Report to the President Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Report to the President Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics REPORT TO THE PRESIDENT ENGAGE TO EXCEL: PRODUCING ONE MILLION ADDITIONAL COLLEGE GRADUATES WITH DEGREES IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS Executive Office of the President President’s Council of Advisors on Science and Technology FEBRUARY 2012 About the President’s Council of Advisors on Science and Technology The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the nation’s leading scientists and engineers, appointed by the President to augment the science and tech­ nology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the full range of issues where understandings from the domains of science, technology, and innovation bear potentially on the policy choices before the President. For more information about PCAST, see www.whitehouse.gov/ostp/pcast. The President’s Council of Advisors on Science and Technology Co-Chairs John P. Holdren Eric Lander Assistant to the President for President Science and Technology Broad Institute of Harvard and MIT Director, Office of Science and Technology Policy Vice Chairs William Press Maxine Savitz Raymer Professor in Computer Science and Vice President Integrative Biology National Academy of Engineering University of Texas at Austin Members Rosina Bierbaum Shirley Ann Jackson Professor of Natural Resources and President Environmental Policy Rensselaer Polytechnic Institute School of Natural Resources and Environment Richard C. Levin and School of Public Health President University of Michigan Yale University Christine Cassel Chad Mirkin President and CEO Rathmann Professor, Chemistry, Materials American Board of Internal Medicine Science and Engineering, Chemical and Christopher Chyba Biological Engineering and Medicine Professor, Astrophysical Sciences and Director, International Institute for International Affairs Nanotechnology Director, Program on Science and Global Security Northwestern University Princeton University Mario Molina S. James Gates, Jr. Professor, Chemistry and Biochemistry John S. Toll Professor of Physics University of California, San Diego Director, Center for String and Particle Theory Professor, Center for Atmospheric Sciences at the University of Maryland, College Park Scripps Institution of Oceanography Director, Mario Molina Center for Energy and Mark Gorenberg Environment, Mexico City Managing Director Hummer Winblad Venture Partners Ernest J. Moniz Eric Schmidt Cecil and Ida Green Professor of Physics and Executive Chairman Engineering Systems Google, Inc. Director, MIT’s Energy Initiative Daniel Schrag Massachusetts Institute of Technology Sturgis Hooper Professor of Geology Craig Mundie Professor, Environmental Science and Chief Research and Strategy Officer Engineering Microsoft Corporation Director, Harvard University Center for the Environment Ed Penhoet Harvard University Director, Alta Partners Professor Emeritus, Biochemistry and Public David E. Shaw Health Chief Scientist, D.E. Shaw Research University of California, Berkeley Senior Research Fellow, Center for Computational Biology and Bioinformatics Barbara Schaal Columbia University Mary­Dell Chilton Distinguished Professor of Biology Ahmed Zewail Washington University, St. Louis Linus Pauling Professor of Chemistry and Physics Vice President, National Academy of Sciences Director, Physical Biology Center California Institute of Technology Staff Deborah Stine Amber Hartman Scholz Executive Director Assistant Executive Director Danielle Evers AAAS Science and Technology Policy Fellow EXECUTIVE OFFICE OF THE PRESIDENT PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WASHINGTON, D.C. 20502 President Barack Obama The White House Washington, D.C. 20502 Dear Mr. President, We are pleased to present you with this report, Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics, prepared for you by the President’s Council of Advisors on Science and Technology (PCAST). This report provides a strategy for improving STEM education during the first two years of college that we believe is responsive to both the challenges and the opportunities that this crucial stage in the STEM education pathway presents. In preparing this report, PCAST assembled a Working Group of experts in postsecondary STEM teaching, learning­science research, curriculum development, higher­education administration, faculty training, educational technology, and successful interaction between industry and higher education. The report was strengthened by input from additional experts in postsecondary STEM education, STEM practitioners, professional societies, private companies, educators, and Federal education officials. PCAST found that economic forecasts point to a need for producing, over the next decade, approximately 1 million more college graduates in STEM fields than expected under current assumptions. Fewer than 40% of students who enter college intending to major in a STEM field complete a STEM degree. Merely increasing the retention of STEM majors from 40% to 50% would generate three­quarters of the targeted 1 million additional STEM degrees over the next decade. PCAST identified five overarching recommendations that it believes can achieve this goal: (1) catalyze widespread adoption of empirically validated teaching practices; (2) advocate and provide support for replacing standard laboratory courses with discovery­based research courses; (3) launch a national experiment in postsecondary mathematics education to address the mathematics­preparation gap; (4) encourage partnerships among stakeholders to diversify pathways to STEM careers; and (5) create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education. Implementing these recommendations will help you achieve one of the key STEM goals you stated in your address to the National Academy of Sciences in April 2009: “American students will move from the middle to the top of the pack in science and math over the next decade. For we know that the nation that out­educates us today—will out­compete us tomorrow.” The members of PCAST are grateful for the opportunity to provide our input on an issue of such critical importance to the Nation’s future. Sincerely, John P. Holdren Eric Lander PCAST Co­Chair PCAST Co­Chair Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics Executive Report Economic projections point to a need for approximately 1 million more STEM professionals than the U.S. will produce at the current rate over the next decade if the country is to retain its historical preeminence in science and technology. To meet this goal, the United States will need to increase the number of students who receive undergraduate STEM degrees by about 34% annually over current rates. Currently the United States graduates about 300,000 bachelor and associate degrees in STEM fields annually. Fewer than 40% of students who enter college intending to major in a STEM field complete a STEM degree. Increasing the retention of STEM majors from 40% to 50% would, alone, generate three­ quarters of the targeted 1 million additional STEM degrees over the next decade. Many of those who abandon STEM majors perform well in their introductory courses and would make valuable additions to the STEM workforce. Retaining more students in STEM majors is the lowest­cost, fastest policy option to providing the STEM professionals that the nation needs for economic and societal well­being, and will not require expanding the number or size of introductory courses, which are constrained by space and resources at many colleges and universities. The reasons students give for abandoning STEM majors point to the retention strategies that are needed. For example, high­performing students frequently cite uninspiring introductory courses as a factor in their choice to switch majors. And low­performing students with a high interest and aptitude in STEM careers often have difficulty with the math required in introductory STEM courses with little help provided by their universities. Moreover, many students, and particularly members of groups underrepresented in STEM fields, cite an unwelcoming atmosphere from faculty in STEM courses as a reason for their departure. Better teaching methods are needed by university faculty to make courses more inspiring, provide more help to students facing mathematical challenges, and to create an atmosphere of a community of STEM learners. Traditional teaching methods have trained many STEM professionals, including most of the current STEM workforce. But a large and growing body of research indicates that STEM education can be substantially improved through a diversification of teaching methods. These data show that evidence­based teaching methods are more effective in reaching all students—especially the “underrepresented majority”—the women and members of minority groups who now constitute approximately 70% of college students while being underrepresented among students who receive undergraduate STEM degrees (approximately 45%). This underrepresented majority is a large potential source of STEM professionals. ★ 1 ★ ENGAGE TO EXCEL: PRODUCING ONE MILLION ADDITIONAL COLLEGE GRADUATES WITH
Recommended publications
  • Alfred Nobel
    www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent.
    [Show full text]
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • John D. Roberts
    John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists.
    [Show full text]
  • Walter Loveland Oral History Interview, “Of Glenn Seaborg and Super Heavy Elements: a Nuclear Chemist Looks Back”, July Page 3 of 24 22, 2015
    Walter Loveland Oral History Interview, July 22, 2015 Title “Of Glenn Seaborg and Super Heavy Elements: A Nuclear Chemist Looks Back” Date July 22, 2015 Location Valley Library, Oregon State University. Summary In the interview, Loveland discusses his colorful family background and upbringing in blue-collar suburban Chicago. He also describes his earliest interests in science, his path through undergraduate and graduate studies, and those who influenced him as he made his way through his higher education, including his contacts with luminaries like Charles Coryell and John Huizenga. From there, Loveland begins to reflect on his long association with both Oregon State University and the University of California, Berkeley. In so doing, he shares his memories of his initial impressions of OSU and Corvallis, his first contacts with Glenn Seaborg, a few initial research experiences in research, and his impressions of Seaborg as a personality. He likewise recounts his interactions with Linus Pauling as well as major figures in nuclear science at OSU, Chih Wang, John Ringle and Dale Trout among them. Loveland next recounts his memories of the Radiation Biology program at OSU; discusses the life and career of a former student, Sister Mary Joseph Bouchard; and comments on the climate for women and people of color in the sciences at OSU and in the community at large. Loveland's research is the next focus of the interview. In this he provides an overview of his work with super-heavy ions while also describing his research collaborations and the frequent trips to Berkeley that these collaborations demanded. He also recounts his interactions with OSU's Campus Radiation Safety Committee, his disinterest in working at the Hanford Nuclear Site, his experience of co-authoring two books with Glenn Seaborg, and hindrances to scientific advancement that he has noted as a result of denials of security clearance.
    [Show full text]
  • Dr. Linus Pauling Named Recipient of Priestley Memorial Award
    Dr. Linus Pauling named recipient of Priestley Memorial Award December 16, 1968 Dr. Linus Pauling, Professor of Chemistry in Residence at the University of California, San Diego, was recently named the 18th recipient of Dickinson College's Priestley Memorial Award. Presentation of the award next March 27 will be the highlight of the annual Priestley Day celebration at the Carlisle, Pa., college. Howard L. Rubendall, Dickinson president, said Pauling will be honored for his work in physical chemistry. The award is named for Joseph Priestley, discoverer of oxygen, and consists of a portrait medallion of Priestley. A check for $1,000 accompanies it. Dickinson, which owns one of the largest collections of Priestley memorabilia in America, created the award in 1952 to recognize modern scientists for research, discovery or other production benefiting mankind. Pauling is a winner of the Nobel Prize in chemistry and also holds the Nobel Peace Prize. During recent years, much of his work has been on the application of chemistry to biological and medical problems. Last spring he advanced a highly controversial theory that mental patients could well be treated by giving them "optimum amounts" of vitamins, amino acids and certain fatty acids. During the early war years, he worked on rocket propellants and other explosives but was among the scientists who opposed dropping atomic bombs on Hiroshima and Nagasaki. His work to abolish war began in 1945. Few scientists have been honored so often. Pauling holds the Roebling Medal of the Mineralogical Society, the American Chemical Society Award in Pure Chemistry, the Nichols Medal, Presidential Medal for Merit, Gibbs Medal, Richards Medal, the Gilbert Newton Lewis Medal, the Davey Medal of the Royal Society, the Thomas Addis Medal of the National Nephrosis Foundation, the Phillips Medal of the American College of Physicians and other awards.
    [Show full text]
  • CHAD A. MIRKIN, PH.D. Northwestern University
    CHAD A. MIRKIN, PH.D. Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL 60208-3113 Phone: 847-491-2907 Fax: 847-467-5123 Email: [email protected] Education 1991 NSF Postdoctoral Fellow in Chemistry, Massachusetts Institute of Technology, Cambridge, MA 1989 Ph.D. in Inorganic & Organic Chemistry, The Pennsylvania State University, State College, PA 1986 B.S. in Chemistry (Phi Beta Kappa), Dickinson College, Carlisle, PA Professional Experience 2008-present Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, Materials Science & Engineering, Biomedical Engineering, Chemical & Biological Engineering, Northwestern University 2004-2008 Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, and Materials Science & Engineering, Northwestern University 2000-2004 Director, Center for Nanofabrication and Molecular Self-Assembly and George B. Rathmann Professor of Chemistry, Northwestern University 1997-2000 Charles E. and Emma H. Morrison Professor of Chemistry, Northwestern University 1995-1997 Associate Professor, Department of Chemistry, Northwestern University 1991-1995 Assistant Professor, Department of Chemistry, Northwestern University Awards and Honors (selected, over 230 national and international total) 2020 ACS Division of Colloid and Surface Science Award for Outstanding Achievement in Nanoscience; AAAS Philip Hauge Abelson Award 2019 Kabiller Prize in Nanoscience and Nanomedicine; SCI Perkin
    [Show full text]
  • Mario Molina (1943– ) Information Sheet
    Mario Molina (1943– ) information sheet Mario Molina (Picture reproduced courtesy of Nobel Foundation.) As a boy, Mario Molina was strongly influenced by his aunt, a chemist in the sugar industry, who later became a teacher. She used to encourage him to carry out chemistry experiments at home in a converted bathroom. From a young age Mario’s ambition was to be a research scientist, even though it was not a trendy job for a young Mexican. Why investigate CFCs and the atmosphere? Molina went to university and studied chemistry at degree level. He then took a research degree (a PhD) in 1972, at the University of California, Berkeley. Molina then went to Irvine to work with a man called Sherwood Rowland, who had recently heard that the British scientist James Lovelock had discovered some of the refrigerant trichlorofluoromethane (called CFC-11) in the atmosphere of the Northern and Southern hemisphere. He was curious to find out more, and wanted to know the answer to a simple question, ‘what happens to CFCs in the environment and were there any consequences?’ Rowland managed to persuade his sponsors to fund the project and Molina started investigating CFCs in October 1973, even though his knowledge of atmospheric chemistry was limited. Molina got to work, carrying out calculations and he soon started to build up a very worrying picture of the atmosphere. If he was right, it was not good news; if he was wrong he would look stupid. What should he do next? Molina’s theory CFC’s were so inert that there was nothing for them to react with in the atmosphere.
    [Show full text]
  • Paul Josef Crutzen: Ingeniousness and Innocence RETROSPECTIVE Hans Joachim Schellnhubera,B,1
    RETROSPECTIVE Paul Josef Crutzen: Ingeniousness and innocence RETROSPECTIVE Hans Joachim Schellnhubera,b,1 On January 28, 2021, the world lost a scholar, who won a Nobel Prize, who shaped our thinking about planet Earth, and whose fight for the protection of the global environment will be remembered forever. Paul Josef Crutzen was born in Amsterdam in 1933 and embarked on a cosmopolitan journey in 1957, when he left The Netherlands for Sweden. Looking back at that journey, we can state that he arrived at a triad of accomplishments that few intellectuals obtain: the disruptive advancement of science, the inspiring com- munication of science, and the responsible operation- alization of science. Paul was trained as a civil engineer for the con- struction sector, which he abandoned for becoming a computer programmer at the Meteorology Institute of Stockholm University (MISU). The university housed the world’s fastest computers at that time, and the institute, founded by the great Gustav Rossby, was at the forefront of atmospheric research. When Paul Paul J. Crutzen. Image credit: Carsten Costard arrived, MISU was headed by another giant of mete- Photography. orology, Bert Bolin, who later became the chair of the Intergovernmental Panel on Climate Change. Paul had always longed for an academic career due to his for Chemistry, Mainz, from 1980 onwards), while also interest and talent in mathematics and physics, yet teaching as a visiting professor in various other loca- was denied access to university education in The tions around the globe. Yet it was in Stockholm where Netherlands by an unfortunate episode of illness.
    [Show full text]
  • Inventory to the Herbert C. Brown Papers, 1928-2005
    INVENTORY TO THE HERBERT C. BROWN PAPERS, 1928-2005 Purdue University Libraries Karnes Archives and Special Collections 504 West State Street West Lafayette, Indiana 47907-2058 (765) 494-2839 http://www.lib.purdue.edu/spcol ©2008 Purdue University Libraries. All rights reserved. Compiled by: Margaret S. Morris, 2008 Revised by: Elizabeth M. Wilkinson, July 2008, May 2012, December 2012 Descriptive Summary Creator Information Brown, Herbert C., 1912 –2004 Title Herbert C. Brown papers Collection Identifier MSF 4 Date Span 1928-2005, predominant 1940s–1990s Abstract Business and personal papers of Herbert C. Brown, educator, chemist, and recipient of the 1979 Nobel Prize for Chemistry Extent 420 cubic feet (448 boxes) Finding Aid Author Margaret S. Morris, 2006 – 2008; Processing of additional materials and revisions made by Elizabeth Wilkinson, 2008, 2012 Languages English Repository Virginia Kelly Karnes Archives and Special Collections Research Center, Purdue University Libraries Administrative Information Location Information: ASCR Access Restrictions: Collection is open for research. The collection is stored offsite; 48 hours notice is required to access the collection. Some materials have been restricted due to privacy and legal issues Acquisition Donated by Herbert C. Brown and his son, Charles A. Information: Brown Custodial History: The Herbert C. Brown papers were donated to Purdue University by Herbert C. Brown when he was on the faculty at Purdue. Brown’s papers were originally housed in the small library room adjacent to his office that was provided to Brown when he became a Professor Emeritus in 1978. The papers remained as part of the Purdue Chemistry Department until Brown’s death in 2004, when they were transferred to the 12/21/2012 2 archives.
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • Centennial Celebration of the National Academy of Sciences
    CENTENNIAL CELEBRATION OF THE NATIONAL ACADEMY OF SCIENCES SECOND SCIENTIFIC SESSION October 22, 1963 NATURE OF MATTER CONTENTS INTRODUCTION . .. .. .Melvin Calvin, Chairman 955 SYMMETRY AND CONSERVATION LAWS ....... Eugene P. Wigner 956 ELEMENTARY PARTICLES ............. Geoffrey F. Chew 965 THE STRUCTURE OF NUCLEI . .. .. Victor F. Weisskopf 971 THE ARCHITECTURE OF MOLECULES . .. .Linus Pauling 977 THE ORGANIZATION OF LIVING MATTER . .. .George E. Palade * * The manuscript of this lecture has not been received. It will be published in the first issue possible follow- ing its receipt. INTRODUCTION BY MELVIN CALVIN DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY I welcome you to the Second Scientific Session of the one-hundredth anniversary meeting of the National Academy of Sciences of the United States. Yesterday we heard a discussion of the history of the universe, in its many aspects, including the history of living things as we know them. Today we will be concerned with the very nature of the matter of which the things whose history we heard about yesterday is constructed. Our view of the nature of that matter has varied greatly ever since man began to wonder about its nature. Today we will undertake an examination of the present status of our concepts of its nature, at all levels of organization. In constructing the program, we were concerned about the order in which we should try to arrange it. And the very structure of our experience, as one of our speakers will describe, in a very real sense determines in some way our view of things. First we will concern ourselves not with any chronological sequence of our concepts either in universal time or human time, but rather with an examination of the concepts and materials at various levels of organization, beginning with the Axiom itself, which gives rise to the physical laws, and presumably there is more than one.
    [Show full text]