONTENTS Group Membership, January 2002 2
CONTENTS Group Membership, January 2002 2 APPENDIX 1: Report on Activities 2000-2002 & Proposed Programme 2002-2006 4 1OPAL 4 2H1 7 3 ATLAS 11 4 BABAR 19 5DØ 24 6 e-Science 29 7 Geant4 32 8 Blue Sky and applied R&D 33 9 Computing 36 10 Activities in Support of Public Understanding of Science 38 11 Collaborations and contacts with Industry 41 12 Other Research Related Activities by Group Members 41 13 Staff Management and Implementation of Concordat 41 APPENDIX 2: Request for Funds 1. Support staff 43 2. Travel 55 3. Consumables 56 4. Equipment 58 APPENDIX 3: Publications 61 1 Group Membership, May 2002 Academic Staff Dr John Allison Senior Lecturer Professor Roger Barlow Professor Dr Ian Duerdoth Senior Lecturer Dr Mike Ibbotson Reader Dr George Lafferty Reader Dr Fred Loebinger Senior Lecturer Professor Robin Marshall Professor, Group Leader Dr Terry Wyatt Reader Dr A N Other (from Sept 2002) Lecturer Fellows Dr Brian Cox PPARC Advanced Fellow Dr Graham Wilson (leave of absence for 2 yrs) PPARC Advanced Fellow James Weatherall PPARC Fellow PPARC funded Research Associates∗ Dr Nick Malden Dr Joleen Pater Dr Michiel Sanders Dr Ben Waugh Dr Jenny Williams PPARC funded Responsive Research Associate Dr Liang Han PPARC funded e-Science Research Associates Steve Dallison core e-Science Sergey Dolgobrodov core e-Science Gareth Fairey EU/PPARC DataGrid Alessandra Forti GridPP Andrew McNab EU/PPARC DataGrid PPARC funded Support Staff∗ Phil Dunn (replacement) Technician Andrew Elvin Technician Dr Joe Foster Physicist Programmer Julian Freestone -
NMD, National Security Issues Featured at 2001 April Meeting In
April 2001 NEWS Volume 10, No. 4 A Publication of The American Physical Society http://www.aps.org/apsnews NMD, National Security Issues Featured Phase I CPU Report to be at 2001 April Meeting in Washington Discussed at Attendees of the 2001 APS April include a talk on how the news me- Meeting, which returns to Wash- dia cover science by David April Meeting ington, DC, this year, should arrive Kestenbaum, a self-described “es- The first phase of a new Na- just in time to catch the last of the caped physicist who is hiding out tional Research Council report of cherry blossom season in between at National Public Radio,” and a lec- the Committee on the Physics of scheduled sessions and special ture on entangled photons for the Universe (CPU) will be the events. The conference will run quantum information by the Uni- topic of discussion during a spe- April 28 through May 1, and will versity of Illinois’ Paul Kwiat. Other cial Sunday evening session at the feature the latest results in nuclear scheduled topics include imaging APS April Meeting in Washing- physics, astrophysics, chemical the cosmic background wave back- ton, DC. The session is intended physics, particles and fields, com- ground, searching for extra to begin the process of collect- putational physics, plasma physics, dimensions, CP violation in B me- ing input from the scientific the physics of beams, and physics sons, neutrino oscillations, and the community on some of the is- history, among other subdisci- amplification of atoms and light in The White House and (inset) some of its famous fictional sues outlined in the draft report, plines. -
Cusp Effects in Meson Decays
EPJ Web of Conferences 3, 01008 (2010) DOI:10.1051/epjconf/20100301008 © Owned by the authors, published by EDP Sciences, 2010 Cusp effects in meson decays Bastian Kubis,a Helmholtz-Institut f¨ur Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universit¨at Bonn, D-53115 Bonn, Germany Abstract. The pion mass difference generates a pronounced cusp in the π0π0 invariant mass distribution of K+ π0π0π+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin→ down the S-wave pion–pion scattering lengths to high precision. We present the non-relativistic effective field theory framework that permits to determine the structure of this cusp in a straightforward manner, including the effects of radiative corrections. Applications of the same formalism to other decay channels, in particular η and η′ decays, are also discussed. 1 The pion mass and pion–pion scattering alternative scenario of chiral symmetry breaking under the name of generalized chiral perturbation theory [4]. The approximate chiral symmetry of the strong interac- Fortunately, chiral low-energy constants tend to appear tions severely constrains the properties and interactions in more than one observable,and indeed, ℓ¯3 also features in of the lightest hadronic degrees of freedom, the would-be the next-to-leading-order corrections to the isospin I = 0 0 Goldstone bosons (in the chiral limit of vanishing quark S-wave pion–pion scattering length a0 [2], masses) of spontaneous chiral symmetry breaking that can be identified with the pions. The effective field theory that 7M2 0 = π + ǫ + 4 , a0 2 1 (Mπ) systematically exploits all the consequencesthat can be de- 32πFπ O rived from symmetries is chiral perturbation theory [1,2], 5M2 n 3 o 21 21 which provides an expansion of low-energy observables in = π ¯ + ¯ ¯ + ¯ + ǫ 2 2 ℓ1 2ℓ2 ℓ3 ℓ4 . -
Title: the Distribution of an Illustrated Timeline Wall Chart and Teacher's Guide of 20Fh Century Physics
REPORT NSF GRANT #PHY-98143318 Title: The Distribution of an Illustrated Timeline Wall Chart and Teacher’s Guide of 20fhCentury Physics DOE Patent Clearance Granted December 26,2000 Principal Investigator, Brian Schwartz, The American Physical Society 1 Physics Ellipse College Park, MD 20740 301-209-3223 [email protected] BACKGROUND The American Physi a1 Society s part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20thcentury physics. This resulted in eleven consecutive posters, which when mounted side by side, create a %foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society . Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays’ subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color- coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic This report was prepared as an account of work sponsored by an agency of the United States Government. -
Particle Physics – It Matters a Forward Look at UK Research Into the Building Blocks of the Universe and Its Impact on Society
Particle physics – it matters A forward look at UK research into the building blocks of the Universe and its impact on society In partnership with CONTENTS 3 Foreword 4 Advancing human progress through basic knowledge 5 Why does it matter? 6 New frontiers in basic science 6 The experiments 8 How particle physics benefi ts society 8 Particle physics and healthcare 10 Communications 10 Manufacturing and business 11 Global challenges 12 Helping industry 13 Underpinning the knowledge-based economy 14 Particle physics in the UK 15 Further information 2 Foreword Particle physics – it matters Foreword This report summarises the science questions confronting particle-physics research in the next 20 years, what advances in technology are being pursued and the cross-disciplinary benefi ts to be accrued. It is predominantly an interest in curiosity-driven science, of which particle physics is a major part, that often attracts students to study physics and which drives the technological innovation; neither can proceed in isolation. WHAT IS PARTICLE PHYSICS? Particle physics seeks to understand the evolution of the Universe in the fi rst fraction of a second after its birth in the Big Bang in terms of a small number of fundamental particles and forces. The processes involved ultimately resulted in the creation of atoms and the complex molecules that led to our existence. The intellectual curiosity embodied in particle physics is also at the foundation of philosophy, art and other scientifi c disciplines which, together, have shaped the modern world. Without such innate curiosity, the modern world would not exist. The study of particle physics challenges our preconceptions, inspires and seeks to move human knowledge forward at a basic level – wherever that may lead. -
The Discovery of the Higgs Boson at the LHC
Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T. -
Coulomb Gluons and Colour Evolution
Coulomb gluons and colour evolution René Ángeles-Martínez in collaboration with Jeff Forshaw Mike Seymour JHEP 1512 (2015) 091 DPyC, BUAP & arXiv:1602.00623 (accepted for publication) 2016 In this talk: Progress towards including the colour interference of soft gluons in partons showers. PDF Hard process (Q) Parton Shower: Approx: Collinear + Soft radiation Q qµ ⇤ QCD Underlying event Hadronization Hadron-Hadron collision, Soper (CTEQ School) … 2 Motivation • Why? Increase precision of theoretical predictions for the LHC • Is this necessary? Yes, for particular non-inclusive observables. • Are those relevant to search for new physics? Yes, these can tell us about the (absence of) colour of the production mechanism (couplings). 3 Outline • Coulomb gluons, collinear factorisation & colour interference. • Concrete effect: super-leading-logs. • Including colour interference in partons showers. (Also see JHEP 07, 119 (2015), arXiv:1312.2448 & 1412.3967) 4 One-loop in the soft approximation kµ Q ⌧ ij Hard subprocess is a vector Colour matrices acting on 2 colour + spin d d k ↵ pi pj ig2T T − · 2 s i · j (2⇡)d [p k i0][ p k i0][k2+i0] Z j · ± − i · ± ↵ i : i0 i :+i0 i : i0 − − j : i0 j :+i0 j :+i0 − 2 ↵ Introduction: one-loop soft gluon correction After contour integration: d4k (2⇡)δ(k2)✓(k0) (2⇡)2δ(p k)δ( p k) g2µ2✏T T p p + iδ˜ i · − j · 2 s i · j i · j (2⇡)4 [p k][p k] ij 2[k2] Z j · i · ↵ (On-shell gluon: Purely real) (Coulomb gluon: Purely imaginary) 1ifi, j in , ˜ δij = 81ifi, j out , <>0 otherwise. -
Bruno Pontecorvo-Pioneer of Neutrino Oscillations
Bruno Pontecorvo-pioneer of neutrino oscillations S. Bilenky JINR(Dubna) 19.11.2013 I Bruno Pontecorvo was born on August 22 1913 in Pisa (Marina di Pisa) I His father was owner of a textile factory. The factory was founded by Pellegrino Pontecorvo, Bruno grandfather. I After the war during many years the factory was closed and the building was not used. Now the Pisa department of INFN is in the building of the Pontecorvo`s factory. The square before the building is called Largo Bruno Pontecorvo I There were 8 children in the family: 5 brothers and 3 sisters All of them were very successful I Three brothers became famous: I Biologist Guido (the eldest brother) I Physicist Bruno I Movie director Gillo I Bruno entered engineer faculty of Pisa University. However, after two years he decided to switch to physics I From his autobiography. My brother Guido declared authoritatively \Physics! I would like to say that you must go to Rome. In Rome there are Fermi and Rasetti". I Bruno passed through exam that was taken by Fermi and Rasetti and was accepted at the third year of the Faculty of Physics and Mathematics of the Rome University with specialization in experimental physics I First as a student and later as researcher from 1931 till 1936 Bruno worked in the Fermi group I The experiment performed by Amaldi and Pontecorvo lead to the discovery of the effect of slow neutrons, the most important discovery made by the Fermi`s group At that time Bruno was 21 I For the discovery of the effect of slow neutrons Fermi was awarded the Nobel Prize.