Inventory to the Herbert C. Brown Papers, 1928-2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herbert Charles Brown, a Biographical Memoir
NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp. -
Alumni Newsletter
ALUMNI NEWSLETTER SCHOOL OF CHEMICAL SCIENCES UNIVERSITY OF ILLINOIS at Urbana-Champaign NO. 11, WINTER 1976-77 The State of the Union (Comments by H. S. Gutowsky, director of the School of Chemical Sciences) Following the tradition of the last three issues of the Alumni Newsletter, I have put together a synopsis of some selected material that appears in much more detail in the 1975-76 Annual Report of the School of Chemical Sci ences and is not covered elsewhere in this issue. If you would like more details, let me know and I will be happy to forward you a copy of the com plete annual report. Instructional Program Two steps were taken dw·ing the past year to address the fact that 75 per cent or more of our chemistry graduates take positions in industry without learning much in their programs about the nature of industrial careers. Professor Peter Beak organized a special topics course, Chemistry 433, Re search in Industry, given in the fall semester. Early in the course, Dr. J. K. Stille from the University of Iowa presented a series of ten lectures on the fundamentals of industrial and polymer chemistry. This was followed by eleven weekly lectures from industrial speakers active in chemical roles. The program attracted a good deal of interest among our students and staff and its beneficial effects were visible to industrial recruiters interviewing here near its end. The second step was the inauguration of a cooperative program with Monsanto Company (St. Louis) for the summer employment of graduate students. Three entering graduate students participated in the summer of 1976, and it is hoped to extend the program to a larger number of students (and other companies) as well as to faculty next summer. -
Pauling-Linus.Pdf
NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America. -
John D. Roberts
John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists. -
Walter Loveland Oral History Interview, “Of Glenn Seaborg and Super Heavy Elements: a Nuclear Chemist Looks Back”, July Page 3 of 24 22, 2015
Walter Loveland Oral History Interview, July 22, 2015 Title “Of Glenn Seaborg and Super Heavy Elements: A Nuclear Chemist Looks Back” Date July 22, 2015 Location Valley Library, Oregon State University. Summary In the interview, Loveland discusses his colorful family background and upbringing in blue-collar suburban Chicago. He also describes his earliest interests in science, his path through undergraduate and graduate studies, and those who influenced him as he made his way through his higher education, including his contacts with luminaries like Charles Coryell and John Huizenga. From there, Loveland begins to reflect on his long association with both Oregon State University and the University of California, Berkeley. In so doing, he shares his memories of his initial impressions of OSU and Corvallis, his first contacts with Glenn Seaborg, a few initial research experiences in research, and his impressions of Seaborg as a personality. He likewise recounts his interactions with Linus Pauling as well as major figures in nuclear science at OSU, Chih Wang, John Ringle and Dale Trout among them. Loveland next recounts his memories of the Radiation Biology program at OSU; discusses the life and career of a former student, Sister Mary Joseph Bouchard; and comments on the climate for women and people of color in the sciences at OSU and in the community at large. Loveland's research is the next focus of the interview. In this he provides an overview of his work with super-heavy ions while also describing his research collaborations and the frequent trips to Berkeley that these collaborations demanded. He also recounts his interactions with OSU's Campus Radiation Safety Committee, his disinterest in working at the Hanford Nuclear Site, his experience of co-authoring two books with Glenn Seaborg, and hindrances to scientific advancement that he has noted as a result of denials of security clearance. -
Dr. Linus Pauling Named Recipient of Priestley Memorial Award
Dr. Linus Pauling named recipient of Priestley Memorial Award December 16, 1968 Dr. Linus Pauling, Professor of Chemistry in Residence at the University of California, San Diego, was recently named the 18th recipient of Dickinson College's Priestley Memorial Award. Presentation of the award next March 27 will be the highlight of the annual Priestley Day celebration at the Carlisle, Pa., college. Howard L. Rubendall, Dickinson president, said Pauling will be honored for his work in physical chemistry. The award is named for Joseph Priestley, discoverer of oxygen, and consists of a portrait medallion of Priestley. A check for $1,000 accompanies it. Dickinson, which owns one of the largest collections of Priestley memorabilia in America, created the award in 1952 to recognize modern scientists for research, discovery or other production benefiting mankind. Pauling is a winner of the Nobel Prize in chemistry and also holds the Nobel Peace Prize. During recent years, much of his work has been on the application of chemistry to biological and medical problems. Last spring he advanced a highly controversial theory that mental patients could well be treated by giving them "optimum amounts" of vitamins, amino acids and certain fatty acids. During the early war years, he worked on rocket propellants and other explosives but was among the scientists who opposed dropping atomic bombs on Hiroshima and Nagasaki. His work to abolish war began in 1945. Few scientists have been honored so often. Pauling holds the Roebling Medal of the Mineralogical Society, the American Chemical Society Award in Pure Chemistry, the Nichols Medal, Presidential Medal for Merit, Gibbs Medal, Richards Medal, the Gilbert Newton Lewis Medal, the Davey Medal of the Royal Society, the Thomas Addis Medal of the National Nephrosis Foundation, the Phillips Medal of the American College of Physicians and other awards. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
CHAD A. MIRKIN, PH.D. Northwestern University
CHAD A. MIRKIN, PH.D. Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL 60208-3113 Phone: 847-491-2907 Fax: 847-467-5123 Email: [email protected] Education 1991 NSF Postdoctoral Fellow in Chemistry, Massachusetts Institute of Technology, Cambridge, MA 1989 Ph.D. in Inorganic & Organic Chemistry, The Pennsylvania State University, State College, PA 1986 B.S. in Chemistry (Phi Beta Kappa), Dickinson College, Carlisle, PA Professional Experience 2008-present Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, Materials Science & Engineering, Biomedical Engineering, Chemical & Biological Engineering, Northwestern University 2004-2008 Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, and Materials Science & Engineering, Northwestern University 2000-2004 Director, Center for Nanofabrication and Molecular Self-Assembly and George B. Rathmann Professor of Chemistry, Northwestern University 1997-2000 Charles E. and Emma H. Morrison Professor of Chemistry, Northwestern University 1995-1997 Associate Professor, Department of Chemistry, Northwestern University 1991-1995 Assistant Professor, Department of Chemistry, Northwestern University Awards and Honors (selected, over 230 national and international total) 2020 ACS Division of Colloid and Surface Science Award for Outstanding Achievement in Nanoscience; AAAS Philip Hauge Abelson Award 2019 Kabiller Prize in Nanoscience and Nanomedicine; SCI Perkin -
Physics 1928 OWEN WILLANS RICHARDSON
Physics 1928 OWEN WILLANS RICHARDSON <<for his work on the thermionic phenomenon and especially-for the discovery of the law named after him>> Physics 1928 Presentation Speech by Professor C. W. Oseen, Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences Your Majesty, Your Royal Highnesses, Ladies and Gentlemen. Among the great problems that scientists conducting research in electro- technique are today trying to solve, is that of enabling two men to converse in whatever part of the world each may be. In 1928 things had reached the stage when we could begin to establish telephonic communication between Sweden and North America. On that occasion there was a telephone line of more than 22,000 kilometres in length between Stockholm and New York. From Stockholm, speech was transmitted via Berlin to England by means of a cable and overhead lines; from England by means of wireless to New York; then, via a cable and lines by land, over to Los Angeles and back to New York, and from there by means of a new line to Chicago, returning finally to New York. In spite of the great distance, the words could be heard distinctly and this is explained by the fact that there were no fewer than 166 amplifiers along the line. The principle of construction of an amplifier is very simple. A glowing filament sends out a stream of electrons. When the speech waves reach the amplifier, they oscillate in tune with the sound waves but are weakened. The speech waves are now made to put the stream of electrons in the same state of oscillation as they have themselves. -
National Medal of Science Recipients
THEROLE OF THEHIGH SCHOOLBIOLOGY TEACHER 271 time scheduledfor science subjects. There is I have emphasizedour need for scientific need for a curriculumthat would allow the and technicalmanpower, and particularlyour child to perform. As aptly stated by the need for public understandingof and public Steering Committee of the BSCS: ". no supportfor science. I have reviewedsome of child can comprehendwhat science is simply the dangerous and wasteful by-productsof by learningfacts about nature. Real involve- biological illiteracy, citing some of these as ment in scientificinquiry is needed, an active evidencethat there is a criticalneed for pub- participationthat can enable the learner to lic understandingof science. The heavy re- distinguish between experiment and instru- sponsibility for reversing the illiteracy falls on mentation, between evidence and authority, the high school biology teacher, but help should come from the entire scientific com- between science and magic... ." Borrowing munity, from the mass media-and indeed Downloaded from http://online.ucpress.edu/abt/article-pdf/27/4/271/22592/4440914.pdf by guest on 29 September 2021 from the phraseologyof a documentmemo- from all thinking citizens. Abraham Lincoln rized by all high school students: Among expressed it perfectly: "Public support is those truths we hold self-evident is that in everything,without it nothing can succeed, order to study life we must study the living. with it nothing can fail." National Medal of Science Teacher Education in East Africa Recipients Thirty American teachers are being sought Recently President Johnson presented elev- for two-year participation to serve as staff en National Medals of Science at a White members for primary and secondary training House ceremony. -
Robert Burns Woodward
The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C. -
Conformational Transition in Immunoglobulin MOPC 460" by Correction. in Themembership List of the National Academy of Scien
Corrections Proc. Natl. Acad. Sci. USA 74 (1977) 1301 Correction. In the article "Kinetic evidence for hapten-induced Correction. In the membership list of the National Academy conformational transition in immunoglobulin MOPC 460" by of Sciences that appeared in the October 1976 issue of Proc. D. Lancet and I. Pecht, which appeared in the October 1976 Natl. Acad. Sci. USA 73,3750-3781, please note the following issue of Proc. Nati. Acad. Sci. USA 73,3549-3553, the authors corrections: H. E. Carter, Britton Chance, Seymour S. Cohen, have requested the following changes. On p. 3550, right-hand E. A. Doisy, Gerald M. Edelman, and John T. Edsall are affil- column, second line from bottom, and p. 3551, left-hand col- iated with the Section ofBiochemistry (21), not the Section of umn, fourth line from the top, "Fig. 2" should be "Fig. 1A." Botany (25). In the legend of Table 2, third line, note (f) should read "AG, = -RTlnKj." On p. 3553, left-hand column, third paragraph, fifth line, "ko" should be replaced by "Ko." Correction. In the Author Index to Volume 73, January-De- cember 1976, which appeared in the December 1976 issue of Proc. Natl. Acad. Sci. USA 73, 4781-4788, the limitations of Correction. In the article "Amino-terminal sequences of two computer alphabetization resulted in the listing of one person polypeptides from human serum with nonsuppressible insu- as the author of another's paper. On p. 4786, it should indicate lin-like and cell-growth-promoting activities: Evidence for that James Christopher Phillips had an article beginning on p.